

Lecture Notes in Computer Science 4855
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

V. Arvind Sanjiva Prasad (Eds.)

FSTTCS 2007:
Foundations of
Software Technology
and Theoretical
Computer Science

27th International Conference
New Delhi, India, December 12-14, 2007
Proceedings

13

Volume Editors

V. Arvind
The Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai 600 113, India
E-mail: arvind@imsc.res.in

Sanjiva Prasad
Indian Institute of Technology Delhi
Hauz Khas, New Delhi 110 016, India
E-mail: sanjiva@cse.iitd.ac.in

Library of Congress Control Number: 2007940050

CR Subject Classification (1998): F.3, D.3, F.4, F.2, F.1, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-77049-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77049-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12198450 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 27th annual conference on the Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS
2007) held during December 12–14, 2007 at the India International Centre in
New Delhi. The conference was organized under the auspices of the Indian As-
sociation for Research in Computing Science (IARCS).

This year’s conference attracted 135 submissions from 31 countries. Except
for a few papers that were outside the scope of the conference, each submis-
sion was assigned to at least three Programme Committee members, who, with
the assistance of external expert researchers, ensured that each paper had at
least three independent reviews. Given the high quality of the submissions, the
Programme Committee decided to accept 40 papers. We thank all the expert
reviewers for their invaluable help. We are very grateful to the PC members who
put in enormous time and work in selecting the papers. Without their untiring
efforts the conference would not have been possible.

The entire process of submission, refereeing, and the subsequent electronic
PC meeting for selecting the papers for the conference program was greatly
facilitated by the EasyChair conference management system; we would like to
thank Andrei Voronkov and his team for this wonderful software.

One of the highlights of FSTTCS is the high quality of the invited talks.
This year’s conference was fortunate to have five very eminent invited speakers:
Maurice Herlihy, Benjamin Pierce, Thomas Reps, Salil Vadhan, and Andrew
Yao. Andrew Yao delivered the keynote address at the conference titled “A
Modern Theory of Trust-but-Verify.” In addition, Richard Karp, who could not
make it to the conference to give his invited talk, kindly agreed to send an
article for inclusion in the proceedings. It gives us great pleasure to thank all
the invited speakers for agreeing to talk at the conference and for contributing
to this volume.

Two satellite workshops were organized in conjunction with FSTTCS this
year. These workshops were hosted by the Indian Institute of Technology Delhi.
The conference was preceded by a one-day workshop on Compiler Techniques
on December 11, felicitating Priti Shankar on her 60th birthday. Following the
conference, on December 15, there was a one-day workshop on BioInformatics
and Systems Biology organized by Neelima Gupta.

We thank the Organizing Committee for making all the arrangements for
the conference. We thank IARCS and the sponsors for their support. As always,
Alfred Hofmann and his team at Springer were very helpful in preparing the
proceedings.

December 2007 V. Arvind
Sanjiva Prasad

Conference Organization

Program Committee

Roberto Amadio (Univ. Paris 7)
V. Arvind (IMSc, Chennai), Co-chair
Iliano Cervesato (CMU, Qatar)
Supratik Chakraborty (IIT Bombay)
Sunil Chandran (IISc, Bangalore)
Samir Datta (CMI, Chennai)
Deepak D’Souza (IISc, Bangalore)
Sumit Ganguly (IIT Kanpur)
Rajeev Goré (ANU and NICTA)
Aarti Gupta (NEC Labs, Princeton)
Vineet Gupta (Google, Bangalore)
Prasad Jayanti (Dartmouth College)
Ranjit Jhala (UC San Diego)
Deepak Kapur (New Mexico, Albuquerque)
Subhash Khot (Georgia Tech., Atlanta)
Johannes Köbler (Humboldt U., Berlin)
K. Narayan Kumar (CMI, Chennai)
Kim G. Larsen (Aalborg U.)
Satya Lokam (Microsoft Research)
Greg Morrissett (Harvard U., Cambridge)
Sanjiva Prasad (IIT Delhi), Co-chair
Shaz Qadeer (Microsoft Research)
S. Srinivasa Rao (ITU, Copenhagen)
Pranab Sen (TIFR, Mumbai)
Helmut Seidl (TU München)
Aravind Srinivasan (U. Maryland)
C.R. Subramanian (IMSc, Chennai)
Denis Thérien (McGill U., Montréal)
Ashish Tiwari (SRI, Palo Alto)
Vinodchandran Variyam (U. Nebraska)
Heribert Vollmer (U. Hannover)
Hongseok Yang (QMU, London)

Local Organization

Amit Kumar (IIT Delhi)
Amitabha Bagchi (IIT Delhi)
S. Arun-Kumar (IIT Delhi)

S.N. Maheshwari (IIT Delhi)
Naveen Garg (IIT Delhi)
Neelima Gupta (Delhi U.)

VIII Organization

External Reviewers

David Abraham
Bharat Adsul
Manindra Agrawal
Luca de Alfaro
Eric Allender
Rajeev Alur
Klaus Ambos-Spies
Daniel Andersson
Geneviève Arboit
Kumar Avijit
Meenakshi B.
David Mix Barrington
Surendra Baswana
Michael Bauland
Bernhard Beckert
Arnold Beckmann
Josh Berdine
Nathalie Bertrand
Dietmar Berwanger
Olaf Beyersdorff
Raghav Bhaskar
Vibhor Bhatt
Hans Bodlaender
Benedikt Bollig
Glencora Borradaile
Chris Bourke
Patricia Bouyer
Franck van Breugel
Gerth Brodal
James Brotherston
Cristiano Calcagno
Marco Carbone
Ilaria Castellani
Tanmoy Chakraborty
Sourav Chakraborty
Timothy Chan
Chris Charnes
Thomas Chatain
Krishnendu Chatterjee
Kostas Chatzikokolakis
Kaustuv Chaudhuri
Yannick Chevalier
Sherman Chow

Vincenzo Ciancia
Corina Cirstea
Sebastien Collette
D.J. Das
Anita Das
Anupam Datta
Jeremy Dawson
Arnab De
Josée Desharnais
Volker Diekert
Dino Distefano
Reza Dorrigiv
Agostino Dovier
Joydeep Dutta
Chinmoy Dutta
Yuval Emek
Marco Faella
Stephan Falke
Pierre Fraigniaud
Alan Frieze
Sibylle Froeschle
Anna Gal
Nicola Galesi
Malay Ganai
Rajiv Gandhi
Sumit Ganguly
Thomas Gawlitza
Rob van Glabbeek
Subir Ghosh
Christian Glaßer
Alexander Golynski
K.N. Gopinath
Madhu Gopinathan
Navin Goyal
Fabrizio Grandoni
Martin Grohe
Sudipto Guha
Bhargav Gulavani
Raveendra Holla
Russ Harmer
Meng He
Matthew Hennessy
Daniel Hirschkoff

Organization IX

Markus Holzer
Chien-Chung Huang
Gimbert Hugo
Hans Huttel
Samuel Hym
Franjo Ivancic
Purushothaman Iyer
Radha Jagadeesan
David Jansen
Alan Jeffrey
Rushikesh Joshi
Chakraborty Joy
Marcin Jurdzinski
Raghavendra K.R.
Vineet Kahlon
Aditya Kanade
Shiva Prasad Kasiviswanathan
James King
Sven Kosub
Dieter Kratsch
Steve Kremer
Neelakantan Krishnaswami
Ralf Kuesters
Oliver Kullmann
Amit Kumar
Piyush Kurur
Shankar Ram Lakshminarayanan
Klaus-Joern Lange
Stefan Langerman
Serguei Lenglet
Paul Levy
Shuhao Li
Jay Ligatti
Shanshan Liu
Kamal Lodaya
Sachin Lodha
Salvador Lucas
Carsten Lutz
Alexis Maciel
Meena Mahajan
Rupak Majumdar
Azarakhsh Malekian
Nicolas Markey
Maarten Marx
Elvira Mayordomo

Damiano Mazza
Bill McCloskey
Pierre McKenzie
Shashank Mehta
Daniel Meister
Mark Mercer
Wolfgang Merkle
Antoine Meyer
Dimitrios Michail
Maja Milicic
Sayan Mitra
Dieter Mitsche
Raj Mohan M.
David Mount
Madhavan Mukund
Anca Muscholl
Madan Musuvathi
Rahul Muthu
Kedar Namjoshi
Narayanan Narayanan
N.S. Narayanaswamy
Phuong Nguyen
Brian Nielsen
Aditya Nori
Ulrik Nyman
Peter O’Hearn
Greg O’Keefe
Jan Obdrzalek
Mitsunori Ogihara
M.V. P. Rao
Catuscia Palamidessi
Chandrasekaran Pandu Rangan
Paritosh Pandya
Matthew Parkinson
Madhusudan Parthasarathy
Mihai Patrascu
A. Pavan
Pavithra Prabhakar
Jaikumar Radhakrishnan
G. Ramalingam
Krithivasan Ramamritham
Venkatesh Raman
Revantha Ramanayake
R. Ramanujam
Jacob Illum Rasmussen

X Organization

Jason Reed
Jakob Rehof
Klaus Reinhardt
Sambuddha Roy
Arnab Roy
Andrey Rybalchenko
Krishna S.
Anil Seth
Sriram Sankaranarayanan
Vijay Saraswat
Jayalal M.N. Sarma
Saket Saurabh
Alexis Saurin
Henning Schnoor
Dominik Schultes
Thomas Schwarz
Luc Segoufin
Jay Sethuraman
Priti Shankar
Naresh Sharma
Somnath Sikdar
Sunil Simon
Naveen Sivadasan
Viorica Sofronie-Stokkermans
Kannan Srinathan
Venkatesh Srinivasan
Srikanth Srinivasan
Mark-Oliver Stehr
Lutz Strassburger
Suresh S.P.
Subhash Suri
Carolyn Talcott
Till Tantau
Olivier Tardieu

Serdar Tasiran
Pascal Tesson
P.S. Thiagarajan
Alwen Tiu
Jacobo Torán
Godfried Toussaint
Rahul Tripathi
Andrea Turrini
Christian Urban
Viktor Vafeiadis
Kasturi Varadarajan
Kapil Vaswani
Jacqueline Vauzeille
Kumar Neeraj Verma
Adrian Vetta
Victor Vianu
Walter Vogler
Anil Vullikanti
Yongge Wang
Chao Wang
Bogdan Warinschi
Ian Wehrman
James Worrell
James Worthington
Henning Wunderlich
Shaofa Yang
Mihalis Yannakakis
Joseph Yukich
Chunlai Zhou
Li Zhang
Wieslaw Zielonka
Uri Zwick

Table of Contents

Invited Papers

The Multicore Revolution: The Challenges for Theory 1
Maurice Herlihy

Streaming Algorithms for Selection and Approximate Sorting 9
Richard M. Karp

Adventures in Bidirectional Programming . 21
Benjamin C. Pierce

Program Analysis Using Weighted Pushdown Systems 23
Thomas Reps, Akash Lal, and Nick Kidd

The Complexity of Zero Knowledge . 52
Salil Vadhan

Contributed Papers

The Priority k-Median Problem . 71
Amit Kumar and Yogish Sabharwal

“Rent-or-Buy” Scheduling and Cost Coloring Problems 84
Takuro Fukunaga, Magnús M. Halldórsson, and Hiroshi Nagamochi

Order Scheduling Models: Hardness and Algorithms 96
Naveen Garg, Amit Kumar, and Vinayaka Pandit

On Simulatability Soundness and Mapping Soundness of Symbolic
Cryptography . 108

Michael Backes, Markus Dürmuth, and Ralf Küsters

Key Substitution in the Symbolic Analysis of Cryptographic
Protocols . 121

Yannick Chevalier and Mounira Kourjieh

Symbolic Bisimulation for the Applied Pi Calculus 133
Stéphanie Delaune, Steve Kremer, and Mark Ryan

Non-mitotic Sets . 146
Christian Glaßer, Alan L. Selman, Stephen Travers, and Liyu Zhang

Reductions to Graph Isomorphism . 158
Jacobo Torán

XII Table of Contents

Strong Reductions and Isomorphism of Complete Sets 168
Ryan C. Harkins, John M. Hitchcock, and A. Pavan

Probabilistic and Topological Semantics for Timed Automata 179
Christel Baier, Nathalie Bertrand, Patricia Bouyer,
Thomas Brihaye, and Marcus Größer

A Theory for Game Theories . 192
Michel Hirschowitz, André Hirschowitz, and Tom Hirschowitz

An Incremental Bisimulation Algorithm . 204
Diptikalyan Saha

Logspace Algorithms for Computing Shortest and Longest Paths in
Series-Parallel Graphs . 216

Andreas Jakoby and Till Tantau

Communication Lower Bounds Via the Chromatic Number 228
Ravi Kumar and D. Sivakumar

The Deduction Theorem for Strong Propositional Proof Systems
(Extended Abstract) . 241

Olaf Beyersdorff

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 253
Christian Glaßer, Christian Reitwießner, Stephen Travers, and
Matthias Waldherr

Post Embedding Problem Is Not Primitive Recursive, with Applications
to Channel Systems . 265

Pierre Chambart and Philippe Schnoebelen

Synthesis of Safe Message-Passing Systems . 277
Nicolas Baudru and Rémi Morin

Automata and Logics for Timed Message Sequence Charts 290
S. Akshay, Benedikt Bollig, and Paul Gastin

Propositional Dynamic Logic for Message-Passing Systems 303
Benedikt Bollig, Dietrich Kuske, and Ingmar Meinecke

Better Algorithms and Bounds for Directed Maximum Leaf Problems . . . 316
Noga Alon, Fedor V. Fomin, Gregory Gutin,
Michael Krivelevich, and Saket Saurabh

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted
Graphs . 328

Telikepalli Kavitha

Table of Contents XIII

Covering Graphs with Few Complete Bipartite Subgraphs 340
Herbert Fleischner, Egbert Mujuni, Daniel Paulusma, and
Stefan Szeider

Safely Composing Security Protocols . 352
Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune

Computationally Sound Typing for Non-interference: The Case of
Deterministic Encryption . 364

Judicaël Courant, Cristian Ene, and Yassine Lakhnech

Bounding Messages for Free in Security Protocols . 376
Myrto Arapinis and Marie Duflot

Triangulations of Line Segment Sets in the Plane . 388
Mathieu Brévilliers, Nicolas Chevallier, and Dominique Schmitt

Reconstructing Convex Polygons and Polyhedra from Edge and Face
Counts in Orthogonal Projections (Extended Abstract) 400

Therese Biedl, Masud Hasan, and Alejandro López-Ortiz

Finding a Rectilinear Shortest Path in R2 Using Corridor Based
Staircase Structures . 412

R. Inkulu and Sanjiv Kapoor

Compressed Dynamic Tries with Applications to LZ-Compression in
Sublinear Time and Space . 424

Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung

Stochastic Müller Games are PSPACE-Complete . 436
Krishnendu Chatterjee

Solving Parity Games in Big Steps . 449
Sven Schewe

Efficient and Expressive Tree Filters . 461
Michael Benedikt and Alan Jeffrey

Markov Decision Processes with Multiple Long-Run Average
Objectives . 473

Krishnendu Chatterjee

A Formal Investigation of Diff3 . 485
Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce

Probabilistic Analysis of the Degree Bounded Minimum Spanning Tree
Problem . 497

Anand Srivastav and Sören Werth

XIV Table of Contents

Undirected Graphs of Entanglement 2 . 508
Walid Belkhir and Luigi Santocanale

Acceleration in Convex Data-Flow Analysis . 520
Jérôme Leroux and Grégoire Sutre

Model Checking Almost All Paths Can Be Less Expensive Than
Checking All Paths . 532

Matthias Schmalz, Hagen Völzer, and Daniele Varacca

Closures and Modules Within Linear Logic Concurrent Constraint
Programming . 544

Rémy Haemmerlé, François Fages, and Sylvain Soliman

Author Index . 557

The Multicore Revolution

The Challenges for Theory

Maurice Herlihy�

Brown University Computer Science Department

Abstract. Computer architecture is undergoing, if not another revolu-
tion, then a vigorous shaking-up. The major chip manufacturers have,
for the time being, simply given up trying to make processors run faster.
Instead, they have recently started shipping ”multicore” architectures, in
which multiple processors (cores) communicate directly through shared
hardware caches, providing increased concurrency instead of increased
clock speed. As a result, system designers and software engineers can
no longer rely on increasing clock speed to hide software bloat. Instead,
they must somehow learn to make effective use of increasing parallelism.
This adaptation will not be easy. Conventional synchronization tech-
niques based on locks and conditions are unlikely to be effective in such a
demanding environment. Coarse-grained locks, which protect relatively
large amounts of data, do not scale, and fine-grained locks introduce
substantial software engineering problems. Transactional memory is a
computational model in which threads synchronize by optimistic, lock-
free transactions. This synchronization model promises to alleviate many
(perhaps not all) of the problems associated with locking, and there is a
growing community of researchers working on both software and hard-
ware support for this approach. This paper surveys the area, with a focus
on open research problems.

1 Introduction

The computer industry is undergoing, if not another revolution, then a vigorous
shaking-up. The major chip manufacturers have, for the time being, given up
trying to make processors run faster. Moore’s law has not been repealed: each
year, more and more transistors fit into the same space, but their clock speed
cannot be increased without overheating. Instead, attention is turning toward
multicore architectures, in which multiple computing cores are included on each
processor chip. Although these changes are propelled by changes in technology,
they also provide a unique opportunity for theoretical distributed computing
to have a substantial impact on practice. This paper suggests some promising
research directions.

These trends mean that, in the medium term, advances in technology will pro-
vide increased parallelism, but not increased single-thread performance. System
designers and software engineers can no longer rely on increasing clock speed
� Funded by NSF 0410042 and Sun Microsystems.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 1–8, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Herlihy

to enable ever more ambitious applications. Instead, they must learn to make
effective use of increasing parallelism.

These trends have profound implications for many branches of Computer Sci-
ence. The theoretical foundations of concurrency, encompassing models, concur-
rent algorithms, and data structures, while an established and well-respected
branch of our field, have primarily been of academic interest. There has been lit-
tle pressure on the field to devise practical or realistic models because there were
few opportunities to affect practice. Suddenly, however, exploiting concurrency
has become a subject of compelling concern to a wider community, providing a
unique opportunity for Theory to have an impact on the real world.

For software developers, adapting to an environment where concurrency is
commonplace will not be easy. In today’s programming practices, programmers
typically rely on combinations of locks and conditions, such as monitors, to
prevent concurrent access by different threads to the same shared data. While
this approach allows programmers to treat sections of code as “atomic”, and
thus simplifies reasoning about interactions, it suffers from a number of severe
shortcomings.

First, programmers must decide between coarse-grained locking, in which a
large data structure is protected by a single lock, and fine-grained locking, in
which a lock is associated with each component of the data structure. Coarse-
grained locking is simple, but permits little or no concurrency, thereby preventing
the program from exploiting multiple processing cores. By contrast, fine-grained
locking is substantially more complicated because of the need to ensure that
threads acquire all necessary locks (and only those, for good performance), and
because of the need to avoid deadlock when acquiring multiple locks. The deci-
sion is further complicated by the fact that the best engineering solution may
be platform-dependent, varying with different machine sizes, workloads, and so
on, making it difficult to write code that is both scalable and portable.

Second, conventional locking provides poor support for code composition
and reuse. For example, consider a lock-based hash table that provides atomic
insert () and remove() methods. Ideally, it should be easy to move an element
atomically from one table to another, but this kind of composition simply does
not work. If the table methods synchronize internally, then there is no way to
acquire and hold both locks simultaneously. If the tables export their locks, then
modularity and safety are compromised.

Finally, such basic issues as the mapping from locks to data, that is, which
locks protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously difficult to
detect and debug. For these and other reasons, today’s software practices make
concurrent programs too difficult to develop, debug, understand, and maintain.

To address these problems, attention has shifted to computational models
based on transactions. A transaction is a sequence of steps executed by a single
thread. Transactions are atomic: each transaction either commits (it takes ef-
fect) or aborts (its effects are discarded). Transactions are linearizable [11]: they
appear to take effect in a one-at-a-time order. Transactional memory supports a

The Multicore Revolution 3

computational model in which each thread announces the start of a transaction,
executes a sequence of operations on shared objects, and then tries to commit
the transaction. If the commit succeeds, the transaction’s operations take effect;
otherwise, they are discarded.

Our transactions satisfy the same formal serializability and atomicity prop-
erties as database-style transactions, but they are intended to be used very dif-
ferently. Unlike database transactions, our transactions are short-lived activities
that access a relatively small number of objects in primary memory. The effects
of database transactions are persistent, and committing a transaction involves
backing up changes on a disk. Our transactions are not persistent, and involve
no explicit disk I/O.

To illustrate why transactions are attractive, consider the problem of con-
structing a concurrent FIFO queue that permits one thread to enqueue items
at the queue’s tail at the same time another thread dequeues items from the
queue’s head. Any problem so easy to state, and that arises so naturally in
practice, should have an easily-devised, understandable solution. In fact, solving
this problem with locks is quite difficult. In 1996, Michael and Scott published
a clever, but subtle solution [15]. It speaks poorly for fine-grained locking as
a methodology that solutions to such simple problems are considered difficult
enough to be publishable results.

class Queue {
QNode head;
Qnode tail ;
public enq(Object x) {

atomic {
Qnode q = new Qnode(x);
q.next = this .head;
q.head = q;

} catch (AbortException e) {...}
}
...

}

Fig. 1. Transactional queue code fragment

By contrast, it is almost trivial to solve this problem using transactions.
Figure 1 shows how the queue’s enqueue method might look in a language that
provides direct support for transactions (for example, see Harris et al. [6]). It
consists of little more than enclosing sequential code in a transaction block, and
handling an exception if the transaction aborts. In practice, of course, a com-
plete implementation would include more details (such as how often to retry a
failed transaction), but even so, this concurrent queue implementation by itself
is not a publishable result.

Recently the transactional memory programming paradigm [10] has gained
momentum as an alternative to locks in concurrent programming. This approach

4 M. Herlihy

has been investigated in hardware [1, 5, 10, 19, 18, 14], in software [3, 6, 7, 9, 12,
13, 16, 21], and in schemes that mix hardware and software [17, 20]. This area is
growing at a fast pace, and a comprehensive list of citations can be found on the
transactional memory web page at [22].

2 Challenges

This section describes three problem areas where the Distributed Computing
community could make contributions.

2.1 Scheduling and Contention Management

Many STM systems execute transactions speculatively, meaning that they run
until they encounter a synchronization conflict, and when they do, they either
wait for the conflicting transaction to finish, or abort one of the conflicting
transactions. To avoid deadlock or livelock, many STM systems employ a kind
of scheduling module called a contention manager used to decide when one
transactions should wait-for or abort one another. A contention manager is a
kind of oracle: when one transaction discovers it is about to create a conflict with
another, it consults the contention manager to determine whether to proceed,
causing the other transaction to abort, or to pause, allowing the other transaction
time to finish. At one extreme, a contention manager that always pauses can lead
to deadlock, while a contention manager that always aborts can lead to livelock.
There is an enormous range of possibilities between these two extremes.

Much of the work on contention managers has been experimental: testing
alternative strategies against an array of benchmarks [23]. Recently, however,
attention has shifted to contention managers with provable properties. For exam-
ple, one way to evaluate a contention manager is by evaluating its Its competitive
ratio: comparing it to an omniscient off-line scheduler. When presented with a
collection of transactions, the Greedy contention manager [4] has a competitive
ratio of O(s), where s is the number of objects shared by transactions [2].

The Greedy manager is a start, but much more needs to be done to achieve
a full understanding of the relation between contention managers and classical
scheduling algorithms and lower bounds. We do not know whether the Greedy
manager’s competitive ratio is a good one, because we have no other contention
managers whose competitive ratio is known. This ratio measures the make-span
(time until last transaction commits) of a set of transactions that start at time
zero. The contention manager, which does not know the transactions’ read and
write sets,is compared to an omniscient schedule that does. While this is a rea-
sonable first step, in practice it is not clear that the make-span is the ideal mea-
sure, or whether a more dynamic model, where transactions arrive at random
times, is more realistic. While contention manager algorithms are flourishing as
an engineering topic, there is a need for more solid theoretical underpinnings.

The Multicore Revolution 5

2.2 Concurrent Data Structures and Algorithms

Transactional synchronization requires a new theory of concurrent data struc-
tures and algorithms. The conventional approach to transactional synchroniza-
tion is to say that two transactions conflict of they access the same data item
and one access is a write.

While read/write synchronization has the advantage that it can it can be done
automatically, it can severely and unnecessarily restrict concurrency.

Here is a simple example. Consider a mutable set of integers that provides
add(x), remove(x) and contains(x) methods with the obvious meanings. We
could implement the set as a sorted linked list, where each list node has a
value field and a reference to the next node. Nodes are sorted by value, and
values are unique. The add(x) method reads along the list until it encounters
the largest value less than x. If x is absent, it links a new node holding x into
the list.

Recently, an alternative approach, called transactional boosting, has emerged
that focuses on commutativity rather than read/write conflict as the basis for
synchronization. Informally, two method invocations commute if applying them
in either order leaves the object in the same state and returns the same re-
sponse. In a Set, for example, add(x) commutes with add(y) if x and y are
distinct.

Transactional boosting allows method calls to proceed in parallel as long as
they commute. There are many subtleties in defining what it means for method
calls to commute. Clearly, commutativity depends on the method name and ar-
guments, but it may also depend on the method’s return value and the object’s
current state. It is also (sometimes) necessary to provide inverses to method calls,
to be applied if transactions abort. Preliminary results suggest that synchroniza-
tion based on method semantics can be much more effective than synchronization
based on read/write conflicts.

Nevertheless, we are still far from a complete understanding of how best to
enhance concurrency in transactional data structures. While there is a well-
developed theory of transactional synchronization for databases, in-memory
transactions have different characteristics (for example, thread-level synchro-
nization is much more important), and much work remains to be done to develop
formal models, transaction-aware data structures, and lower bounds.

2.3 Granularity of Atomicity

Recently, Sun Microsystems announced that their next-generation processor,
called Rock would provide hardware support for transactional memory. This
welcome development opens, rather than closes, many research questions.

Nevertheless, in-cache transactions will always be limited in size and scope.
There is an inherent mismatch between the fixed resources provided by an under-
lying architecture and the variable resources needed by software. For example,
a transaction that reads too much data will overflow its cache, and be forced to
abort. How much is “too much”? It makes little sense to decree a hard-and-fast

6 M. Herlihy

bound on transaction size, because different platforms provide different cache
sizes and architectures, and cache sizes are likely to change over time.

A more sensible approach is to use a hybrid technique. If the transaction is
small enough to fit in the platform’s cache, then run it in hardware. Other-
wise, run it on a software transactional memory whose inner loop makes use
of hardware transactions. If all else fails, run it completely in software. This
hybrid strategy ensures that transactional applications remain portable across
platforms, but will run faster on platforms that provide more resources.

While discovering the best way to mix hardware and software transactions
may seem to be exclusively an engineering question, it raises the need for a
broader theoretical foundation for synchronization.

Older architectures typically provided a single compare-and-swap (CAS) in-
struction that atomically reads and modifies a single memory location. While
this instruction is in principle, powerful enough to construct a wait-free imple-
mentation of any object [8], such constructions are inefficient. Some concurrent
objects can be implemented quite efficiently using a double CAS, which operates
on two independent locations, and papers have studied m−CAS, an instruction
that works on m words. An unlimited hardware transaction can be viewed as
an arbitrary-size CAS, and can implement any object with a constant number
of synchronization steps.

In practice, since hardware transactional memory is bounded, it is worth ask-
ing how a synchronization instruction’s size (that is, the number of memory
locations affected) affects the complexity of useful data structures. Clearly, CAS
implements shared data structures less efficiently than 2-CAS, and so on, but
little is known about characterizing the gains in synchronization efficiency when
one moves from k-CAS to (k + 1)-CAS. If, for example, one were to discover
that 16-CAS can efficiently implement a large class of data structures, then one
would know what kinds of hardware support to ask for.

3 Conclusions

This paper is intended to alert the Distributed Computing community that there
is a unique opportunity to apply our collective expertise in models, algorithms,
and lower bounds to emerging problems of compelling practical interest. The
study of concurrent algorithms and architectures has only recently caught the at-
tention of the mainstream Systems community, but it should be familiar ground
to us, the Theory community.

References

1. Ananian, S., Asanovic, K., Kuszmaul, B., Leiserson, C., Lie, S.: Unbounded trans-
actional memory. In: Proc. 11th International Symposium on High-Performance
Computer Architecture, pp. 316–327 (February 2005)

The Multicore Revolution 7

2. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. In: PODC 2006. Proceedings of the
twenty-fifth annual ACM symposium on Principles of distributed computing, pp.
308–315. ACM Press, New York (2006)

3. Dice, D., Shavit, N.: What really makes transactions faster?. In: Transact: First
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (June 2006)

4. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional con-
tention managers. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, Springer,
Heidelberg (2005)

5. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory co-
herence and consistency. In: Proc. 31st Annual International Symposium on Com-
puter Architecture (June 2004)

6. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Pro-
ceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pp. 388–402. ACM Press, New York (2003)

7. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP 2005. Proceedings of the 10th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pp. 48–60. ACM Press, New York
(2005)

8. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 13(1), 124–149 (1991)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC 2003. Proceedings of the
22nd annual symposium on Principles of distributed computing, pp. 92–101. ACM
Press, New York (2003)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th annual international symposium
on Computer architecture, pp. 289–300. ACM Press, New York (1993)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12(3), 463–492 (1990)

12. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong shared
memory primitives. In: Proceedings of the thirteenth annual ACM symposium on
Principles of distributed computing, pp. 151–160. ACM Press, New York (1994)

13. Marathe, V., Scherer, W., Scott, M.: Adaptive software transactional memory.
Technical Report TR 868, Computer Science Department, University of Rochester
(May 2005)

14. McDonald, A., Chung, J., Carlstrom, B., Minh, C., Chafi, H., Kozyrakis, C., Oluko-
tun, K.: Architectural semantics for practical transactional memory (2006)

15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing, pp. 267–275. ACM Press, New York
(1996)

16. Moir, M.: Practical implementations of non-blocking synchronization primitives.
In: Proceedings of the sixteenth annual ACM symposium on Principles of dis-
tributed computing, pp. 219–228. ACM Press, New York (1997)

17. Moir, M.: Hybrid transactional memory, Unpublished manuscript (July 2005)

8 M. Herlihy

18. Moore, K.E., Hill, M.D., Wood, D.A.: Thread-level transactional memory. Techni-
cal Report CS-TR-2005-1524, Dept. of Computer Sciences, University of Wisconsin
(March 2005)

19. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift, M.M.,
Wood, D.A.: Supporting nested transactional memory in LogTM. In: ASPLOS-
XII. Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pp. 359–370. ACM Press, New
York (2006)

20. Saha, B., Adl-Tabatabai, A.-R., Hudson, R., Minh, C.C., Hertzberg, B.: Mcrt-stm.
In: PPoPP (2006)

21. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, pp.
204–213. ACM Press, New York (1995)

22. www.cs.wisc.edu/trans-memory
23. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic soft-

ware transactional memory. In: PODC 2005. Proceedings of the twenty-fourth an-
nual ACM symposium on Principles of distributed computing, pp. 240–248. ACM
Press, New York (2005)

www.cs.wisc.edu/trans-memory

Streaming Algorithms for Selection and

Approximate Sorting

Richard M. Karp

International Computer Science Institute, Berkeley, USA
and University of California at Berkeley

karp@icsi.berkeley.edu

1 Introduction

Companies such as Google, Yahoo and Microsoft maintain extremely large data
repositories within which searches are frequently conducted. In an article entitled
“Data-Intensive Supercomputing: The case for DISC” Randal Bryant describes
such data repositories and suggests an agenda for appying them more broadly to
massive data set problems of importance to the scientific community and society
in general.

Large-scale data repositories have become feasible because of the low cost of
disc storage. For $10,000 one can buy a processor with 1012 bytes of disc storage,
divided into blocks of capacity 64, 000 bytes. A typical repository (far from the
largest) might contain 1000 processors, each with 1012 bytes of storage.

It is of interest to develop streaming algorithms for basic information process-
ing tasks within such data repositories. In this paper we present such algorithms
for selecting the elements of given ranks in a totally ordered set of n elements and
for a related problem of approximate sorting. We derive bounds on the storage
and time requirements of our algorithms.

Such data repositories support random access to the disc blocks. Therefore, it
is reasonable to assume that the stream of input data to our sorting and selection
algorithms is a random permutation of the disc blocks.

We also consider parallel algorithms in which the data arrives in several inde-
pendent streams, each arriving at a single processor. Since all the processors of
such a repository are co-located, we assume that interprocessor communication
is not a bottleneck.

2 Streaming Algorithms

The input to a streaming algorithm is a sequence of items that arrive over time.
The output of the streaming algorithm on a given sequence is specified by a
function from sequences into some range. The algorithm processes each item in
turn and produces an output after the last arrival. The streaming algorithm may
be of three types:

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 9–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

10 R.M. Karp

1. In a basic streaming algorithm the length of the input is specified in advance.
2. In an anytime streaming algorithm the input may end at any time, but an

upper bound on the length of the input is given.
3. In an everytime streaming algorithm an upper bound on the length of the

input is given, and the algorithm is required to produce a correct output for
every prefix of the input.

The working storage of a streaming algorithm is a buffer of limited capacity.
We are interested in the following measures of complexity: the capacity of the
buffer and the time, or amortized time, to process an item.

In our case the items are keys drawn from a totally ordered set. We assume
that the keys arrive in a random order, and the algorithm is required to be
correct with high probability. If, more realistically, we assumed that the input
consists of blocks of N keys, where the allocation of keys to blocks is arbitrary
but the blocks arrive in a random order, then our results would still hold, except
that the storage requirement would be multiplied by N .

We restrict attention to deterministic or randomized algorithms that gain
information about the arriving keys solely by performing comparisons, and we
measure time complexity by the number of comparisons.

We often make statements of the form “The algorithm is correct with high
probability when provided with O(f(n)) units of the computational resource.
(such as storage or time).” The precise meaning of such a statement is: “For
every δ > 0 there exist constants c and n0 such that, for all n > n0, the algo-
rithm is correct with probability ≥ 1 − δ when provided with cf(n) units of the
computational resource..” An algorithm is optimal within a factor c if, for n
sufficiently large, its resource requirement is within a factor c of a lower bound
that holds for every algorithm for the problem.

3 Results

The α-quantile of a totally ordered set of n keys is the �αn�th smallest element.
We present optimal algorithms (simultaneously for time and storage), under the
random arrivals assumption, for the following problems:

1. Selection: Compute an α-quantile for a given α.
2. Multiple selection: Compute α-quantiles for many given values of α.
3. Parallel selection: In which the input is divided into streams, each with

its own buffer, and the different streams communicate by message passing.
4. Approximate selection: Given α and ε, find a key whose rank differs from

αn by at most εn.
5. Approximate sorting: Given a small positive constant ε, compute an or-

dering of the keys in which the rank assigned to each key agrees with its
rank in the true ordering, within a relative error of ε.

The algorithm for selection is an everytime algorithm. The algorithms for mul-
tiple selection and parallel selection are anytime algorithms. The algorithm for
approximate sorting requires two passes over the data.

Streaming Algorithms for Selection and Approximate Sorting 11

Finally, as a byproduct of our analysis of approximate sorting, we give an ele-
gant method for computing the expected number of comparisons for Quicksort,
Quickselect and Multiple Quickselect (see [6]).

There is a large literature on streaming algorithms for sorting and selection.
Our work differs from most of this literature because of the random arrivals
assumption, and because we simultaneously optimize both storage and time,
whereas most of the work on streaming algorithms considers only storage.

4 Selection

4.1 Previous Work on Randomized Algorithms for Selection

Among its many interesting results, the seminal paper of Munro and Paterson [5]
presents a streaming algorithm with optimal storage O(

√
n) for the computation

of the median assuming random arrival order. Their key observation, and one
that we build upon, is that it is possible to maintain a buffer of O(

√
n) keys, such

that, with high probability, at any stage in the sequence of arrivals, the median
of every subsequent prefix of the entire arrival sequence of length n either lies in
the buffer or has not arrived yet.

The paper [4] by Floyd and Rivest gives an algorithm for computing an α-
quantile with high probability using (1+min(α, 1−α))n+o(n) comparisons.This
result matches a simple lower bound derived as follows: let q be the α-quantile.
Every key x except q must be compared with some key that is either q or lies
strictly between x and q, and the first comparison involving x has probability at
least min(α, 1 − α) of failing to fulfill this condition.

The Floyd-Rivest algorithm is not presented as a streaming algorithm but can
be adapted under the random arrivals assumption to a basic streaming algorithm
with the original number of comparisons that requires storage n2/3 log n.

We present an everytime streaming algorithm for computing an α-quantile
under the random arrivals assumption with optimal storage O(

√
n) and optimal

execution time O(m) + O(
√

n log2 n) to process the first m arrivals.
Let q(t) denote the α-quantile of the prefix of length t. By straightforward

random walk arguments we establish the following claims:

1. With high probability the following holds for all t and t′ with t < t′: if key
q(t′) lies within the prefix of length t, its rank within that prefix differs from
αt by at most O(

√
n).

2. With high probability the cardinality of the set {q(t), t = 1, 2, · · · , n} is at
most

√
n log n; i.e., the number of distinct medians of prefixes is small.

We assume that 1−α
α = a/b where a and b are small integers. This assumption

is not essential, but simplifies exposition.
The algorithm makes deductions based on the assumption that the input

stream satisfies the above two assertions. It is divided into stages. In the first
stage (a + b)

√
n + 1 keys arrive, and in each subsequent stage a + b keys arrive.

At the start of any stage, after t keys have arrived, the algorithm maintains the
following information.

12 R.M. Karp

1. The current α-quantile q(t);
2. An interval (L, U) within which every future α-quantile must lie;
3. A set HIGH of bc

√
n keys greater than q(t) and a set LOW of ac

√
n keys

smaller than q(t) such that every future α-quantile that has already arrived
is contained in HIGH ∪ LOW ∪ {q(t)}.

In the first stage (a+b)c
√

n+1 keys arrive. The ac
√

n smallest keys are placed
in LOW, the bc

√
n largest keys are placed in HIGH, and the remaining key is

designated q((a + b)
√

n). U is set to +∞ and L is set to −∞. Each subsequent
stage has the following phases:

1. a + b keys arrive. Each arriving key greater than U is reassigned the value
+∞ and placed in HIGH, and each arriving key less than L is reassigned
the value −∞. Of the remaining arriving keys, those greater than q(t) are
placed in HIGH and those less than q(t) are placed in LOW.

2. A rebalancing process is carried out in which, depending on the number of
newly arriving keys that entered HIGH , a new α-quantile is determined, and
at most max(a, b) keys are transferred between HIGH and LOW to achieve
the properties that HIGH is of cardinality bc

√
n + b, LOW is of cardinality

ac
√

n + a, every key in HIGH is greater than the current α-quantile and
every key in LOW is less than the current α-quantile.

3. The b largest elements of HIGH and the a smallest elements of LOW are
discarded.

4. L is set to the largest value that has ever been discarded from LOW, and U
is set to the smallest value that has ever been discarded from HIGH.

The algorithm uses three mechanisms to achieve efficiency:

1. It keeps a count of the number of keys greater than U and the number of
keys less than L that have not yet been discarded, but does not explicitly
store those elements. The computational cost of identifying and discarding
each such key is O(1).

2. It stores the remaining elements of the sets HIGH and LOW in min-max
priority queues, implemented as lazy binomial queues, which perform the
insertkey, findmin and findmax operations in amortized time O(1) and the
extractmin and extractmax operations in time O(log n).

3. It maintains a doubly-linked linear list containing those keys that have ever
becom the α-quantile or been transferred between HIGH and LOW. Once a
key has entered this list, the computation time for each subsequent transfer
of the key is O(1). The computation time for the first transfer of any key is
O(log n), the time for an extractmin or extractmax operation.

4. The computation time to discard an element that has not been determined
to lie outside [L, U] is O(log n), the time for an extractmin or extractmax
operation.

For all k, the conditional probability that the kth arriving key is not immedi-
ately assigned the value +∞ or −∞, given the sequence of previous arrivals, is

Streaming Algorithms for Selection and Approximate Sorting 13

at most (a+b)c
√

n+2
k . It follows that, with high probability, the total number of

such arriving keys is O(
√

n log n). Hence, for all m, the time required to process
the first m arrivals is O(m) + O(

√
n log2 n).

5 Multiple Selection

In this section we present an anytime streaming algorithm for the following
problem. Let α1, α2, · · · , αk be an increasing sequence of numbers in (0, 1). Given
a stream of n keys arriving in a random order, find the α1, α2, · · · , αk-quantiles
of every prefix of the stream.

Let α0 = 0, αk+1 = 1 and pi = αi+1 − αi, for i = 1, 2, ..., , , k + 1. We
observe that any comparison-based algorithm to determine the given quantiles
must determine the relation of each of the n keys to each of the quantiles.
The number of such joint relations is slightly greater than n!

πk+1
i=1 (npi)!

. It follows
that the expected number of comparisons for any deterministic or randomized
algorithm is at least the logarithm base-2 of this quantity, which, by Stirling’s
approximation, is nH(p1, p2, · · · , pk+1) + o(n) where H(p1, p2, · · · , pk+1) is the
entropy function −

∑k+1
i=1 −pi log2 pi.

Our streaming algorithm is based on a binary search tree: a rooted ordered
binary tree with k internal nodes labeled in one-to-one correspondence with
the αi, such that the label of the left child of a node is less than the label of the
node, and the label of the right child of the node is greater than the label of the
node. If the root of the tree is labeled α then the process starts by computing
the α-quantile of the set of n keys. The keys less than the α-quantile flow to
the left child of the root and the keys greater than the α-quantile flow to the
right child of the root. Recursively, the left subtree of the root processes the
keys it receives to compute the αi quantiles of the set of n keys for all αi < α,
and the right subtree of the root processes the keys it receives to compute the
αi-quantiles of the set of n keys. for all αi > α. A standard construction from
information theory (the Shannon-Fano code) constructs a binary search tree such
that, as the keys flow down the tree, the sum of the cardinalities of the sets of
keys arriving at the k internal nodes is at most (H(p1, p2, · · · , pk+1) + 1)n. A
slight variant of that construction ensures that the height of the tree is O(log k)
while increasing the sum of the cardinalities by an arbitrarily small factor 1 + ε.
If each of the k selection problems is solved using the randomized algorithm of
Floyd and Rivest the total number of comparisons will be within a factor of
1.5(1 + ε) of the information-theoretic lower bound (with high probability).

We will convert this binary search algorithm to an anytime streaming algo-
rithm with storage requirement O(

√
nk) and amortized time O(1) per key (whp),

on the assumption that the keys arrive in a random order. To do so, we must
reconcile two conflicting requirements:

1. To ensure that the keys arrive at each node in a random order, we require
that the keys flowing into each node arrive in their original order;

14 R.M. Karp

2. To ensure that the process terminates within time O(n), we require that, as
a key flows down the tree, it must dwell at each node only for O(1) time
steps.

At first sight, this is an unsolvable dilemma. At each node, a key must be
immediately routed to the left child or right child according to whether it is less
than or greater than the quantile being computed at that node; but the quantile
cannot be known until all the keys have arrived at the node. To resolve the
dilemma, we run our everytime streaming algorithm for selection at each node,
and route each arriving key immediately to the left child if it is less than the
current α-quantile (rather than the unknown eventual α-quantile of the entire
input stream), and to the right child if it is greater than or equal to the current
α-quantile. Since the everytime selection algorithm processes the first m arriving
keys in time O(m+

√
n log n) there will be an excess delay of at most O(

√
n log n)

at each node and, since our binary search tree has height at most O(log k), a
total excess delay of at most O(

√
n log n log k. However, a key will be misdirected

if its relation to the current α-quantile is different from its relation to the final
α-quantile. Fortunately, the keys that could potentially be misdirected are the
ones that get transferred out of HIGH or out of LOW during the computation
of the quantile at the node. These are precisely the keys that get placed in
the doubly-linked list maintained by the algorithm, and the number of such
keys is O(

√
n log n) (whp). Thus, after the computation of the final α-quantile,

the selection algorithm can scan this list and send each of its children a list of
all the misdirected keys. Each child can make appropriate corrections in time
O(log n) per misdirected key. The correction computed at each child can affect
its list of misdirected keys, and so on down the tree. The total delay incurred
by the ripple effect of these misdirections is O(

√
n log2 n log2 k). Thus the time

required to compute all k α-quantiles is O(n). The storage required at each node
is proportional to the square root of the number of arriving keys; thus the total
storage requirement is O(

√
nk).

6 Parallel Selection

In this section we consider the problem of selecting the α-quantile of a sequence of
n keys, assuming that the keys arrive in k streams of length n/k to be processed
in parallel by k processors. We assume that the keys arrive in a random order; i.e.,
that all n! assignments of the set of arriving keys to positions in the streams are
equally likely. We give a parallel anytime algorithm based on the serial selection
algorithm of Section 4. As before, we assume for convenience that α = a

a+b where
a and b are small integers.

The algorithm starts by filling the buffers with arriving keys. It then goes
through a series of stages, each of which (except the last) starts with all the
buffers full. In each stage it is determined that the final α-quantile lies in an
interval (L, U) (whp). As many keys less than L or greater than U as possible
are then discarded from the buffers, subject to the requirement that the ratio
between the numbers of discarded keys greater than U and less than L must

Streaming Algorithms for Selection and Approximate Sorting 15

be exactly b/a.The buffers are then replenished with keys from the streams.
The processes of determining L and U and discarding high and low keys require
communication and transfer of keys among the processors.

These processes are based on a parallel algorithm to compute an approximate
β-quantile of the set of sk keys in the union of the k buffers. We begin by
presenting such an algorithm for the case β = 1/2.Let 3t be the largest power of
3 less than or equal to sk. The computation goes through t rounds of thinning,
starting with 3t keys from the union of the buffers. in each round the surviving
keys are grouped randomly into sets of 3, and the median of each set of 3 keys
survives to the next round.Analysis of this process shows that, with probability
at least .96, the final surviving key is a γ-quantile, where |γ−1/2| < 2/3(11/8)−t.

During the thinning process some groups must be composed of nodes from
different processors. For this purpose the processors configure themselves into
a virtual linked list. Initially, each node performs the thinning process on the
groups formed within its own buffer. Then, in subsequent rounds of thinning, the
surviving keys are transferred to nodes whose addresses in the list are multiples
of 3, then 32, 33 etc.

For any β, the determination of an approximate β-quantile can be reduced to
the determination of an approximate median by executing a special initial round
of thinning. We present the details for the case β < 1/2. Let m be the greatest
integer such that (1 − β)m > 1/2. Let p ∈ (0, 1) be such that p(1 − β)m) + (1 −
p)(1−β)m+1) = 1/2. Then, in the special round, the keys are grouped randomly,
where the size of each group is m with probability p and m + 1 with probability
1−p, and the smallest key in each group survives. Throughout the special round
and the subsequent thinning rounds, any rule for grouping the surviving keys
can be used, as long as it depends on the positions of keys within the buffers,
but not on their values. since the assignment of the keys to input streams, and
hence the assignment of keys to positions in the buffers, is random.

The processors use the thinning algorithm to find keys L and U such that all
future a

a+b -quantiles lie in the interval (L, U) (whp). This claim holds provided
that L is of of rank A and U is of rank sk − B in the set of sk keys contained
in the buffers of the k processors, such that A ≤ a((sk

a+b − c
√

n) and sk − B ≤
b((sk

a+b −c
√

n) To achieve this, the thinning algorithm is used to find approximate
β and γ-quantiles, where β = (1− ε)a(sk

a+b −c
√

n) and γ = (1+ ε)b((sk
a+b −c

√
n).

L is set to the approximate β-quantile and U , to the approximate γ-quantile.
Here ε is a small positive constant, and the factors 1 − ε and 1 + ε are safety
factors to ensure that A and B are likely to satisfy the required inequalities even
though the thinning algorithm only produces approximate β and γ-quantiles.

After L and U have been determined each processor counts the number of keys
less than L and the number of keys greater than U in its buffer. The processors
organize themselves into a virtual rooted binary tree and, aggregate their counts
by passing messages toward the root. After O(log k) parallel message-passing
steps the root contains the aggregate counts A and B of the numbers of keys
less than L and greater than U . In the unlikely event that A and B fail to
satisfy the required inequalities the randomized thinning algorithm is invoked to

16 R.M. Karp

recompute L and U . If A and B do satisfy the inequalities then using message
passing along edges directed away from the root, the processors are directed to
discard ra of the packets less than L and rb of the packets greater than U , where
r = min(�A/a�, �B/b�. Each processor then receives keys from its input stream
until its buffer is full.

The running time of the parallel algorithm is dominated by O(n/k), the time
required by each processor to read its input stream. In addition, each of the
O(n/sk) stages requires time O(log(sk) time for the parallel communication
required in computing L, U , A and B.

7 Approximate Selection

We begin with the following problem of computing an approximate median:
given an array of n keys, choose a key x such that, with probability at least
1 − δ, the rank of x differs from n/2 by at most εn. Vitter [7] has given the
following solution: set x equal to the median of a random sample of O(1

ε2 log(1
δ))

keys. If the stream of keys arrives in a random order then we can use a prefix of
the stream as the sample. By applying our streaming algorithm to this prefix,
we obtain an approximate median using O(1

ε2 log(1
δ)) comparisons and storage

O(1
ε

√
log(1/δ)).

Here we note that an approximate median can be computed by a streaming
algorithm using a slightly larger number of comparisons but only two storage
locations. The algorithm considers a series of arriving keys as candidates for
the ε-approximate median.Each candidate in turn is compared to a sequence
of arriving keys, and the algorithm keeps track of the lead of the candidate,
defined as the number of times the candidate is larger than the arriving key,
minus the number of times it is smaller. If the lead remains in the interval
(−a, a) for s steps then the candidate is declared to be an ε-approximate median.
Otherwise it is dismissed and the next arriving key becomes the new candidate.
Here s = O(1

ε2 ln(1
δ)) and a = 0.4sε. Using Chernoff bounds we establish the

following:

1. If the rank of the candidate differs from n/2 by at most ε
8 then, with prob-

ability at least 1 − δ, the candidate will be accepted.
2. If the rank of the candidate is np, where ε

8 < |p−1/2| < ε then the candidate
may or may not be accepted, but the number of comparisons performed on
it will not exceed s;

3. If the rank of the candidate is np, where |p − 1/2| > ε, then the probability

of incorrectly accepting the candidate is O(e−
s(|2p−1|−4ε)2

6p) and the expected
number of comparisons until it is rejected is at most .4nε

|2p−1| . Since |2p − 1| is
uniformly distributed over the interval (2ε, 1),we find by integrating over this
interval that the expected number of comparisons performed on a candidate
with |p − 1/2| > ε is O(1

ε ln 1/ε).
4. The number of candidates considered will be a geometric random variable

with expectation O(1
ε) and the number of candidates considered with |p −

1/2| < ε will be a geometric random variable with expectation O(1).

Streaming Algorithms for Selection and Approximate Sorting 17

5. The probability that the accepted candidate is not an ε-approximate median
is bounded above by a constant times δ;

6. The number of comparisons performed by the algorithm is
O(n

ε2 max(ln 1/δ, ln(1
ε)) (whp).

The computation of an approximate α-quantile can be reduced to the com-
putation of an approximate median using the reduction based on thinning given
in Section 5.

8 Approximate Sorting

In certain applications it suffices to sort a set of elements approximately rather
than exactly. For example, in ranking candidates for adnmission to an academic
department it may be important to rank the best candidates exactly, but an
increasingly rough ranking may be adequate as we go down the list. We formu-
late the problem of approximate sorting in terms of a parameter ε > 0. Our
requirement is that, for all r, a candidate of rank r is assigned a rank that differs
from r by at most εr.

Let ε be a positive constant. Let x1, x2, · · · , xn be a linearly ordered set of
keys and let π be the unique permutation of {1, 2, · · · , n} such that xπ(1) <
xπ(2) < · · · < xπ(n). Let σ be a permutation of {1, 2, · · · , n}. Then σ is said to
ε-sort the keys if, whenever π(i) = σ(j), (1 − ε)i ≤ j ≤ (1 + ε)i. In other words,
σ ε-sorts the keys if, for all r, the key of rank r in the true ordering has rank
between (1 − ε)r and (1 + ε)r in the ordering σ.

We shall derive a lower bound on the number of comparisons required to ε-
sort a set of n keys. Call a permutation θ of {1, 2, · · · , n} an ε-permutation if,
for all i, (1 − ε)i ≤ θ(i) ≤ (1 + θ)i. If π is the true ordering of the keys, then
permutation σ ε-sorts the keys if and only if σ ◦ π−1 is an ε-permutation. Let
V (n, ε) be the number of ε-permutations of {1, 2, · · · , n} Then, if an ε-sorting
algorithm returns the permutation σ, then there are only V (n, ε) possibilities
for the true permutation. Since a priori there are n! possible true permutations,
the program must be able to output at least n!/V (n, ε) permutations and,by
a standard argument, the worst-case number of comparisons performed by any
comparison algorithm for ε-sorting is at least the base-2 logarithm of this num-
ber of permutations. This lower bound also holds for the expected number of
comparisons in a randomized algorithm when the true permutation is drawn
uniformly at random from the set of all permutations.

V (n, ε) is the permanent of the n × n 0 − 1-matrix A whose i − j element is
1 if and only if (1 − ε)i ≤ j ≤ (1 + ε)i.Bregman’s Theorem [1] states that if ai

is the number of 1’s in the ith row of a n × n 0 − 1-matrix then the permanent
of the matrix is bounded above by πn

i=1(ai!)
1

ai . For the matrix A , ai ≤ �2εi�. A
short calculation based on Stirling’s Inequality yields : log2

n!
V (n,ε) ≥ n lg(e

2ε).
We shall give a two-pass streaming algorithm for ε-sorting. The first pass

computes elements of all ranks of the form � nε
(1+ε)i � for all positive integers i

using the multiple selection algorithm of Section 5. In this case the entropy term

18 R.M. Karp

H(p1, p2, · · · , pk+1)) is lg(1
ε + (1+ε) lg(1+ε)

ε), which is less than lg(1
ε + (1 + ε) lg e.

Thus the execution time of phase 1 is at most 1.5(1 + lg(1
ε + (1 + ε) lg e)n.

In the second pass a binary search is executed on each key x to determine an
i such that ri ≤ x < ri+1, and an approximate rank is assigned to x accordingly.
The number of comparisons performed in the second pass is at most (1 + lg(1

ε +
(1 + ε) lg e)n.

We present an alternative algorithm for the first pass in the spirit of the well-
known algorithms Quicksort and Multiple Quickselect [6]. We first describe the
algorithm in a setting where the keys to be approximately sorted are presented
in random order in an array. We then modify the algorithm to obtain an anytime
streaming algorithm.

The array extends from address 0 to address n + 1. The actual keys are in
locations 1 to n; location 0 contains a sentinel key equal to −∞ and location n+1
contains a sentinel key equal to +∞. At a general step the array contains a set S
of occupied locations. Initially, locations 0 and n+1 are considered occupied and
the other locations are considered unoccupied.The following invariant properties
hold at every step:

1. The n original keys occur in locations 1, 2, · · · , n in some order;
2. If location i is occupied then the key it contains has rank i in the original

set of keys, locations 1, 2, ..., · · · , i − 1 contain the keys of rank less than i,
and locations i + 1, · · · , n contain the keys of rank greater than i.

If locations i and j are occupied, and all intervening locations are unoccupied,
then the interval [i, j] is considered splittable if j − 1 > (1 + ε)(i + 1). The
computation terminates when no splittable intervals remain. At that point the
array is ε-sorted.

Initially [0, n + 1] is a splittable interval. At each step, a random location
within a splittable interval is chosen and each of the other keys in the interval
is compared with the key x∗ in that location. Based on those comparisons, the
keys within the interval are rearranged such that x∗ is preceded by the keys less
than x∗ and precedes the keys greater than x∗.

Next we calculate the expected number of comparisons for this algorithm.
Define the length of the interval [i, j] to be j − i + 1. Interval [i, j] is potentially
splittable if (j − 1) > (1 + ε)(i + 1). A potentially splittable interval becomes
splittable if and only if the two end positions of the interval become occupied
before any of the internal positions become occupied. If a potentially splittable
interval of length t becomes splittable in the course of the algorithm then it will
be split at the cost of t − 3 comparisons.

For each t we characterize the potentially splittable intervals of length t and
the probability that they will be split. The conditions for an interval [i, j] of
length t to be potentially splittable are as follows:

– t ≥ 4;
– i ≤ n + 2 − t

– i < t−1+ε
ε

Streaming Algorithms for Selection and Approximate Sorting 19

The probability of a potentially splittable interval i, j] of length t becoming
splittable is 1 if i = 0 and j = n + 1; 1

t−1 if i = 0 and j ≤ n or i ≥ 1 and
j = n + 1; and 1

(t
2)

if i ≥ 1 and j ≤ n.

Using these results we can compute the expected number of comparisons
performed to split intervals of length t and, summing over t, we find that the
expected number of comparisons performed by the algorithm is asymptotic to
n(2+3ε

1+ε + ln(1+ε
ε)).

Incidentally, by varying the definition of a potentially splittable interval, this
approach also gives remarkably simple expected-time analyses of some classical
randomized interval-splitting comparison algorithms such as Quicksort, Quicks-
elect and Multiple Quickselect.

We now modify this algorithm to obtain an anytime streaming algorithm for
the first phase. As the keys arrive we designate certain keys as landmarks; these
play the same role as the keys occurring in occupied positions in the foregoing
array-based algorithm. The landmarks are maintained in a self-balancing binary
search tree such as a splay tree. Each arriving key is routed to a leaf of the tree
(corresponding to an interval between consecutive landmarks) by comparing it
with landmarks according to the usual insertion algorithm for a self-balancing
binary search tree. The main difference from the array-based algorithm is that,
because of storage limitations, we cannot retain all the keys that have arrived
at a leaf. Instead, the algorithm counts the arriving keys, and also applies the
thinning algorithm of Section 6 to compute an approximate median to be used
in splitting the interval.The thinning algorithm can be implemented to run in
working storage logarithmic in the number of arriving keys.

We also associate with each node (including both landmarks and leaves) an
estimate of the number of keys that have arrived in the subtree rooted at that
node. When a key arrives the estimate for each node along its insertion path is
incremented by 1.

Let x and y be two consecutive landmarks. The interval between x and y is
split when the estimate of the number of keys in that interval exceeds ε times
the estimate of the number of keys less than or equal to x (the latter estimate
is obtained from the estimates for nodes along the insertion path to x). In that
case z, the approximate median computed by the thinning algorithm for the
interval [x, y], becomes a landmark; the leaf associated with that interval is
replaced by a 2-leaf subtree rooted at z, and the estimate ascribed to each of the
newly created intervals is set to half the estimate for the interval between x and
y.To compensate for the inaccuracy of the approximate median provided by the
thinning algorithm, the entire algorithm is run for a value of ε slightly smaller
than the required tolerance.

With high probability,the following hold for any fixed ε: the number of land-
marks created is O(log n), the storage requirement of the algorithm is O(log2 n),
and no interval between consecutive landmarks is splittable (i.e., the actual
number of keys in that interval does not exceed ε times the actual number of
keys preceding that interval). The number of comparisons performed in the first
phase is O(n log 1

ε) (whp).

20 R.M. Karp

In the second pass each arriving key is inserted into the binary search tree
created in the first pass, and a count of the exact number of keys in each interval
is maintained. Then in a third pass, each key is reinserted and assigned its
approximate rank according to the interval into which it falls.

References

1. Bregman, L.M.: Some properties of nonnegative matrices and their permanents.
Soviet Math. Dokl 14, 945–949 (1973)

2. Bryant, R.E.: Data-intensive supercomputing: the case for DISC.Technical Report
CMU-CS-07-128, Carnegie-Mellon University School of Computer Science (2007)

3. Chazelle, B.: The soft heap: an approximate priority queue with optimal error rate.
Journal of the ACM 47 (2000)

4. Floyd, R.W., Rivest, R.L.: Expected time bounds for selection. Communications of
the ACM 18(30), 165–172 (1975)

5. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

6. Prodinger, H.: Multiple quickselect: Hoare’s find algorithm for several elements.
Information Processing Letters 56, 123–129 (1995)

7. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. on Math Soft-
ware 11(1), 37–57 (1985)

Adventures in Bidirectional Programming

Benjamin C. Pierce

University of Pennsylvania

Most programs get used in just one direction, from input to output. But some-
times, having computed an output, we need to be able to update this output and
then “calculate backwards” to find a correspondingly updated input. The prob-
lem of writing such bidirectional transformations—often called lenses—arises in
applications across a multitude of domains and has been attacked from many
perspectives [1,2,3,4,5,6,7,8,9,10,11,12, etc.]. See [13] for a detailed survey.

The Harmony project at the University of Pennsylvania is exploring a linguis-
tic approach to bidirectional programming, designing domain-specific languages
in which every expression simultaneously describes both parts of a lens. When
read from left to right, it denotes an ordinary function that maps inputs to out-
puts. When read from right to left, it denotes an “update translator” that takes
an input together with an updated output and produces a new input that reflects
the update. These languages share some common elements with modern func-
tional languages—in particular, they come with very expressive type systems.
In other respects, they are rather novel and surprising.

We have designed, implemented, and applied bi-directional languages in three
quite different domains: a language for bidirectional transformations on trees
(such as XML documents), based on a collection of primitive bidirectional tree
transformation operations and “bidirectionality-preserving” combining forms
[13]; a language for bidirectional views of relational data, using bidirectionalized
versions of the operators of relational algebra as primitives [14]; and, most re-
cently, a language for bidirectional string transformations, with primitives based
on standard notations for finite-state transduction and a type system based on
regular expressions [15]. The string case is especially interesting, both in its own
right and because it exposes a number of foundational issues common to all
bidirectional programming languages in a simple and familiar setting.

This survey talk discusses several of these issues in depth and describes
progress toward solutions.

References

1. Meertens, L.: Designing constraint maintainers for user interaction. Manuscript
(1998)

2. Kennedy, A.J.: Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming 14(6), 727–739 (2004)

3. Benton, N.: Embedded interpreters. Journal of Functional Programming 15(4),
503–542 (2005)

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 21–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 B.C. Pierce

4. Ramsey, N.: Embedding an interpreted language using higher-order functions and
types. In: ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Em-
ulators (IVME), San Diego, CA, pp. 6–14 (2003)

5. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bi-directional transformations. In: Partial Evaluation and Pro-
gram Manipulation (PEPM) (2004)

6. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual syntax for XML languages. In:
Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 27–41. Springer,
Heidelberg (2005)

7. Kawanaka, S., Hosoya, H.: Bixid: a bidirectional transformation language for XML.
In: ACM SIGPLAN International Conference on Functional Programming (ICFP),
Portland, Oregon, pp. 201–214 (2006)

8. Daly, M., Mandelbaum, Y., Walker, D., Fernández, M.F., Fisher, K., Gruber, R.,
Zheng, X.: PADS: An end-to-end system for processing ad hoc data. In: Proceedings
of ACM SIGMOD International Conference on Management of Data, Chicago, IL,
pp. 727–729 (2006)

9. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.:
There and back again: Arrows for invertible programming. In: ACM SIGPLAN
Workshop on Haskell, pp. 86–97 (2005)

10. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, Springer, Heidelberg (2007)

11. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

12. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems (TODS) 13(4), 486–524 (1988)

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages and Systems (3) (May
2007). Extended abstract in Principles of Programming Languages (POPL) (2005)

14. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for
updateable views. In: Principles of Database Systems (PODS). Extended version
available as University of Pennsylvania technical report MS-CIS-05-27 (2006)

15. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. Technical report, Dept. of CIS University of
Pennsylvania (July 2007), available from http://www.cis.upenn.edu/∼jnfoster/
boomerang-tr.pdf

http://www.cis.upenn.edu/~jnfoster/boomerang-tr.pdf
http://www.cis.upenn.edu/~jnfoster/boomerang-tr.pdf

Program Analysis Using

Weighted Pushdown Systems�

Thomas Reps, Akash Lal, and Nick Kidd

Comp. Sci. Dept., University of Wisconsin
{reps,akash,kidd}@cs.wisc.edu

Abstract. Pushdown systems (PDSs) are an automata-theoretic for-
malism for specifying a class of infinite-state transition systems. Infinite-
ness comes from the fact that each configuration 〈p, S〉 in the state space
consists of a (formal) “control location” p coupled with a stack S of
unbounded size. PDSs can model program paths that have matching
calls and returns, and automaton-based representations allow analysis
algorithms to account for the infinite control state space of recursive
programs.

Weighted pushdown systems (WPDSs) are a generalization of PDSs
that add a general “black-box” abstraction for program data (through
weights). WPDSs also generalize other frameworks for interprocedural
analysis, such as the Sharir-Pnueli functional approach.

This paper surveys recent work in this area, and establishes a few new
connections with existing work.

1 Introduction

Static analysis provides a way to obtain information about the possible states
that a program reaches during execution, but without actually running the pro-
gram on specific inputs. Static-analysis techniques explore the program’s behav-
ior for all possible inputs and account for all possible states that the program can
reach. In this sense, static analysis is more comprehensive than traditional test-
ing, which tests the program’s behavior for a fixed (possibly randomly generated)
finite set of runs of the program. For any non-trivial program, it is impossible to
test explicitly all the possible behaviors within a reasonable amount of time; in
contrast, static-analysis techniques use approximations to account for all of the
actions that the program could perform [13]. To make this feasible, two tech-
niques are used:

– The program is run in the aggregate. Rather than executing the program
on ordinary states, the program is executed on finite-sized descriptors that
represent collections of states.

– The program is run in a non-standard fashion. Rather than executing the
program in a linear sequence, various fragments are executed (in the aggre-
gate) so that, when stitched together, the results are guaranteed to cover all
possible execution paths.

� Supported by ONR under grant N00014-01-1-0796 and by NSF under grants CCF-
0540955 and CCF-0524051.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 23–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 T. Reps, A. Lal, and N. Kidd

Analysis algorithms typically use the program’s interprocedural control-flow
graph (also known as its ICFG). An ICFG consists of a collection of control-flow
graphs (CFGs)—one for each procedure—one of which represents the program’s
main procedure. The CFG for a procedure p has a unique enter node and a
unique exit node. The other nodes represent the program’s statements and con-
ditions (or, alternatively, its basic blocks), except that each procedure call in the
program is represented in the ICFG by two nodes, a call node and a return-site
node. Call-edges connect call nodes to enter nodes; return-edges connect exit
nodes to return-site nodes. A typical analysis goal is to compute, for each ICFG
node n, an overapproximation (i.e., superset) of the set of states that can hold
when n is reached.

The choice of which family of data descriptors that an algorithm uses impacts
which behavioral properties of the program can be observed. This, in turn, affects
(i) what sets of states can be represented, and (ii) which program fragments need
to be explored. For example, one might use descriptors that represent only the
sign of a variable’s value: neg, zero, pos, and unknown. In a context in which
it is known that both a and b are positive (i.e., when the memory descriptor is
〈a �→ pos, b �→ pos〉), a multiplication expression such “a*b” would be performed
as “pos*pos”.

Such memory descriptors generally represent a superset of the actual
set of memory states that are reachable, because a descriptor such as
〈a �→ pos, b �→ pos〉 represents all states in which a and b hold positive inte-
gers (whereas, for example, only combinations with odd positive a’s and even
positive b’s might be reachable). At a branch-point in the program, the analyzer
needs to observe the possible outcomes of the branch-point’s condition—as best
it can, given the memory descriptors in use. This is used to determine an over-
approximation of the paths along which control might flow. Thus, a more refined
class of data descriptors can sometimes allow certain paths to be excluded from
consideration.

On the other hand, certain paths can be excluded merely from consideration
of the control-flow properties of the programming language. An important class
of paths that can be excluded are those that violate the language’s call/return
protocol; in particular, an analysis should only consider paths in which the return
from a called procedure is matched with the most recent call. Fig. 1 shows
a fragment of an ICFG, and an example of a path fragment that should be
excluded from consideration.

Dataflow-analysis algorithms that exclude such paths have a long history
[14, 47, 26]. A natural class of dataflow-analysis problems in which this issue is
reduced to a pure graph-reachability problem is also known [40]. The algorithms
developed for that class of problems are useful for analyzing a family of program
abstractions called Boolean programs (§2.3). (Boolean programs have become
well-known due to their use in SLAM [4, 5] to represent program abstractions
obtained via predicate abstraction [20].)

More recently, analysis techniques based on pushdown systems (PDSs)
[6, 18, 44] have been developed. PDSs are an automata-theoretic formalism for

Program Analysis Using Weighted Pushdown Systems 25

enter1

call2

exit1

return-site2

enter2 exit2

call1 return-site1

Fig. 1. An invalid-path fragment: in the path [call1, enter2, exit2, return-site2], the
return-edge exit2 → return-site2 does not match with call-edge call1 → enter2

specifying a class of infinite-state transition systems. Infiniteness comes from
the fact that each configuration 〈p, S〉 in the state space consists of a (formal)
“control location” p coupled with a stack S of unbounded size. Boolean pro-
grams have natural encodings as PDSs (see §2.3). Moreover, techniques devel-
oped for answering reachability queries on PDSs allow dataflow queries to be
posed with respect to a regular language of configurations, which allows one to
recover dataflow information for specific calling contexts (and for regular lan-
guages of calling contexts).

Subsequently, these techniques were generalized to Weighted Pushdown Sys-
tems (WPDSs) [7, 46, 41, 42]. WPDSs extend PDSs by adding a general “black-
box” abstraction for expressing transformations of a program’s data state
(through weights). By extending methods from PDSs that answer questions
about only certain sets of paths (namely, ones that end in a specified regular
language of configurations), WPDSs generalize other frameworks for interproce-
dural analysis, such as the Sharir-Pnueli functional approach [47], as well as the
Knoop-Steffen [26] and Sagiv-Reps-Horwitz summary-based approaches [43]. In
particular, conventional dataflow-analysis algorithms merge together the values
for all states associated with the same program point, regardless of the states’
calling context.

Because WPDSs permit dataflow queries to be posed with respect to a regular
language of stack configurations,1 one obtains several benefits from recasting
an existing dataflow-analysis algorithm into the WPDS framework. First, one
immediately obtains algorithms to find dataflow information for specific calling
contexts and families of calling contexts, which provides information that was
not previously obtainable. For instance, §3.2 and §4 discuss, respectively, how to
recast Müller-Olm and Seidl’s work on affine-relation analysis [34,35] and Landi
and Ryder’s work on may-aliasing for single-level pointer programs [32] in the

1 Conventional merged dataflow information can also be obtained by issuing appro-
priate queries; thus, the new approach provides a strictly richer framework for in-
terprocedural dataflow analysis than prior approaches.

26 T. Reps, A. Lal, and N. Kidd

WPDS framework, which makes it possible to pose stack-qualified queries about
affine relations and may-alias relations. Second, the algorithms for solving path
problems in WPDSs can provide a witness set of paths [42], which is useful for
providing an explanation of why the answer to a dataflow query has the value
reported.

Two implementations of WPDSs are publicly available [45,24], and both pro-
vide a convenient base for implementing different analyses. As a programming
abstraction, these systems offer several benefits:

– An analyzer is created by means of a declarative specification: one specifies
a weight domain, along with an encoding of the program’s ICFG and a
mapping of each ICFG edge to a weight.

– It permits the creation of libraries of reusable weight domains, which can
also be used to create new weight domains by means of weight-domain-
construction operations (pairing, reduced product [15], tensor product [37],
etc.)

– Advances in solver technology apply to all instantiations of the framework;
for instance, Lal and Reps achieved substantial speedups over previous al-
gorithms by using more sophisticated algorithms in the WPDS solver en-
gine [29].

WPDS++ [24] has been used to implement several of the analyses in
CodeSurfer/x86 [3, 30, 1], a system for analyzing Intel x86 executables. It has
also been used as a core analysis component in a system for analyzing concur-
rent programs [12].

Compared with other tools that support the creation of program analyz-
ers from high-level specifications, (i) the WPDS implementations allow more
sophisticated abstract domains to be used (such as the Müller-Olm/Seidl do-
mains for affine-relation analysis [34, 35]), and also permit a broader range of
dataflow-analysis queries to be posed than is possible with Banshee [27] and
BDDBDDB [48]; (ii) the WPDS implementations support a broader range of
dataflow-analysis queries than PAG [33].

Organization of the Paper. This paper surveys our recent work on WPDSs,
and establishes a few new connections with other work. The remainder of the pa-
per is organized into four sections: §2 provides background material on interpro-
cedural dataflow analysis, PDSs, and Boolean programs. §3 introduces WPDSs.
§4 describes how the work of Landi and Ryder [32] on single-level pointer analy-
sis can be expressed in the WPDS framework. §5 summarizes recent work both
on improving and on applying WPDS technology.

2 Background

2.1 Background on Interprocedural Dataflow Analysis

Dataflow analysis is concerned with determining an appropriate dataflow value
to associate with each node n in a program, to summarize (safely) some aspect

Program Analysis Using Weighted Pushdown Systems 27

of the possible memory configurations that hold whenever control reaches n. To
define an instance of a dataflow problem, one needs

– The CFG of the program.
– A meet semilattice (V, �) with greatest element �:

• An element of V represents a set of possible memory configurations. Each
point in the program is to be associated with some member of V .

• The meet operator � is used for combining information obtained along
different paths.

– A value v0 ∈ V that represents the set of possible memory configurations at
the beginning of the program.

– An assignment M of dataflow transfer functions (of type V → V) to the
edges of the CFG: M(e) ∈ V → V .

A dataflow-analysis problem can be formulated as a path-function problem.

Definition 1. A path of length j from node m to node n is a (possibly empty)
sequence of j edges, denoted by [e1, e2, . . . , ej], such that the source of e1 is m,
the target of ej is n, and for all i, 1 ≤ i ≤ j − 1, the target of edge ei is the
source of edge ei+1.

The path function pfq for path q = [e1, e2, . . . , ej] is the composition, in order,
of q’s transfer functions: pfq = M(ej) ◦ . . . ◦ M(e2) ◦ M(e1). In intraprocedural
dataflow analysis, the goal is to determine, for each node n, the “meet-over-all-
paths” solution:

MOPn =
q∈Paths(enter,n)

pfq(v0),

where Paths(enter, n) denotes the set of paths in the CFG from the enter node
to n [25]. MOPn represents a summary of the possible memory configurations
that can arise at n: because v0 ∈ V represents the set of possible memory con-
figurations at the beginning of the program, pfq(v0) represents the contribution
of path q to the memory configurations summarized at n.

The soundness of the MOPn solution with respect to the programming lan-
guage’s concrete semantics is established by the methodology of abstract inter-
pretation [13]:

– A Galois connection (or Galois insertion) is established to define the rela-
tionship between sets of concrete states and elements of V .

– Each dataflow transfer function M(e) is shown to overapproximate the trans-
fer function for the concrete semantics of e.

In this paper, we assume that such correctness requirements have already been
taken care of; the paper concentrates on algorithms for determining dataflow
values once an instance of a dataflow-analysis problem has been given.

An example ICFG is shown in Fig. 2. Let Var be the set of all variables in
a program, and let (Z⊥, �, �), where Z⊥ = Z ∪ {⊥}, be the standard constant-
propagation semilattice: for all c ∈ Z, ⊥ � c; for all c1, c2 ∈ Z⊥ such that c1 �= c2,
c1 and c2 are incomparable; and � is the greatest-lower-bound operation in this
partial order. ⊥ stands for “not-a-constant”. Let D = (Env → Env) be the set

28 T. Reps, A. Lal, and N. Kidd

int y;

void main() {
n1: int a = 5;
n2: y = 1;
n3,n4: f(a);
n5: if(...) {
n6: a = 2;
n7,n8: f(a);

}
n9: ...;

}

void f(int b) {
n10: if(...)
n11: y = 2;

else
n12: y = b;

}

emain

n9: ...

n1: a=5

n3: call f

n4: ret from f

n7: call f

n8: ret from f

n5: if(...)

n6: a=2

λe.e[a a5]

λe.e[y a2]

xmain

λe.e[a aS,b ae(a)]

n2: y=1
ef

xf

n10: if(...)

n11: y=2 n12: y=b

λe.e[y a1]

λe.e[y ae(b)]

λe.e[a a2]
λe.e[a aS,

b ae(a)]

Fig. 2. A program fragment and its ICFG. For all unlabeled edges, the environment
transformer is λe.e.

of all environment transformers where an environment is a mapping for all vari-
ables: Env = (Var → Z⊥) ∪{�}. We use � to denote an infeasible environment.
Furthermore, we restrict the set D to contain only �-strict transformers, i.e.,
for all d ∈ D, d(�) = �. We can extend the meet operation to environments by
taking meet componentwise.

env1 � env2 =

⎧
⎨

⎩

env1 if env2 = �
env2 if env1 = �
λv.(env1(v) � env2(v)) otherwise

The dataflow transformers are shown as edge labels in Fig. 2. A transformer of
the form λe.e[a �→ 5] returns an environment that agrees with the argument,
except that a is bound to 5. The environment � cannot be updated, and thus
(λe.e[a �→ 5])� equals �.

The notion of an (interprocedurally) valid path captures the idea that not all
paths in an ICFG represent potential execution paths. A valid path is one that
respects the fact that a procedure always returns to the site of the most recent
call. Let each call node in the ICFG be given a unique index from 1 to CallSites,
where CallSites is the total number of call sites in the program. For each call site
ci, label the call-to-enter edge and the exit-to-return-site edge with the symbols
“(i” and “)i”, respectively. Label all other edges of the ICFG with the symbol e.
Each path in the ICFG defines a word, obtained by concatenating—in order—
the labels of the edges on the path. A path is a valid path iff the path’s word

Program Analysis Using Weighted Pushdown Systems 29

is in the language L(valid) generated by the context-free grammar shown below
on the left; a path is a matched path iff the path’s word is in the language
L(matched) of balanced-parenthesis strings (interspersed with strings of zero or
more e’s) generated by the context-free grammar shown below on the right. (In
both grammars, i ranges from 1 to CallSites.)

valid → matched valid matched → matched matched
| (i valid | (i matched)i

| ε | e
| ε

The language L(valid) is a language of partially balanced parentheses: every
right parenthesis “)i” is balanced by a preceding left parenthesis “(i”, but the
converse need not hold.

Example 1. In the ICFG shown in Fig. 2, the path [emain, n1, n2, n3, ef, n10, n11,
xf, n4, n5] is a matched path, and hence a valid path; the path [emain, n1, n2, n3,
ef, n10] is a valid path, but not a matched path, because the call-to-enter edge
n3 → ef has no matching exit-to-return-site edge; the path [emain, n1, n2, n3, ef,
n10, n11, xf, n8] is neither a matched path nor a valid path because the exit-to-
return-site edge xf → n8 does not correspond to the preceding call-to-enter edge
n3 → ef.

In interprocedural dataflow analysis, the goal shifts from finding the meet-over-
all-paths solution to the more precise “meet-over-all-valid-paths”, or “context-
sensitive” solution. A context-sensitive interprocedural dataflow analysis is one in
which the analysis of a called procedure is “sensitive” to the context in which it is
called. A context-sensitive analysis captures the fact that the results propagated
back to each return site r should depend only on the memory configurations
that arise at the call site that corresponds to r. More precisely, the goal of a
context-sensitive analysis is to find the meet-over-all-valid-paths value for nodes
of the ICFG [47,26, 43]:

MOVPn =
q∈VPaths(emain,n)

pfq(v0),

where VPaths(emain, n) denotes the set of valid paths from the main procedure’s
enter node to n.

Although some valid paths may also be infeasible execution paths, none of
the non-valid paths are feasible execution paths. By restricting attention to just
the valid paths from emain, we thereby exclude some of the infeasible execution
paths. In general, therefore, MOVPn characterizes the memory configurations
at n more precisely than MOPn.

2.2 Pushdown Systems

In this section, we define pushdown systems and show how they can be used to
encode ICFGs.

30 T. Reps, A. Lal, and N. Kidd

Rule Control flow modeled

〈p, u〉 ↪→ 〈p, v〉 Intraprocedural edge u → v
〈p, c〉 ↪→ 〈p, ef r〉 Call to f from c that returns to r
〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit node xf

Fig. 3. The encoding of an ICFG’s edges as PDS rules

Definition 2. A pushdown system is a triple P = (P, Γ, Δ), where P is a
finite set of states (also known as “control locations”), Γ is a finite set of stack
symbols, and Δ ⊆ P ×Γ ×P ×Γ ∗ is a finite set of rules. A configuration of P is
a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉,
where p, p′ ∈ P , γ ∈ Γ and u ∈ Γ ∗. These rules define a transition relation ⇒ on
configurations of P as follows: If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉
for all u ∈ Γ ∗. The reflexive transitive closure of ⇒ is denoted by ⇒∗. For
a set of configurations C, we define pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and
post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}, which are just backward and forward
reachability under the transition relation ⇒.

Without loss of generality, we restrict the pushdown rules to have at most two
stack symbols on the right-hand side [44]. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗, is
called a pop rule if |u| = 0, and a push rule if |u| = 2.

The PDS configurations model (node, stack) pairs of the program’s state.
Given a program P , we can use a PDS to model a limited portion of a P ’s
behavior in the following sense: the configurations of the PDS represent a super-
set of P ’s (node, stack) pairs.

The standard approach for modeling a program’s control flow with a push-
down system is as follows: P contains a single state p, Γ corresponds to the nodes
of the program’s ICFG, and Δ corresponds to edges of the program’s ICFG (see
Fig. 3). For instance, the rules that encode the ICFG shown in Fig. 2 are

〈p, emain〉 ↪→ 〈p, n1〉
〈p, n1〉 ↪→ 〈p, n2〉
〈p, n2〉 ↪→ 〈p, n3〉
〈p, n3〉 ↪→ 〈p, ef n4〉
〈p, n4〉 ↪→ 〈p, n5〉
〈p, n5〉 ↪→ 〈p, n6〉

〈p, n5〉 ↪→ 〈p, n9〉
〈p, n6〉 ↪→ 〈p, n7〉
〈p, n7〉 ↪→ 〈p, ef n8〉
〈p, n8〉 ↪→ 〈p, n9〉
〈p, n9〉 ↪→ 〈p, xmain〉
〈p, xmain〉 ↪→ 〈p, ε〉

〈p, ef〉 ↪→ 〈p, n10〉
〈p, n10〉 ↪→ 〈p, n11〉
〈p, n11〉 ↪→ 〈p, xf〉
〈p, n10〉 ↪→ 〈p, n12〉
〈p, n12〉 ↪→ 〈p, xf〉
〈p, xf〉 ↪→ 〈p, ε〉

PDSs that have only a single control location, as discussed above, are also
called “context-free processes” [10]. In §2.3, we will discuss how, in addition to
control flow, PDSs can also be used to encode program models that involve finite
abstractions of the program’s data. PDSs that have multiple control locations
are used in such encodings.

The problem of interest is to find the set of all reachable configurations, start-
ing from a given set of configurations. This can then be used, for example, for
assertion checking (i.e., determining if a given assertion can ever fail) or to find

Program Analysis Using Weighted Pushdown Systems 31

the set of all data values that may arise at a program point (for dataflow anal-
ysis).

Because the number of configurations of a pushdown system is unbounded, it
is useful to use finite automata to describe regular sets of configurations.

Definition 3. If P = (P, Γ, Δ) is a PDS then a P-automaton is a finite au-
tomaton (Q, Γ, →, P, F), where Q ⊇ P is a finite set of states, →⊆ Q × Γ × Q
is the transition relation, P is the set of initial states, and F is the set of final
states. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the
automaton can accept u when it is started in the state p (written as p

u−→∗ q,
where q ∈ F). A set of configurations is called regular if some P-automaton
accepts it. Without loss of generality, P-automata are restricted to not have any
transitions leading to an initial state.

An important result is that for a regular set of configurations C, both post∗(C)
and pre∗(C) (the forward and the backward reachable sets of configurations,
respectively) are also regular sets of configurations [6, 9]. The algorithms for
computing post∗ and pre∗, called poststar and prestar, respectively, take a P-
automaton A as input, and if C is the set of configurations accepted by A, they
produce P-automata Apost∗ and Apre∗ that accept the sets of configurations
post∗(C) and pre∗(C), respectively [6, 17, 18]. Both poststar and prestar can be
implemented as saturation procedures ; i.e., transitions are added to A according
to some saturation rule until no more can be added.

Algorithm prestar: Apre∗ can be constructed from A using the following sat-
uration rule: If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w→ q in the current automaton, add a
transition (p, γ, q).

Algorithm poststar: Apost∗ can be constructed from A by performing Phase I
and then saturating via the rules given in Phase II:

– Phase I. For each pair (p′, γ′) such that P contains at least one rule of the
form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state p′γ′ .

– Phase II (saturation phase). (The symbol
γ
� denotes the relation (ε→)� γ→

(ε→)�.)
• If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ and p

γ
� q in the current automaton, add a

transition (p′, ε, q).
• If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ and p

γ
� q in the current automaton, add a

transition (p′, γ′, q).
• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ and p

γ
� q in the current automaton, add the

transitions (p′, γ′, p′γ′) and (p′γ′ , γ′′, q).

Example 2. Given the PDS that encodes the ICFG from Fig. 2 and the query au-
tomaton A shown in Fig. 4(a), which accepts the language {〈p, emain〉}, poststar
produces the automaton Apost∗ shown in Fig. 4(b).

32 T. Reps, A. Lal, and N. Kidd

emainp

emain,n1,n2,n3,
n4,n5,n6,n7,
n8,n9,xmain,εp

n4

n8
ef,n10,
n11,n12,
xf,ε pe

f

(a) (b)

Fig. 4. (a) Automaton for the input language of configurations {〈p, emain〉}; (b) au-
tomaton for post∗({〈p, emain〉}) (computed for the PDS that encodes the ICFG from
Fig. 2)

2.3 Boolean Programs

A Boolean program can be thought of as a C program with only the Boolean
datatype. It does not have any pointers or heap-allocated storage. A Boolean
program consists of a finite set of procedures. It has a finite set of global variables,
and a finite set of local variables for each procedure. Each variable can only
hold a value from a finite domain.2 To simplify the discussion, we assume that
procedures do not have parameters (they can be passed through global variables).
The variables in scope inside a procedure are the global variables and its set of
local variables. Fig. 5(a) shows a Boolean program with two procedures and two
global variables x and y over a finite domain V = {0, 1, . . . , 7}.

n1

n4 n5

n6

x=3 x=7

y=x

n7

n8

n2 n3
bar() bar()

proc foo

proc bar

[[x = 3]] = {((v1, v2), (3, v2)) | v1, v2 ∈ V }
[[x = 7]] = {((v1, v2), (7, v2)) | v1, v2 ∈ V }
[[y = x]] = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }

(a) (b)

Fig. 5. (a) A Boolean program with two procedures and two global variables x and y
over a finite domain V = {0, 1, . . . , 7}. (b) The (non-identity) transformers used in the
Boolean program.

Notation. A binary relation on a set S is a subset of S × S. If R1 and R2 are
binary relations on S, then their relational composition, denoted by “R1; R2”,
is defined by {(s1, s3) | ∃s2 ∈ S, (s1, s2) ∈ R1, (s2, s3) ∈ R2}. If R is a binary
2 An assignment to a variable v that holds a value from a finite domain can be thought

of a collection of assignments to a vector of Boolean-valued variables, namely, the
collection of Boolean-valued variables that holds the encoding of v’s value.

Program Analysis Using Weighted Pushdown Systems 33

relation, Ri is the relational composition of R with itself i times, and R0 is the
identity relation on S. R∗ = ∪∞i=0R

i is the reflexive-transitive closure of R.
Let G be the set of valuations of the global variables, and let Vali be the set

of valuations of the local variables of procedure i. Let L be the set of local states
of the program; each local state consists of the value of the program counter, a
valuation of local variables from some Vali, and the program stack (which, for
each unfinished call to a procedure P , contains a return address and a valuation
of the local variables of P).

The effect of executing an assignment or assume statement st, denoted by
[[st]], is a binary relation on G × Vali that describes how values of variables
in scope can change. Fig. 5(b) shows the (non-identity) transformers used in
Fig. 5(a).

To encode a Boolean program using a PDS, the state alphabet P is expanded
to encode the values of global variables, and the stack alphabet is expanded to
encode the values of local variables [44].

Let Ni be the set of control locations of the ith procedure. We set P to be
G, and Γ to be the union of Ni × Vali over all procedures. (Note that the set of
local states L equals Γ ∗.) The PDS rules for the ith procedure are constructed
as follows: (i) an intraprocedural ICFG edge u → v with action st is encoded
via a set of rules 〈g, (u, l)〉 ↪→ 〈g′, (v, l′)〉, for each ((g, l), (g′, l′)) ∈ [[st]]; (ii) a
call edge c → r that calls procedure f , with enter node ef , is encoded via a set
of rules 〈g, (c, l)〉 ↪→ 〈g, (ef , l0) (r, l)〉, for each (g, l) ∈ G × Vali and l0 ∈ Valf ;
(iii) a procedure return at node u is encoded via a set of rules 〈g, (u, l)〉 ↪→ 〈g, ε〉,
for each (g, l) ∈ G × Vali.

Under such an encoding of a Boolean program as a PDS, a configuration
〈p, γ1γ2 · · · γn〉 is an element of G × L that describes the instantaneous state of
a program. The state p encodes the values of global variables; γ1 encodes the
current program location and the values of local variables in scope; and the rest
of the stack encodes the list of unfinished calls with the values of local variables at
the time the call was made. The PDS transition relation (⇒), which is essentially
a transition relation on G×L, represents the semantics of the Boolean program.

3 Weighted Pushdown Systems

A weighted pushdown system is obtained by augmenting a PDS with a weight
domain that is a bounded idempotent semiring [42,7]. Such semirings are powerful
enough to encode finite-state data abstractions, such as the ones required for
bitvector dataflow analysis, Boolean programs, and the IFDS framework of Reps
et al. [40], as well as infinite-state data abstractions, such as linear-constant
propagation [43] and affine-relation analysis [34, 35]. We present some of this
here; additional material about using WPDSs for interprocedural analysis can
be found in [42].

Weights encode the effect that each statement (or PDS rule) has on the data
state of the program. They can be thought of as abstract transformers that
specify how the abstract state changes when a statement is executed.

34 T. Reps, A. Lal, and N. Kidd

Definition 4. A bounded idempotent semiring (or weight domain) is
a tuple (D, ⊕, ⊗, 0, 1), where D is a set whose elements are called weights,
0, 1 ∈ D, and ⊕ (the combine operation) and ⊗ (the extend operation) are bi-
nary operators on D such that

1. (D, ⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D, ⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b iff a ⊕ b = a, there are no

infinite descending chains.

Definition 5. A weighted pushdown system is a triple W = (P , S, f),
where P = (P, Γ, Δ) is a PDS, S = (D, ⊕, ⊗, 0, 1) is a bounded idempotent
semiring, and f : Δ → D is a map that assigns a weight to each rule of P.

WPDSs compute over the weights via the extend operation (⊗). Let σ ∈ Δ∗ be a
sequence of rules. Using f , we can associate a value to σ; i.e., if σ = [r1, . . . , rk],
we define v(σ) def= f(r1)⊗ . . .⊗f(rk). In program-analysis problems, weights typi-
cally represent abstract transformers that specify how the abstract state changes
when a statement is executed. Thus, the extend operation is typically the rever-
sal of function composition: w1 ⊗ w2 = w2 ◦ w1. (Computing over transformers
by composing them—instead of computing on the underlying abstract states
by applying transformers to abstract states—is customary in interprocedural
analysis, where procedure summaries need to be calculated as compositions of
abstract-state transformers [14, 26, 40].)

Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 6. Let W = (P , S, f) be a weighted pushdown system, where P =
(P, Γ, Δ). For any two configurations c and c′ of P, let path(c, c′) denote the set
of all rule sequences that transform c into c′. Let S, T ⊆ P × Γ ∗ be regular sets
of configurations. If σ ∈ path(c, c′), then we say c ⇒σ c′. The meet-over-all-
valid-paths value MOVP(S, T) is defined as

⊕
{v(σ) | s ⇒σ t, s ∈ S, t ∈ T }.

A PDS, as defined in §2.2, is simply a WPDS with the Boolean weight domain
({F, T }, ∨, ∧, F, T) and weight assignment f(r) = T for all rules r ∈ Δ. In this
case, MOVP(S, U) = T iff there exists a path from a configuration in S to a
configuration in U , i.e., post∗(S) ∩ U and S ∩ pre∗(U) are non-empty sets.

One way of modeling a program as a WPDS is as follows: the PDS models the
control flow of the program, as in Fig. 3. The weight domain models abstract
transformers for an abstraction of the program’s data. §3.1 and §3.2 describe
several data abstractions that can be encoded using weight domains. To simplify
the presentation, we only show the treatment for global variables, and do not
consider local variables. Finite-state abstractions of local variables can always be
encoded in the stack alphabet, as for PDSs [30,44]. For infinite-state abstractions,
local variables pose an extra complication for WPDSs [30]; their treatment is
discussed in §3.4.

Program Analysis Using Weighted Pushdown Systems 35

〈p, n1〉 ↪→ 〈p, n2〉 w1

〈p, n1〉 ↪→ 〈p, n3〉 w2

〈p, n2〉 ↪→ 〈p, n7 n4〉 1
〈p, n3〉 ↪→ 〈p, n7 n5〉 1
〈p, n4〉 ↪→ 〈p, n6〉 1
〈p, n5〉 ↪→ 〈p, n6〉 1
〈p, n7〉 ↪→ 〈p, n8〉 w3

〈p, n8〉 ↪→ 〈p, ε〉 1

p

pn

acc

n1,1 n2,w1
n3,w2 n4,w4
n5,w5 n6,w6

n7,1
n8,w3
ε,w3

n4,w4

n5,w5
7

p acc

n7,w3
n8,1

n1,w6 n2,w3
n3,w3 n4,1
n5,1 n6,1

w1 = {((v1, v2), (3, v2)) | v1, v2 ∈ V }
w2 = {((v1, v2), (7, v2)) | v1, v2 ∈ V }
w3 = {((v1, v2), (v1, v1)) | v1, v2 ∈ V }
w4 = {((v1, v2), (3, 3)) | v1, v2 ∈ V }
w5 = {((v1, v2), (7, 7)) | v1, v2 ∈ V }

w6 =
{((v1, v2), (3, 3)) | v1, v2 ∈ V }

∪ {((v1, v2), (7, 7)) | v1, v2 ∈ V }

(a) (b) (c)

Fig. 6. (a) A WPDS that encodes the Boolean program from Fig. 5(a). (b) The result
of poststar(〈p, n1〉) and prestar(〈p, n6〉). The final state in each of the automata is acc.
(c) Definitions of the weights used in the figure.

3.1 Finite-State Data Abstractions

An important weight domain for WPDSs is the set of all binary relations on a
finite set.

Definition 7. If G is a finite set, then the relational weight domain on G
is defined as (2G×G, ∪, ; , ∅, id): weights are binary relations on G, combine is
union, extend is relational composition (“;”), 0 is the empty relation, and 1 is
the identity relation on G.

By instantiating G to be the set of global states of a Boolean program P , we
obtain a weight domain for encoding P . This approach yields a more straightfor-
ward encoding of P : the weight associated with the rule that encodes an assign-
ment or assume statement st of P is exactly [[st]]—i.e., its effect on the global
state of P—which, as described in §2.3, is a binary relation on G. For example,
the WPDS shown in Fig. 6 encodes the Boolean program from Fig. 5(a). The
Boolean program has two variables that range over the set V = {0, 1, . . . , 7},
so G = V × V , where the two components represent the values of x and y,
respectively.

The set of all data values that reach a node n can be calculated as follows:
let S be the singleton configuration consisting of the program’s enter node, and
let T be the set {〈p, n u〉 | u ∈ Γ ∗}. Let w = MOVP(S, T). If w = 0, then
the node cannot be reached. Otherwise, w captures the net transformation on
the global state from when the program started. The range of w, i.e., the set
{g ∈ G | ∃g′ ∈ G : (g′, g) ∈ w}, is the set of valuations that reach node n. For
example, in Fig. 6, the MOVP weight to node n6 is the weight w6 shown in
Fig. 6(c). Its range shows that either x = 3 and y = 3, or x = 7 and y = 7.

Because T can be any regular set, one can also answer stack-qualified queries
[42]. For example, the set of values that arise at node n when its procedure is
called from call site m can be found by setting T = {〈p, n mr u〉 | u ∈ Γ ∗},
where mr is the return site for call site m.

36 T. Reps, A. Lal, and N. Kidd

A WPDS with a weight domain that has a finite set of weights, such as the
one described above, can be encoded as a PDS. However, it is often useful to use
weights because they can be symbolically encoded. Tools such as Moped and
Slam use BDDs [8] to encode sets of data values, which allows them to scale
to a large number of variables. (Using PDSs for Boolean program verification,
without any symbolic encoding, is generally not a feasible approach.)

3.2 Infinite-State Data Abstractions

An infinite-state data abstraction is one in which the number of abstract states
(or weights) is infinite. We begin with two simple examples of infinite weight
domains, and then discuss the weight domain used for affine-relation analysis.

Finding Shortest Valid Paths

Definition 8. The minpath semiring is the weight domain M = (N ∪
{∞},min, +, ∞, 0): weights are non-negative integers including “infinity”, com-
bine is minimum, and extend is addition.

If all rules of a WPDS are given the weight 1 from this semiring (different from
the semiring weight 1, which is the integer 0), then the MOVP weight between
two configurations is the length of the shortest path (shortest rule sequence)
between them.

Another infinite weight domain, which is based on the minpath semiring, is
given in [28] and was shown to be useful for debugging programs.

Finding Shortest Traces. The minpath semiring can be combined with a
relational weight domain, for example, to find the shortest (valid) path in a
Boolean program (for finding the shortest trace that exhibits some property).

Definition 9. A weighted relation on a set S, weighted with semiring
(D, ⊕, ⊗, 0, 1), is a function from (S ×S) to D. The composition of two weighted
relations R1 and R2 is defined as (R1; R2)(s1, s3) = ⊕{w1 ⊗ w2 | ∃s2 ∈ S : w1 =
R1(s1, s2), w2 = R2(s2, s3)}. The union of the two weighted relations is defined
as (R1∪R2)(s1, s2) = R1(s1, s2)⊕R2(s1, s2). The identity relation is the function
that maps each pair (s, s) to 1 and others to 0. The reflexive transitive closure is
defined in terms of these operations, as before. If → is a weighted relation and
(s1, s2, w) ∈→, then we write s1

w−−→ s2.

Definition 10. If S is a weight domain with set of weights D and G is a finite
set, then the relational weight domain on (G, S) is defined as (2G×G→D, ∪, ; , ∅,
id): weights are weighted relations on G and the operations are the corresponding
ones for weighted relations.

If G is the set of global states of a Boolean program, then the relational weight
domain on (G, M) can be used for finding the shortest trace: for each rule, if

Program Analysis Using Weighted Pushdown Systems 37

n5

n7

n8

x1 = x1+x2
x1 = 0

n1

n2

n6

bar()

proc barproc foo

n3

bar()

n4

x2 = 1

x2 = x2+1

Fig. 7. An affine program that starts execution at node n1. There are two global
variables x1 and x2.

R ⊆ G × G is the effect of executing the rule on the global state of the Boolean
program, then associate the following weight with the rule:

{g1
1−→ g2 | (g1, g2) ∈ R} ∪ {g1

∞−−→ g2 | (g1, g2) �∈ R}.

Then, if w = MOVP(C1, C2), the length of the shortest path that starts with
global state g from a configuration in C1 and ends at global state g′ in a con-
figuration in C2, is w(g, g′) (which would be ∞ if no path exists). (Moreover, if
a finite-length path does exist, a witness trace [42] can be obtained to identify
the elements of the path.)

Affine-Relation Analysis. An affine relation is a linear-equality constraint
between integer-valued variables. Affine-relation analysis (ARA) tries to find all
affine relationships that hold in the program. An example is shown in Fig. 7.
For this program, ARA would, for example, infer that x2 = x1 + 1 at program
node n4.

ARA for single-procedure programs was first given by Karr [23]. ARA general-
izes other analyses, including copy-constant propagation, linear-constant propa-
gation [43], and induction-variable analysis [23]. We have used ARA on machine
code to find induction-variable relationships between machine registers [2]. These
help in increasing the precision of an abstract-interpretation-based pointer anal-
ysis for machine code [1].

Affine Programs. Interprocedural ARA can be performed precisely on affine
programs, and has been the focus of several papers [34,35,21]. Affine programs are
similar to Boolean programs, but with integer-valued variables. Again, we restrict
our attention to global variables, and defer treatment of local variables to §3.4. If
{x1, x2, · · · , xn} is the set of global variables of the program, then all assignments
have the form xj := a0 +

∑n
i=1 aixi, where a0, · · · , an are integer constants. An

assignment can also be non-deterministic, denoted by xj := ?, which may assign
any integer to xj . (This is typically used for abstracting assignments that cannot

38 T. Reps, A. Lal, and N. Kidd

be modeled as an affine transformation of the variables.) All branch conditions
in affine programs are non-deterministic.

ARA Weight Domain. We briefly describe the weight domain based on the
linear-algebra formulation of ARA from [34]. An affine relation a0 +

∑n
i=1 aixi =

0 is represented using a column vector of size n + 1: a = (a0, a1, · · · , an)t. A
valuation of program variables x is a map from the set of global variables to the
integers. The value of xi under this valuation is written as x(i).

A valuation x satisfies an affine relation a = (a0, a1, · · · , an)t if a0 +∑n
i=1 aix(i) = 0. An affine relation a represents the set of all valuations that

satisfy it, written as Pts(a). An affine relation a holds at a program node if the
set of valuations reaching that node (in the concrete collecting semantics) is a
subset of Pts(a).

An important observation about affine programs is that if affine relations a1

and a2 hold at a program node, then so does any linear combination of a1 and
a2. For example, one can verify that Pts(a1 + a2) ⊇ Pts(a1) ∩ Pts(a2), i.e.,
the affine relation a1 + a2 (componentwise addition) holds at a program node
if both a1 and a2 hold at that node. The set of affine relations that hold at a
program node forms a (finite-dimensional) vector space [34]. This implies that a
(possibly infinite) set of affine relations can be represented by any of its bases;
each such basis is always a finite set.

For reasoning about affine programs, Müller-Olm and Seidl defined an ab-
straction that is able to find all affine relationships in an affine program: each
statement is abstracted by a set of matrices of size (n + 1) × (n + 1). This set
is the weakest-precondition transformer on affine relations for that statement: if
a statement is abstracted as the set {m1, m2, · · · , mr}, then the affine relation
a holds after the execution of the statement if and only if the affine relations
(m1a), (m2a), · · · , (mra) held before the execution of the statement.

Under such an abstraction of program statements, one can define the extend
operation, which is transformer composition, as elementwise matrix multiplica-
tion, and the combine operation as set union. This is correct semantically, but
it does not give an effective algorithm because the matrix sets can grow un-
boundedly. However, the observation that affine relations form a vector space
carries over to a set of matrices as well. One can show that the transformer
{m1, m2, · · · , mr} is semantically equivalent to the transformer {m1, m2, · · · ,
mr, m}, where m is any linear combination of the mi matrices. Thus, a set of
matrices can be abstracted as the (infinite) set of matrices spanned by them.
Once we have a vector space, we can represent it using any of its bases to
get a finite and bounded representation: a vector space over matrices of size
(n + 1) × (n + 1) cannot have more that (n + 1)2 matrices in any basis.

If M is a set of matrices, let Span(M) be the vector space spanned by them.
Let β be the basis operation that takes a set of matrices and returns a basis of
their span. We can now define the weight domain. A weight w is a vector space
of matrices, which can be represented using its basis. Extend of vector spaces
w1 and w2 is the vector space {(m1m2) | mi ∈ wi}. Combine of w1 and w2

is the vector space {(m1 + m2) | mi ∈ wi}, which is the smallest vector space

Program Analysis Using Weighted Pushdown Systems 39

containing both w1 and w2. 0 is the empty set, and 1 is the span of the singleton
set consisting of the identity matrix. The extend and combine operations, as
defined above, are operations on infinite sets. They can be implemented by the
corresponding operations on any basis of the weights. The following properties
show that it is semantically correct to operate on the elements in the basis
instead of all the elements in the vector space spanned by them:

β(w1 ⊕ w2) = β(β(w1) ⊕ β(w2))
β(w1 ⊗ w2) = β(β(w1) ⊗ β(w2))

These properties are satisfied because of the linearity of extend (matrix multi-
plication distributes over addition) and combine operations.

Under such a weight domain, MOVP(S, T) is a weight that is the net weakest-
precondition transformer between S and T . Suppose that this weight has the
basis {m1, · · · , mr}. The affine relation that indicates that any variable valuation
might hold at S is 0 = (0, 0, · · · , 0). Thus, 0 holds at S, and the affine relation
a holds at T iff m1a = m2a = · · · = mra = 0. The set of all affine relations
that hold at T can be found as the intersection of the null spaces of the matrices
m1, m2, · · · , mr.

Extensions to ARA. ARA can also be performed for modular arithmetic [35]
to precisely model machine arithmetic (which is modulo 2 to the power of the
word size). The weight domain is similar to the one described above.

3.3 Solving for the MOVP Value

There are two algorithms for solving for MOVP values, called prestar and poststar
(by analogy with the algorithms for PDSs). They take as input an automaton
that accepts the set of initial configurations. As output, they produce a weighted
automaton:

Definition 11. Given a weighted pushdown system W = (P , S, f), a
W-automaton A is a P-automaton, where each transition in the automaton
is labeled with a weight. The weight of a path in the automaton is obtained by
taking an extend of the weights on the transitions in the path in either a forward
or backward direction. The automaton is said to accept a configuration c = 〈p, u〉
with weight w = A(c) if w is the combine of weights of all accepting paths for u
starting from state p in A. We call the automaton a backward W-automaton
if the weight of a path is read backwards, and a forward W-automaton
otherwise.

Let A be an unweighted automaton and L(A) be the set of configurations ac-
cepted by it. Then, prestar(A) produces a forward weighted automaton Apre∗

as output, such that Apre∗(c) = MOVP({c}, L(A)), whereas poststar(A) pro-
duces a backward weighted automaton Apost∗ as output, such that Apost∗(c) =
MOVP(L(A), {c}) [42]. Examples are shown in Fig. 6(b). One thing to note
here is how the poststar automaton works. The procedure bar is analyzed in-
dependently of its calling context (i.e., without knowing the exact value of x),

40 T. Reps, A. Lal, and N. Kidd

which generates the transitions between p and pn7 . The calling context of bar,
which determines the input values to bar, is represented by the transitions that
leave state pn7 . This is how, for instance, the automaton records that x = 3 and
y = 3 at node n8 when bar is called from node n2.

Using standard automata-theoretic techniques, one can also compute Aw(C)
for (forward or backward) weighted automaton Aw and a regular set of config-
urations C, where Aw(C) =

⊕
{Aw(c) | c ∈ C}. This allows one to solve for

the meet-over-all-paths value MOVP(S, T) for configuration sets S and T by
computing either poststar(S)(T) or prestar(T)(S).

We briefly describe how the prestar algorithm works for WPDSs. The inter-
ested reader is referred to [42] for more details (e.g., the poststar algorithm), as
well as an efficient implementation of the algorithm. The algorithm takes an un-
weighted automaton A as input (i.e., a weighted automaton in which all weights
are 1), and adds weighted transitions to it until no more can be added. The ad-
dition of transitions is based on the following rule: for a WPDS rule r = 〈p, γ〉 ↪→
〈q, γ1 · · · γn〉 with weight f(r) and transitions (q, γ1, q1), · · · , (qn−1, γn, qn) with
weights w1, · · · , wn, add the transition (p, γ, qn) to A with weight w = f(r) ⊗
w1 ⊗ · · ·⊗wn. If this transition already exists with weight w′, change the weight
to w ⊕ w′.

This algorithm is based on the intuition that if the automaton accepts config-
urations c and c′ with weights w and w′, respectively, and rule r allows the tran-
sition c′ ⇒ c, then the automaton needs to accept c′ with weight w′⊕(f(r)⊗w).
Termination follows from the fact that the number of states of the automaton
does not increase (hence, the number of transitions is bounded), and the fact
that the weight domain satisfies the descending-chain condition (Defn. 4, item 4).

We nowprovide some intuition into why one needs both forwardsand backwards
automata. Consider the automata in Fig. 6(c). For the poststar automaton, when
one follows a path that accepts the configuration 〈p, n8 n4〉, the transition (p, n8, q)
comes before (q, n4, acc). However, the former transition describes the transforma-
tion inside bar, which happens after the transformation performed in reaching the
call site at n4 (which is stored on (q, n4, acc)). Because the transformation for the
calling context happens earlier in the program, but its transitions appear later in
the automaton, the weights are read backwards. For the prestar automaton, the
weight on (p, n4, acc) is the transformation for going from n4 to n6, which occurs
after the transformation inside bar. Thus, it is a forwards automaton.

The following lemma states the complexity for solving poststar by the algo-
rithm of Reps et al. [42]. We will assume that the time to perform an ⊗ and a ⊕
are the same, and use the notation Os(.) to denote the time bound in terms of
semiring operations. The height of a weight domain is defined to be the length
of the longest descending chain in the domain. For ease of stating a complexity
result, we will assume that there is a finite upper bound on the height. Some
weight domains, such as M in Defn. 8, have no such finite upper bound on the
height; however, WPDSs can still be used when the height is unbounded. The
absence of infinite descending chains (Defn. 4, item 4) ensures that saturation-
based algorithms for computing post∗ and pre∗ will eventually terminate.

Program Analysis Using Weighted Pushdown Systems 41

Lemma 1. [42] Given a WPDS with PDS P = (P, Γ, Δ), if A = (Q, Γ, →,
P, F) is a P-automaton that accepts an input set of configurations, poststar pro-
duces a backward weighted automaton with at most |Q| + |Δ| states in time
Os(|P ||Δ|(|Q0| + |Δ|)H + |P ||λ0|H), where Q0 = Q\P , λ0 ⊆→ is the set of all
transitions leading from states in Q0, and H is the height of the weight domain.

Approximate Analysis. Among the properties imposed by a weight domain,
one important property is distributivity (Defn. 4, item 2). This is a common re-
quirement for a precise analysis, which also arises in various coincidence theorems
for dataflow analysis [22, 47, 26]. Sometimes this requirement is too strict and
may be relaxed to monotonicity, i.e., for all a, b, c ∈ D, a⊗(b⊕c) � (a⊗b)⊕(a⊗c)
and (a ⊕ b) ⊗ c � (a ⊗ c) ⊕ (b ⊗ c). In such cases, the MOVP computation may
not be precise, but it will be safe under the partial order �.

3.4 Local Variables and Extended Weighted Pushdown Systems

This section discusses an extension of WPDSs that permits abstractions to track
the values of local variables [30].

In WPDSs, reachability problems compute the value of a rule sequence by tak-
ing an extend of the weights of each of the rules in the sequence; when WPDSs
are used for dataflow analysis of a program, rule sequences represent interpro-
cedural paths in the program. To summarize the weights of such paths, we have
to maintain information about local variables of all unfinished procedures that
appear on the path.

Extended WPDSs (EWPDSs) lift WPDSs to handle local variables in much
the same way that Knoop and Steffen lifted conventional dataflow-analysis al-
gorithms to handle local variables [26]: at a call site at which procedure P calls
procedure Q, the local variables of P are modeled as if the current incarnations
of P ’s locals are stored in locations that are inaccessible to Q and to procedures
transitively called by Q—consequently, the contents of P ’s locals cannot be af-
fected by the call to Q; we use special merging functions to combine them with
the value returned by Q to create the state after Q returns.3

3 Note that this model agrees with programming languages like Java, where it is
not possible to have pointers to local variables (i.e., pointers into the stack). For
languages such as C and C++, where the address-of operator (&) allows the address
of a local variable to be obtained, if P passes such an address to Q, it is possible for
Q (or a procedure transitively called from Q) to affect a local of P by making an
indirect assignment through the address.

Conventional interprocedural dataflow-analysis algorithms must also worry about
this issue, which is usually dealt with by (i) performing a preliminary analysis to
determine which call sites might have such effects, and (ii) using the results of the
preliminary analysis to create sound transformers for the primary analysis. The pre-
liminary analysis is itself an interprocedural dataflow analysis, and (E)WPDSs can be
applied to this problem as well. §4 describes how one such preliminary analysis—alias
analysis for single-level pointers [32]—can be expressed as a reachability problem in
an EWPDS.

42 T. Reps, A. Lal, and N. Kidd

For a semiring S on domain D, a merging function is defined as follows:

Definition 12. A function g : D×D → D is a merging function with respect
to a bounded idempotent semiring S = (D, ⊕, ⊗, 0, 1) if it satisfies the following
properties.

1. Strictness. For all a ∈ D, g(0, a) = g(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

g(a ⊕ b, c) = g(a, c) ⊕ g(b, c) and g(a, b ⊕ c) = g(a, b) ⊕ g(a, c)

Definition 13. Let (P , S, f) be a weighted pushdown system; let G be the set of
all merging functions on semiring S, and let Δ2 denote the set of push rules of P.
An extended weighted pushdown system is a quadruple We = (P , S, f, g)
where g : Δ2 → G assigns a merging function to each rule in Δ2.

Note that a push rule has both a weight and a merging function associated with
it. Merging functions are used to fuse the local state of the calling procedure as
it existed just before the call with the effects on the global state produced by
the called procedure.

As an example, Fig. 2 shows an ICFG and the PDS that represents it. We
can perform constant propagation (with uninterpreted expressions) by assigning
a weight to each PDS rule. The weight semiring is S = (D, ⊕, ⊗, 0, 1), where
D = (Env → Env) is the set of all environment transformers, and the semiring
operations and constants are defined as follows:

0 = λe.�
1 = λe.e

w1 ⊕ w2 = λe.(w1(e) � w2(e))
w1 ⊗ w2 = w2 ◦ w1

The weights for the EWPDS that models the program in Fig. 2 are shown as
edge labels. The merging function for the rule 〈p, n3〉 ↪→ 〈p, ef n4〉, which encodes
the call at n3, receives two environment transformers: one that summarizes the
effect of the caller from its enter node to the call site (emain to n3) and one that
summarizes the effect of the called procedure (ef to xf). The merging function
has to produce the transformer that summarizes the effect of the caller from its
enter node to the return site (emain to n4). The merging function is defined as
follows:

g(w1, w2) = if (w1 = 0 or w2 = 0) then 0
else λe.e[a �→ w1(e)(a), y �→ (w1 ⊗ w2)(e)(y)]

This copies over the value of the local variable a from the call site, and gets
the value of y that is returned from the called procedure. Because the merging
function has access to the environment transformer just before the call, we do
not have to pass the value of local variable a into procedure p. Hence the call
stops tracking the value of a using the weight λe.e[a �→ ⊥, b �→ e(a)].

The merging function for the rule 〈p, n7〉 ↪→ 〈p, ef n8〉 is defined similarly.

Program Analysis Using Weighted Pushdown Systems 43

Merging Functions for Boolean Programs. In this section, we assume
without loss of generality that each procedure has the same number of local
variables.

To encode Boolean programs that have local variables, let G be the set of val-
uations of the global variables and L be the set of valuations of local variables.
The actions of program statements and conditions are now binary relations on
G × L; thus, the weight domain is a relational weight domain on the set G × L,
but with an extra merging function defined on weights. Because different weights
can refer to local variables from different procedures, one cannot take relational
composition of weights from different procedures. The project function is used
to change the scope of a weight. It existentially quantifies out the current trans-
formation on local variables and replaces it with an identity relation. Formally,
it can be defined as follows:

project(w) = {(g1, l1, g2, l1) | (g1, l1, g2, l2) ∈ w}.

Once the summary of a procedure is calculated as a weight w involving local
variables of the procedure, the project function is applied to it, and the result
project(w) is passed to the callers of that procedure. This makes sure that local
variables of one procedure do not interfere with those of another procedure.
Thus, merging functions for Boolean programs all have the form

g(a, b) = a ⊗ project(b).

For encoding Boolean programs with other abstractions, such as finding the
shortest trace, one can use the relational weight domain on (G × L, S), where S
is a weight domain such as the minpath semiring (transparent to the presence
or absence of local variables). The project function on weights from this domain
can be defined as follows:

project(w) = λ(g1, l1, g2, l2). if (l1 �= l2) then 0S
else

⊕
l∈L w(g1, l1, g2, l)

Again, the merging functions all have the form g(a, b) = a ⊗ project(b).

4 Case Study: May-Aliasing for Single-Level Pointer
Programs

In this section, we define an EWPDS to find variable aliasing in programs written
in a C-like imperative language that is restricted to single-level pointers (i.e.,
one cannot have pointers to pointers).4 This problem was defined and solved
in [32], and has been chosen to illustrate the power of having merging functions
in EWPDSs. We first discuss some of the results from [32], and then move on
to describe an EWPDS that finds aliasing in a program. For this, we need only
4 For languages in which more than one level of indirection is possible, the algorithm

for single-level pointers still provides a safe solution (i.e., an overapproximation) [32].

44 T. Reps, A. Lal, and N. Kidd

to describe the weight domain and merging functions, because we already know
how to model the control flow of a program as a PDS (Fig. 3).

We say that two access expressions a and b are aliased (written as 〈a, b〉) at
a particular program point n if in some program execution they refer to the
same memory location when execution reaches n. We limit access expressions
to variables and pointer dereferences (written as ∗p for an address-valued vari-
able p). Given a program, we want to determine an overapproximation of all alias
pairs that hold at each program point. This problem is also referred to as may-
aliasing. In [32], this is computed in two stages. First, conditional may-aliasing
information is computed, which answers questions of the form: “if all alias pairs
in the set A hold at a program point n1, does the pair 〈a, b〉 hold at point n2?”
The second stage then uses this information to build up the final may-aliasing
table.

An important property that results from the fact that we only have single-
level pointers is that for all program points n1 and n2, where n1 is the enter
node of the procedure containing n2, if the alias pair 〈a, b〉 holds at n2 under
the assumption that the set A = {A1, · · · , Am} of alias pairs holds at n1, then
either (i) we can prove that 〈a, b〉 holds at n2, assuming that no alias pair holds
at n1; or (ii) there exists a k, 1 ≤ k ≤ m, such that assuming that just Ak holds
at n1 suffices to prove that 〈a, b〉 holds at n2. In other words, we only need to
compute conditional may-alias information for each alias pair Ak ∈ A, rather
than for each subset of A.

We say that the alias pair 〈a, .〉 holds at program point n if a is aliased to some
access expression that is not visible (out of scope) in the procedure containing n.
It is not necessary to know the particular invisible access expression to which a
is aliased because a procedure will always have the same effect on all alias pairs
that contain access expression a and any invisible access expression [32].

For a given program, let V denote the set of all its variables and pointer
dereferences. Assume that all variables have different names (local variables can
be prefixed by the name of the procedure that contains them) so that there are
no name conflicts. The set AP = (V × V)∪ (V × {.})∪ ({.} × V) is the set of all
alias pairs. Let AP⊥ = AP ∪ {⊥}, where ⊥ represents the absence of an alias
pair.

We now construct a weight domain over the set D = (AP⊥ → 2AP) of all
functions w from AP⊥ to the power set of AP with the following monotonicity
restriction: for all x ∈ AP , w(⊥) ⊆ w(x). Operations on weights will maintain
the invariant that alias relations are symmetric (i.e., if 〈a, b〉 holds, so does 〈b, a〉).
Each weight w ∈ D can be efficiently represented as a one-to-many map from
AP⊥ to AP .

An interprocedural path P with weight w means that if we assume 〈a, b〉 to
hold at the beginning of P then all pairs in w(〈a, b〉) hold at the end of path P
when the program execution follows P . The special element ⊥ handles the case
when no pair is assumed to hold at the beginning of the path; w(⊥) is the set of all
alias pairs that hold at the end of the path without assuming that any pair holds

Program Analysis Using Weighted Pushdown Systems 45

at the beginning of the path. Thus, a weight represents conditional may-aliasing
information, which motivates the monotonicity condition introduced above.

For all w1 �= 0 �= w2, the semiring operations are defined as follows. For
x ∈ AP⊥,

(w1 ⊕ w2)(x) = w1(x) ∪ w2(x)
(w1 ⊗ w2)(x) = w2(⊥) ∪ (∪y∈w1(x)w2(y))

1(x) =
{

∅ if x = ⊥
{x} otherwise

If path P1 has weight w1 and path P2 has weight w2, then the weight w1 ⊗ w2

summarizes the conditional alias information of the path P1 followed by P2. In
particular, (w1 ⊗ w2)(x) consists of the alias pairs that hold from w2, regardless
of the value of w1, together with the alias pairs that hold from w2 given w1(x).
When P1 and P2 have the same starting and ending points, the weight w1 ⊕ w2

stores conditional aliasing information when the program execution follows P1

or P2.
(The semiring constant 0 cannot be naturally described in terms of conditional

aliasing, but we can add it to D as a special value that satisfies all properties of
Defn. 4.)

We now consider how to associate a weight to each pushdown rule in the
EWPDS that encodes the program. For a node n that contains a statement of
the form x = y, where x and y are pointers, the weight associated with each rule
of the form 〈p, n〉 ↪→ · · · is a map, where for each x ∈ AP⊥, the first applicable
mapping is followed:

〈∗y, b〉 �→ {〈∗x, b〉}
〈a, ∗y〉 �→ {〈a, ∗x〉}
〈∗x, b〉 �→ ∅
〈a, ∗x〉 �→ ∅
〈a, b〉 �→ {〈a, b〉}

⊥ �→ {〈a, a〉 | a ∈ V } ∪ {〈∗x, ∗y〉, 〈∗y, ∗x〉}

Roughly speaking, this generates the alias pairs 〈∗x, ∗y〉 and 〈∗y, ∗x〉, makes the
aliases of ∗y into aliases of ∗x, and removes the previously existing alias pairs of
∗x (except 〈∗x, ∗x〉). To enforce monotonicity on weights, the following closure
operation is applied to the map: cl(w) = λx.(w(x)∪w(⊥)). The weights on other
rules that represent intraprocedural edges can be defined similarly (see [32]).

For a push rule, the weight is determined according to the binding that occurs
at the call site; the definition is presented in Fig. 8. All pop rules have the
weight 1.

The merging functions associated with push rules reflect the way conditional
aliasing information is computed for return nodes in [32]. Consider the push rule
〈p, callfoo〉 ↪→ 〈p, enterbar returnfoo〉, which is a call to procedure bar from foo,
and suppose that bindcall is the weight associated with this rule. For local access
expressions l1, l2 of foo and global access expressions g1, g2, the following must
hold.

46 T. Reps, A. Lal, and N. Kidd

– The alias pair 〈l1, l2〉 holds at returnfoo only if the pair 〈l1, l2〉 holds at the
call node callfoo.

– The alias pair 〈g1, g2〉 holds at returnfoo only if the pair holds at exitbar.
– The alias pair 〈g1, l1〉 holds at returnfoo only if 〈g1, .〉 holds at exitbar and

the invisible variable is l1. This happens when a pair 〈o1, l1〉 that held at
callfoo caused 〈o2, .〉 to hold at enterbar because of the call bindings (〈o2, .〉 ∈
bindcall(〈o1, l1〉)) and this pair, in turn, caused 〈g1, .〉 to hold at exitbar.

bindn(⊥) =

⎛

⎜
⎜
⎜
⎜
⎝

{〈∗fi, ∗fj〉 | [fi, ai], [fj , aj], ai = aj}
∪ {〈∗fi, ∗ai〉 | [fi, ai], visiblep(ai)}
∪ {〈∗ai, ∗fi〉 | [fi, ai], visiblep(ai)}
∪ {〈∗fi, .〉 | [fi, ai], ¬visiblep(ai)}
∪ {〈., ∗fi〉 | [fi, ai], ¬visiblep(ai)}

⎞

⎟
⎟
⎟
⎟
⎠

bindn(〈a, b〉) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bindn(⊥)
∪ {〈a, b〉 | visiblep(a), visiblep(b)}
∪ {〈a, .〉 | visiblep(a), ¬visiblep(b)}
∪ {〈., b〉 | ¬visiblep(a), visiblep(b)}
∪ {〈a, ∗fi〉 | visiblep(a), [fi, ai], ∗ai = b}
∪ {〈., ∗fi〉 | ¬visiblep(a), [fi, ai], ∗ai = b}
∪ {〈∗fi, b〉 | visiblep(b), [fi, ai], ∗ai = a}
∪ {〈∗fi, .〉 | ¬visiblep(b), [fi, ai], ∗ai = a}
∪ {〈∗fi, ∗fj〉 | [fi, ai], [fj , aj], ∗ai = a, ∗aj = b}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 8. A function that models parameter binding for a call at program point n to a
procedure named p. For brevity, we write [f, a] to denote the fact that f is a pointer-
valued formal parameter bound to actual a. Also, visiblep(a) is true if a is visible in
procedure p.

To encode these facts as weights for an algorithmic description of the merging
functions, we need to define certain weights and operations on them.

– Projection. For a set S ⊆ (V ∪{.}), let wS be a weight that only preserves
alias pairs in S × S: wS(⊥) = ∅ and

wS(〈a, b〉) =
{

{〈a, b〉} if a, b ∈ S
∅ otherwise

– Restoration. For an access expression v ∈ V , let wv
S be a weight that

changes alias pairs when v comes back in scope conditional on the set
S ⊆ (V ∪ {.}): wv

S(⊥) = ∅ and

wv
S(〈a, b〉) =

⎧
⎨

⎩

{〈a, v〉} if b = . and a ∈ S
{〈v, b〉} if a = . and b ∈ S
∅ otherwise

– Conditional Extend. For an alias pair 〈a, b〉, define ⊗〈a,b〉 to be a binary
operation on weights that calculates the alias pairs that hold at the end of

Program Analysis Using Weighted Pushdown Systems 47

a path as a result of the fact that 〈a, b〉 held at a point inside the path. For
x ∈ AP⊥,

(w1 ⊗〈a,b〉 w2)(x) =
{

w2(〈a, b〉) if 〈a, b〉 ∈ w1(x)
w2(⊥) otherwise

We can now define the merging functions. If G is the set of global access
expressions of the program, then for a call from a procedure with local access
expressions L and binding weight bindcall (i.e., the weight on the push rule), the
merging function is defined as follows (where Le denotes L ∪ {.}):

g(w1, w2) = if(w1 = 0 or w2 = 0) then 0

else

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(w1 ⊗ wLe)
⊕ (w1 ⊗ bindcall ⊗ w2 ⊗ wG)
⊕

⊕

〈a,l〉∈V×Le

((w1 ⊗〈a,l〉 (bindcall ⊗ w2)) ⊗ wl
G)

⊕
⊕

〈l,a〉∈Le×V

((w1 ⊗〈l,a〉 (bindcall ⊗ w2)) ⊗ wl
G)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The first term in the combine copies over from the call site the pairs for local
access expressions. The second term copies over from the called procedure’s exit
site the pairs for global access expressions. The third and fourth terms, which
are combines over all pairs in V × Le and Le × V , respectively, account for
global-local access expressions, following the strategy discussed earlier in this
section.

After the EWPDS is constructed, we can run an MOVP query with respect to
the configuration set C = {〈p, entermain〉} (where p is the single control location
of the EWPDS), and obtain the may-alias pairs as follows,

may-alias(n) = MOVP(C, nΓ ∗)(⊥).

In addition to computing the Landi-Ryder may-alias pairs, we can also answer
stack-qualified queries about may-alias relationships. For instance, we can find
out the may-alias pairs that hold at n1 when execution ends in the stack config-
uration 〈p, n1n2 · · · nk〉. As discussed in §1, such queries allow us to obtain more
precise information than what is obtained by merely computing a may-aliasing
query for paths that end at n1 with any stack configuration.

5 Recent Developments

5.1 Improvements in Solver Technology

The algorithms given in [46, 41, 42] are based on saturation (and generalize the
saturation procedure used for ordinary unweighted PDSs). Lal and Reps achieved
substantial speedups over previous algorithms for WPDS reachability problems
by using more sophisticated algorithms in the WPDS solver engine [29].

48 T. Reps, A. Lal, and N. Kidd

5.2 Analysis of Concurrent Programs

Two studies have used WPDSs to perform analyses of concurrent programs.
Chaki et al. [12] considers the model-checking problem for concurrent C pro-

grams with components that communicate via synchronizing actions (where
components use data drawn from large-cardinality data domains and possibly-
recursive procedure calls). They model such programs using communicating
pushdown systems, and reduce the reachability problem for this model to decid-
ing the emptiness of the intersection of two context-free languages L1 and L2.
Because the latter problem is undecidable, their scheme uses counterexample-
guided abstraction refinement of communicating Boolean programs. The tech-
nique was implemented as an extension to MAGIC [11], using WPDS++ [24]
to perform reachability queries on the models for each component. The system
was able to uncover a previously unknown bug in a version of a Windows NT
Bluetooth driver.

Lal et al. [31] followed an approach pioneered by Qadeer and Rehof [38], who
showed that analysis of concurrent recursive programs is decidable, for a finite-
state abstraction of program data, when one limits the amount of concurrency
by bounding the number of context switches. (A context switch is defined as the
transfer of control from one thread to another.)

Such an approach has proven to be useful for program analysis because many
bugs can be found in a few context switches [39, 38, 36]. Note that a context-
bounded analysis (CBA) does not impose any bound on the execution length
between context switches. Thus, even with a context-switch bound, the analysis
still has to consider the possibility that the next switch takes place in any one of
the (possibly infinite) states that may be reached after a context switch. Because
of this, CBA still considers many concurrent behaviors [36].

Qadeer and Rehof [38] showed that CBA is decidable for recursive programs
under a finite-state abstraction of program data. Lal et al. use WPDSs to gener-
alize the Qadeer-Rehof result to a family of infinite-state abstractions (and also
provide a new symbolic algorithm for the finite case). The insight behind the
approach is to construct a weighted transducer to summarize the execution of a
WPDS: the WPDS can go from configuration c1 to configuration c2 if and only
if the pair (c1, c2) is in the language of the transducer. These transducers are
composed to solve CBA.

5.3 Polyhedral Analysis

Recently, Denis Gopan in his Ph.D. thesis [19] presented a way to perform nu-
meric program analysis with WPDSs using the polyhedral abstract domain [16].
One of the challenges that he faced was that the polyhedral domain has infinite
descending chains, and hence widening techniques are required [13].

Widening is implemented using a weight wrapper that supports the normal
weight interface extended with a few extra methods. Two types of weights are
used: “regular weights” and “widening weights”. Regular weights behave just like
ordinary weights; widening weights are placed on WPDS rules where widening

Program Analysis Using Weighted Pushdown Systems 49

must occur (e.g., rules that correspond to backedges in the ICFG). In particular,
if a widening weight b is used in a combine operation by the WPDS saturation
procedure, the normal operation a ⊕ b is replaced by a � (a ⊕ b), (where � is
the standard widening operator).

References

1. Balakrishnan, G.: WYSINWYX: What You See Is Not What You eXecute. PhD
thesis, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, August 2007, Tech.
Rep. 1603

2. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Comp. Construct., pp. 5–23 (2004)

3. Balakrishnan, G., Reps, T., Kidd, N., Lal, A., Lim, J., Melski, D., Gruian, R.,
Yong, S., Chen, C.-H., Teitelbaum, T.: Model checking x86 executables with
CodeSurfer/x86 and WPDS++. In: Computer Aided Verif. (2005)

4. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

5. Ball, T., Rajamani, S.K.: Bebop: A path-sensitive interprocedural dataflow engine.
In: Prog. Analysis for Softw. Tools and Eng., 97–103 (June 2001)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: Princ. of Prog. Lang., pp. 62–73 (2003)

8. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. C-35(6), 677–691 (1986)

9. Büchi, J.R.: Finite Automata, their Algebras and Grammars. In: Siefkes, D. (ed.),
Springer, Heidelberg (1988)

10. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992)

11. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: Int. Conf. on Softw. Eng. (2003)

12. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. Tools and Algs. for the Construct. and
Anal. of Syst. (2006)

13. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: Princ.
of Prog. Lang., pp. 238–252 (1977)

14. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E.J. (ed.) Formal Descriptions of Programming Concepts,
IFIP WG 2.2, St. Andrews, Canada, August 1977, pp. 237–277. North-Holland,
Amsterdam (1978)

15. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Princ. of Prog. Lang., pp. 269–282 (1979)

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: Princ. of Prog. Lang., pp. 84–96 (1978)

50 T. Reps, A. Lal, and N. Kidd

17. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

18. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci. 9 (1997)

19. Gopan, D.: Numeric program analysis techniques with applications to array analy-
sis and library summarization. PhD thesis, Comp. Sci. Dept., Univ. of Wisconsin,
Madison, WI, August 2007. Tech. Rep. 1602

20. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

21. Gulwani, S., Necula, G.C.: Precise interprocedural analysis using random interpre-
tation. In: Princ. of Prog. Lang. (2005)

22. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7(3),
305–318 (1977)

23. Karr, M.: Affine relationship among variables of a program. Acta Inf. 6, 133–151
(1976)

24. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: AC++ library for weighted
pushdown systems (2004), http://www.cs.wisc.edu/wpis/wpds++/

25. Kildall, G.A.: A unified approach to global program optimization. In: Princ. of
Prog. Lang., pp. 194–206 (1973)

26. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Comp. Con-
struct., pp. 125–140 (1992)

27. Kodumal, J., Aiken, A.: Banshee: A scalable constraint-based analysis toolkit. In:
Static Analysis Symp. (2005)

28. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path optimization in programs and its
application to debugging. In: European Symp. on Programming (2006)

29. Lal, A., Reps, T.: Improving pushdown system model checking. In: Computer Aided
Verif. (2006)

30. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In:
Computer Aided Verif. (2005)

31. Lal, A.,Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. Tech. Rep. TR-1598, Comp. Sci. Dept., Univ. of
Wisconsin, Madison, WI (July 2007)

32. Landi, W., Ryder, B.G.: Pointer induced aliasing: A problem classification. In:
Princ. of Prog. Lang., January 1991, pp. 93–103 (1991)

33. Martin, F.: PAG – An efficient program analyzer generator. Softw. Tools for Tech.
Transfer (1998)

34. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: Princ. of Prog. Lang. (2004)

35. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: European Symp. on
Programming (2005)

36. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Prog. Lang. Design and Impl. (2007)

37. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

38. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Tools and Algs. for the Construct. and Anal. of Syst. (2005)

39. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: Prog. Lang. Design
and Impl. (2004)

40. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Princ. of Prog. Lang., pp. 49–61 (1995)

http://www.cs.wisc.edu/wpis/wpds++/

Program Analysis Using Weighted Pushdown Systems 51

41. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. In: Static Analysis Symp., pp. 189–213 (2003)

42. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. of Comp. Prog. 58(1–2), 206–
263 (2005)

43. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comp. Sci. 167, 131–170 (1996)

44. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of
Munich, Munich, Germany (July 2002)

45. Schwoon, S.: WPDS: A library for weighted pushdown systems (2003), http://
www.fmi.uni-stuttgart.de/szs/tools/wpds/

46. Schwoon, S., Jha, S., Reps, T., Stubblebine, S.: On generalized authorization prob-
lems. In: Comp. Sec. Found. Workshop (2003)

47. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applica-
tions, (ch. 7), pp. 189–234. Prentice-Hall, Englewood Cliffs, NJ (1981)

48. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with Binary Decision
Diagrams for program analysis. In: Asian Symp. on Prog. Lang. and Systems (2005)

http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

The Complexity of Zero Knowledge

Salil Vadhan�

School of Engineering and Applied Science
Harvard University

Cambridge, MA 02138
salil@eecs.harvard.edu

http://eecs.harvard.edu/~salil

Abstract. We give an informal introduction to zero-knowledge proofs,
and survey their role both in the interface between complexity theory
and cryptography and as objects of complexity-theoretic study in their
own right.

1 Introduction

Zero-knowledge proofs are interactive protocols whereby one party, the prover,
can convince another, the verifier, that some assertion is true with the remark-
able property that the verifier learns nothing other than the fact that the as-
sertion being proven is true. In the quarter-century since they were introduced
by Goldwasser, Micali, and Rackoff [GMR], zero-knowledge proofs have played a
central role in the design and study of cryptographic protocols. In addition, they
have provided one of the most fertile grounds for interaction between complex-
ity theory and cryptography, leading to exciting developments in each area. It is
the role of zero knowledge in this interaction that is the subject of the present
survey.

We begin with an informal introduction to zero-knowledge proofs in Section 2,
using two classic examples. In Section 3, we survey how zero-knowledge proofs
have provided an avenue for ideas and techniques to flow in both directions
between cryptography and complexity theory. In Section 4, we survey the way in
which zero knowledge has turned out to be interesting as a complexity-theoretic
object of study on its own. We conclude in Section 5 with some directions for
further research.

2 Definitions and Examples

In this section, we provide an informal introduction to zero-knowledge proofs.
For a more detailed treatment, we refer the reader to [Vad1, Gol].

� Written while visiting U.C. Berkeley, supported by the Miller Institute for Basic
Research in Science, a Guggenheim Fellowship, and NSF grant CNS-0430336.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 52–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Complexity of Zero Knowledge 53

Interactive Proofs and Arguments. Before discussing what it means for a proof
to be “zero knowledge,” we need to reconsider what we mean by a “proof.” The
classical mathematical notion of proof is as a static object that can be written
down once and for all, and then easily verified by anyone according to fixed
rules. It turns out that the power of such classical proofs can be captured by
the complexity class NP. To make this precise, we consider the assertions to
be proven as strings over some fixed alphabet, and consider a language L that
identifies the assertions that are ‘true’. For example, language SAT contains a
string x iff x encodes a boolean formula φ such that the assertion “φ is satisfiable”
is true. Then a proof system for a language L is given by a verification algorithm
V with the following properties:

– (Completeness) True assertions have proofs. That is, if x ∈ L, then there
exists π such that V (x, π) = accept.

– (Soundness) False assertions have no proofs. That is, if x /∈ L, then for all
π∗, V (x, π∗) = reject.

– (Efficiency) V (x, π) runs in time poly(|x|).

It is well-known that NP is exactly the class of languages having classical proof
systems as defined above. (Indeed, NP is now often defined in this way, cf. [Sip].)
Thus the P vs. NP question asks whether proofs actually help in deciding the
validity of assertions, or whether deciding validity without a proof can always
be done in time comparable to the time it takes to verify a proof.

Now zero-knowledge proofs are concerned with the question of how much one
learns when verifying a proof. By definition, one learns that the assertion being
proven is true. But we typically think of mathematical proofs as teaching us
much more. Indeed, when given a classical NP proof, one also gains the ability
to convince others that the same assertion is true, by copying the same proof.
To get around this obstacle and make it possible to have proofs that leak “zero
knowledge,” Goldwasser, Micali, and Rackoff [GMR] added two ingredients to
the classical notion of proof. The first is randomization — the verification of
proofs can be probabilistic, and may err with a small but controllable error
probability. The second ingredient is interaction — the static, written proof is
replaced by a dynamic prover who exchanges messages with the verifier and tries
to convince it to accept.

In more detail, we consider an interactive protocol (P, V) between a “prover”
algorithm P and a “verifier” algorithm V . P and V are given a common input x,
they each may privately toss coins, and then they exchange up to polynomially
many messages (where the next message of each party is obtained by applying
the appropriate algorithm P or V to the common input, the party’s private
coin tosses, and the transcript of messages exchanged so far). At the end of the
interaction, the verifier accepts or rejects. We denote by (P, V)(x) the interaction
between P and V on input x. Analogous to classical proofs, we require the
following properties:

54 S. Vadhan

– (Completeness) If x ∈ L, then V accepts in (P, V)(x) with probability at
least 2/3.

– (Soundness) If x /∈ L, then for “all” P ∗, V accepts in (P ∗, V)(x) with prob-
ability at most 1/3.

– (Efficiency) On common input x, V always runs in time poly(|x|).

A consequence of the efficiency condition is that the total length of commu-
nication between the two parties is bounded by a polynomial in |x|. As with
randomized algorithms, the constants of 2/3 and 1/3 in the completeness and
soundness probabilities are arbitrary, and can be made be exponentially close
to 1 and 0, respectively, by repeating the protocol many times and having the
verifier rule by majority.

We think of the soundness condition as a “security” property because it pro-
tects the verifier from adversarial behavior by the prover. Like most security
properties in cryptography, it has two commonly used versions:

– (Statistical Soundness) If x /∈ L, then for all, even computationally un-
bounded, strategies P ∗, V accepts in (P ∗, V)(x) with probability at most 1/3.
This gives rise to interactive proof systems, the original model of [GMR].

– (Computational Soundness) If x /∈ L, then for all (nonuniform) polynomial-
time strategies P ∗, V accepts in (P ∗, V)(x) with probability at most 1/3.
This gives rise to interactive argument systems, a model proposed by Bras-
sard, Chaum, and Crépeau [BCC].

Note that the honest prover P must have some computational advantage over
the verifier to be of any use. Otherwise, the verifier could simply simulate the
prover on its own, implying that the language L is decidable in probabilistic
polynomial time (i.e. in the complexity class BPP). Thus, typically one either
allows the honest prover P to be computationally unbounded or requires P to
be polynomial time but provides it with an NP witness for the membership of
x in L. The former choice is mainly of complexity-theoretic interest, and is usu-
ally made only for interactive proof systems, since they also provide security
against computationally unbounded cheating provers. The latter choice, where
the prover is efficient given a witness, is the one most appropriate for crypto-
graphic applications.

Zero Knowledge. While interactive proofs and arguments are already fascinat-
ing notions on their own (cf., [LFKN, Sha, Kil, Mic]), here we are interested
in when such protocols possess a “zero knowledge” property — where the ver-
ifier learns nothing other than the fact that the assertion being proven is true.
Before discussing how zero-knowledge can be defined precisely, we illustrate the
notion with a classic example for Graph Nonisomorphism. Here an instance
is a pair of graphs (G0, G1), and it is a YES instance if G0 and G1 are non-
isomorphic (written G0 �∼= G1), and a NO instance if they are isomorphic (written
G0

∼= G1).

The Complexity of Zero Knowledge 55

The zero-knowledge proof is based on two observations. First, if two graphs
are non-isomorphic, then their sets of isomorphic copies are disjoint. Second,
if two graphs are isomorphic, then a random isomorphic copy of one graph is
indistinguishable from a random isomorphic copy of the other (both have the
same distribution). Thus, the proof system, given in Protocol 2.1, tests whether
the (computationally unbounded) prover can distinguish between random iso-
morphic copies of the two graphs.

Protocol 2.1. Interactive proof (P, V) for Graph Nonisomorphism

Common Input: Graphs G0 and G1 on vertex set [n]

1. V : Select a random bit b ∈ {0, 1}. Select a uniformly random permutation
π on [n]. Let H be the graph obtained by permuting the vertices of Gb

according to π. Send H to P .
2. P : If G0

∼= H , let c = 0. Else let c = 1. Send c to V .
3. V : If c = b, accept. Otherwise, reject.
. .

We first verify that this protocol meets the definition of an interactive proof
system. If G0 and G1 are nonisomorphic, then G0

∼= H if and only if b = 0. So
the prover strategy specified above will make the verifier accept with probability
1. Thus completeness is satisfied. On the other hand, if G0 and G1 are isomorphic,
then H has the same distribution when b = 0 as it does when b = 1 Thus, b is
independent of H and the prover has at most probability at most 1/2 of guessing
b correctly no matter what strategy it follows. This shows that the protocol is
sound.

For zero knowledge, observe that the only information sent from the prover to
the verifier is the guess c for the verifier’s coin toss b. As argued above, when the
statement being proven is true (i.e. G0 �∼= H), this guess is always correct. That
is, the prover is sending the verifier a value that it already knows. Intuitively,
this means that the verifier learns nothing from the protocol. (Note that this
intuition relies on the assumption that the verifier follows the specified proto-
col, and actually constructs the graph H by permuting one of the two input
graphs.)

The notion of zero knowledge is formalized by requiring that the verifier could
have simulated everything it sees in the interaction on its own. That is, there
should be a probabilistic polynomial-time, noninteractive algorithm S, called
the simulator, that when given1 “any” verifier strategy V ∗ and any instance
x ∈ L, produces an output that is “indistinguishable” from the verifier’s view
of its interaction with the prover on input x (i.e. the transcript of the inter-
action together with the verifier’s private coin tosses). Zero knowledge is a se-
curity property, protecting the prover from leaking unnecessary information to
1 In this informal survey, we do not discuss the ways in which the simulator can be

‘given’ a verifier strategy. One possibility is that the simulator is given the code of
the verifier, e.g. as a boolean circuit, which gives rise to the notion of auxiliary-input
zero knowledge [GO]. Another is that the simulator is given the verifier strategy as
an oracle, which gives rise to the notion of black-box zero knowledge [GO].

56 S. Vadhan

an adversarial verifier, and thus comes in both statistical and computational
versions. With statistical zero knowledge, we require that the zero-knowledge
condition hold for even computationally unbounded verifier strategies V ∗, and
require that the output of the simulator is statistically close (e.g. in variation dis-
tance) to the verifier’s view. With computational zero knowledge, we only require
the zero-knowledge condition to hold for (nonuniform) polynomial-time verifier
strategies V ∗ and require that the output of the simulator “computationally in-
distinguishable” from the verifier’s view of the interaction, which means that no
(nonuniform) polynomial-time algorithm can distinguish the two distributions
except with negligible probability.

For the Graph Nonisomorphism protocol above, it is easy to illustrate a
simulator that produces a distribution that is identical to the view of “honest”
verifier V , but the protocol does not appear to be zero knowledge for veri-
fier strategies V ∗ that deviate from the specified protocol. Thus we refer to
the protocol as being honest-verifier statistical zero knowledge (or even honest-
verifier perfect zero knowledge, since the simulation produces exactly the correct
distribution). Honest-verifier zero knowledge is already a very nontrivial and
interesting notion, but cryptographic applications usually require the stronger
and more standard notion of zero knowledge against cheating verifier strategies
V ∗. This stronger notion can be achieved for Graph Nonisomorphism using
a more sophisticated protocol [GMW]. Thus we have:

Theorem 2.2 ([GMW]). Graph Nonisomorphism has a statistical zero-
knowledge proof system (in fact a perfect zero-knowledge proof system).

This provides an example of the power of zero-knowledge proofs (and also of
interactive proofs, since Graph Nonisomorphism is not known to be in NP).
An even more striking demonstration, however, is general construction of zero-
knowledge proofs for all of NP, also due to [GMW].

Zero Knowledge for NP. To achieve this, Goldreich, Micali, and Wigderson
[GMW] observed that it suffices to give a zero-knowledge proof for a single
NP-complete problem, such as Graph 3-Coloring. A 3-coloring of a graph
G = ([n], E) is an assignment C : [n] → {R, G, B} (for “Red,” “Green,” and
“Blue”) such that no pair of adjacent vertices are assigned the same color. Graph

3-Coloring is the language consisting of graphs G that are 3-colorable.
The zero-knowledge proof for Graph 3-Coloring is based on the observa-

tion that the classical NP proof can be broken into “pieces” and randomized in
such a way that (a) the entire proof is valid if and only if every piece is valid, yet
(b) each piece reveals nothing on its own. For Graph 3-Coloring, the classical
proof is a three-coloring of the graph, and the pieces are the restriction of the col-
oring to the individual edges: (a) An assignment of colors to vertices of the graph
is a proper 3-coloring if and only if the endpoints of every edge have distinct col-
ors, yet (b) if the three colors are randomly permuted, then the colors assigned to

The Complexity of Zero Knowledge 57

the endpoints of any particular edge are merely a random pair of distinct colors
and hence reveal nothing.

In Protocol 2.3, we show how to use the above observations to obtain a zero-
knowledge proof for Graph 3-Coloring which makes use of “physical” imple-
ments — namely opaque, lockable boxes. The actual proof system will obtained
by replacing these boxes with a suitable cryptographic primitive.

Protocol 2.3. “Physical” Proof System (P, V) for Graph 3-Coloring

Common Input: A graph G = ([n], E)

1. P : Let C be any 3-coloring of G (either given as an auxiliary input to a
polynomial-time P , or found by exhaustive search in case we allow P to be
computationally unbounded). Let π be a permutation of {R, G, B} selected
uniformly at random. Let C′ = π ◦ C.

2. P : For every vertex v ∈ [n], place C′(v) inside a box Bv, lock the box using
a key Kv, and send the box Bv to V .

3. V : Select an edge e = (x, y) ∈ E uniformly at random and send e to P .
4. P : Receive edge e = (x, y) ∈ E, and send the keys Kx and Ky to V .
5. V : Unlock the boxes Bx and By, and accept if the colors inside are different.

. .

We now explain why this protocol works. For completeness, first observe that
if C is a proper 3-coloring of G then so is C′. Thus, no matter which edge
(x, y) ∈ E the verifier selects, the colors C′(x) and C′(y) inside boxes Bx and
By will be different. Therefore, the verifier accepts with probability 1 when G is
3-colorable.

For soundness, consider the colors inside the boxes sent by the prover in Step 2
as assigning a color to each vertex of G. If G is not 3-colorable, then it must be
the case that for some edge (x, y) ∈ E, Bx and By contain the same color. So
the verifier will reject with probability at least 1/|E|. By repeating the protocol
|E|+1 times, the probability that the verifier accepts on a non-3-colorable graph
G will be reduced to (1 − 1/|E|)|E|+1 < 1/3.

To argue that Protocol 2.3 is “zero knowledge,” let’s consider what a verifier
“sees” in an execution of the protocol (when the graph is 3-colorable). The
verifier sees n boxes {Bv}, all of which are locked and opaque, except for a pair
Bx, By corresponding to an edge in G. For that pair, the keys Kx and Ky are
given and the colors C′(x) and C′(y) are revealed. Of all this, only C′(x) and
C′(y) can potentially leak knowledge to the verifier. However, since the coloring
is randomly permuted by π, C′(x) and C′(y) are simply a (uniformly) random
pair of distinct colors from {R, G, B}, and clearly this is something the verifier
can generate on its own.

In this intuitive argument, we have reasoned as if the verifier selects the edge
(x, y) in advance, or at least independently of the permutation π. This would

58 S. Vadhan

of course be true if the verifier follows the specified protocol and selects the edge
randomly, but the definition of zero knowledge requires that we also consider
cheating verifier strategies whose edge selection may depend on the messages
previously received from the prover (i.e., the collection of boxes). However, the
perfect opaqueness of the boxes guarantees that the verifier has no information
about their contents, so we can indeed view (x, y) as being selected in advance
by the verifier, prior to receiving any messages from the prover.

What is left is to describe how to implement the physical boxes algorith-
mically. This is done with a cryptographic primitive known as a commitment
scheme. It is a two-stage interactive protocol between a pair of probabilistic
polynomial-time parties, called the sender and the receiver. In the first stage,
the sender “commits” to a string m, corresponding to locking an object in the
box, as done in Step 2 of Protocol 2.3. In the second stage, the sender “reveals”
m to the receiver, corresponding to opening the box, as done in Steps 4 and 5
of Protocol 2.3.

Like zero-knowledge protocols, commitment schemes have two security prop-
erties. Informally, hiding says that a cheating receiver should not be able to learn
anything about m during the commit stage, and binding says that a cheating
sender should not be able to reveal two different messages after the commit
stage. Again, each of these properties can be statistical (holding against compu-
tationally unbounded cheating strategies, except with negligible probability) or
computational (holding against polynomial-time cheating strategies, except with
negligible probability). Thus we again get four flavors of commitment schemes,
but it is easily seen to be impossible to simultaneously achieve statistical security
for both hiding and binding. However, as long as we allow one of the security
properties to be computational, it seems likely that commitment schemes exist.
Indeed, commitment schemes with either statistical binding or statistical hiding
can be constructed from any one-way function (a function that is easy to com-
pute, but hard to invert even on random outputs) [HILL, Nao, NOV, HR], and
the existence of one-way functions is the most basic assumption of complexity-
based cryptography [DH, IL]. Thus, we conclude:

Theorem 2.4. If one-way functions exist, then every language in NP has both
a computational zero-knowledge proof system and a statistical zero-knowledge
argument system.

We note that the first construction of statistical zero-knowledge argument sys-
tems was given by Brassard, Chaum, and Crépeau [BCC], independently of
[GMW], but was based on stronger cryptographic primitives than just statisti-
cally hiding commitment schemes.

3 Zero Knowledge as an Interface

In this section, we survey the way in which zero-knowledge proofs have provided
an avenue for ideas and techniques to be transported between complexity theory
and cryptography.

The Complexity of Zero Knowledge 59

The concept of zero-knowledge proofs originated with efforts to formalize
problems arising in the design of cryptographic protocols (such as [LMR]), where
it is often the case that one party needs to convince another of some fact without
revealing too much information. However, as evidenced even by the title of their
paper “The Knowledge Complexity of Interactive Proof Systems,” Goldwasser,
Micali, and Rackoff [GMR] seemed to recognize the significance of the new no-
tions for complexity theory as well. Indeed, interactive proof systems (as well
as the Arthur–Merlin games independently introduced by Babai [Bab], which
turned out to be equivalent in power [GS]), soon became a central concept in
complexity theory. Their power was completely characterized in the remarkable
works of Lund, Fortnow, Karloff, and Nisan [LFKN] and Shamir [Sha], which
showed that IP, the class of languages having interactive proofs, equals PSPACE,
the class of languages decidable in polynomial space. Since PSPACE is believed
to be much larger than NP, this result shows that interactive proofs are much
more powerful than classical written proofs.

In the other direction, we have already seen how a powerful concept from
complexity theory, namely NP-completeness, was leveraged in the study zero-
knowledge proofs, namely, Theorem 2.4. Traditionally, we think of NP-complete-
ness as being used for negative purposes, to give evidence that a problem is hard,
but here it has been used in a positive way — zero-knowledge proofs were ob-
tained for an entire class by constructing them for a single complete problem.
This discovery of zero-knowledge proofs for all of NP played a crucial role in
striking general results of [Yao, GMW] about secure computation, where sev-
eral parties engage in a protocol to jointly compute a function on their private
inputs in such a way that no party learns anything other than the output of
the protocol. These landmark results of [Yao, GMW] say that every polynomial-
time computable function can be computed securely in this sense. Zero
knowledge plays a crucial role, enabling the parties to convince each other
that they are following the specified protocol, without revealing their private
input.

In the study of secure computation, researchers realized that the use of com-
plexity assumptions (e.g. the existence of one-way functions) could be removed
by working in a model with private communication channels [CCD, BGW].
Similarly, Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW] introduced the
multiprover model for interactive proofs, where two or more noncommunicating
provers try to convince the verifier of an assertion, and the verifier can inter-
rogate with each prover on a private channel that is inaccessible to the other
prover(s) (similarly to how detectives interrogate suspects). The main motiva-
tion of [BGKW] was to find a model in which zero-knowledge protocols for all
of NP could be obtained without any complexity assumption (in contrast to
Theorem 2.4). However, multiprover interactive proofs turned out to be even
more significant for complexity theory than interactive proofs were. Following
the proof that IP = PSPACE mentioned above, Babai, Fortnow, and Lund [BFL]

60 S. Vadhan

showed that the class MIP of languages having multiprover interactive proofs
equals NEXP, nondeterministic exponential time, a class that is provably larger
than NP (by diagonalization). Multiprover interactive proofs also turned out to
be equivalent in power to probabilistically checkable proofs (PCPs) [FRS]. PCPs
are static strings, like classical NP proofs, but can be verified probabilistically
by a verifier that reads only a small portion of the proof. Scaling down the
proof that MIP = NEXP and incorporating a number of new ideas led to the
celebrated PCP Theorem[BFLS, FGL+, AS, ALM+], showing that membership
in any NP language can be proven using PCPs that can be verified by reading
only a constant number of bits of the proof. The significance of the PCP Theorem
was magnified by a surprising connection between PCP constructions for NP
and showing that NP-complete optimization problems are hard to approximate
[FGL+, ALM+], the latter being an open question from the early days of NP-
completeness. A long line of subsequent work (beyond the scope of this survey)
has optimized PCP constructions in order to get tight inapproximability results
for a variety of NP-complete optimization problems.

The PCP Theorem provided returns to zero knowledge and cryptography
through the work of Kilian [Kil], who used it to construct zero-knowledge ar-
gument systems for NP in which the verifier’s computation time depends only
polylogarithmically (rather than polynomially) on the length of the statement
being proven. A generalization of Kilian’s work, due to Micali [Mic], was used
in [CGH] to obtain negative results about realizing the “random oracle model,”
which is an idealized model sometimes used in the design of cryptographic pro-
tocols. This technique of [CGH] was an inspiration for Barak’s breakthrough
work on “non-black-box simulation” zero knowledge [Bar1]. In this work, Barak
showed how to exploit the actual code of the adversarial verifier’s strategy to
simulate a zero knowledge protocol (rather than merely treating the verifier as a
black-box subroutine). Using this method, Barak obtained a zero-knowledge ar-
gument system with properties that were known to be impossible with black-box
simulation [GK1]. Subsequently, non-black-box use of the adversary’s code has
proved to be useful in the solution of a number of other cryptographic problems,
particularly ones concerned with maintaining security when several protocols are
being executed concurrently [Bar2, PR1, Lin, Pas, PR2, BS].

4 Zero Knowledge as an Object of Study

We now turn zero knowledge as a complexity-theoretic object of study in itself.
By this, we refer to the study of the complexity classes consisting of the lan-
guages that have zero-knowledge protocols of various types. We have already
seen in the previous section that the classes IP and MIP arising from interac-
tive proofs and their multiprover variant turned out to be very interesting and
useful for complexity theory, and we might hope for the same to occur when
we impose the zero knowledge constraint. From a philosophical point of view, it

The Complexity of Zero Knowledge 61

seems interesting to understand to what extent the requirement that we do not
leak knowledge restricts the kinds of assertions we can prove. For cryptography,
the complexity-theoretic study of zero knowledge can illuminate the limits of
what can be achieved with zero-knowledge protocols, yield new techniques use-
ful for other cryptographic problems, and help understand the relation of zero
knowledge to other primitives in cryptography.

Recall that zero-knowledge protocols have two security conditions—soundness
and zero knowledge—and these each come in both statistical and computational
versions. Thus we obtain four main flavors of zero knowledge protocols, and
thus four complexity classes consisting of the languages that zero-knowledge
protocols of a particular type. We denote these classes SZKP, CZKP, SZKA,
and CZKA, with the prefix of S or C indicating statistical or computational
zero knowledge and the suffix of P or A denoting interactive proofs (statisti-
cal soundness) or arguments (computational soundness). The main goals are to
characterize these classes, for example via complete problems or establishing
relations with other, better-understand complexity classes; to establish proper-
ties of these classes (eg closure under various operations); and to obtain general
results about zero-knowledge protocols. The first result along these lines was
Theorem 2.4, which showed that the zero-knowledge classes involving computa-
tional security (namely, CZKP, SZKA, and CZKA) contain all of NP if one-way
functions exist. Aside from this initial result and a follow-up that we will discuss
later [IY, BGG+], much of the complexity-theoretic study of zero knowledge was
developed first for SZKP.

4.1 Statistical Security: SZKP

From a security point of view, statistical zero-knowledge proofs are of course the
most attractive of the four types of zero-knowledge protocols we are discussing,
since their security properties hold regardless of the computational power of the
adversary. So the first question is whether this high level of security is achiev-
able for nontrivial languages (i.e. ones that cannot be decided in probabilistic
polynomial time). We have already seen one candidate, Graph Nonisomor-

phism, and in fact SZKP is known to contain a number of other specific prob-
lems believed to be hard, such as Graph Isomorphism [GMW], Quadratic

Residuosity and Quadratic Nonresiduosity [GMR], a problem equivalent
to the Discrete Log [GK2], approximate versions of the Shortest Vector

Problem and Closest Vector Problem in high-dimensional lattices [GG],
and various group-theoretic problems [AD]. On the other hand, recall that the
general construction of zero-knowledge protocols for NP (Theorem 2.4) does not
yield SZKP protocols, because (because there do not exist commitment schemes
that are simultaneously statistically hiding and statistically binding). This phe-
nomenon was explained in the work of Fortnow, Aiello, and H̊astad [For, AH],
who made the first progress towards a complexity-theoretic characterization of
SZKP. Specifically, they showed that SZKP is contained in AM ∩ coAM, where

62 S. Vadhan

the complexity class AM is a randomized analogue of NP, and consequently
deduced that SZKP is unlikely to contain NP-hard problems. Indeed an NP-hard
problem in SZKP ⊆ AM∩coAM implies that AM = coAM, which seems unlikely
for the same reason that NP = co-NP seems unlikely — there is no reason that
a efficient provability of statements (x ∈ L) should imply efficient provability
of their negations (x /∈ L). (Like NP = co-NP, AM = coAM also implies the
collapse of the polynomial-time hierarchy, which is commonly conjectured to be
infinite).

The next major steps in our understanding of SZKP came in the work of
Okamoto [Oka], who proved that (a) SZKP is closed under complement, and
(b) every language in SZKP has a statistical zero-knowledge proof system that
is public coin, meaning that the verifier’s messages consist only of random coin
tosses (a property that holds for the Graph 3-Coloring protocol in the previ-
ous section, but not the Graph Nonisomorphism protocol).2 The first result,
closure under complement, was particularly surprising, because as mentioned
above, there is no reason to believe that the existence of proofs for certain state-
ments should imply anything about the negations of those statements. However,
it was the second result that proved most useful in subsequent work, because
public-coin protocols are much easier to analyze and manipulate than general,
private-coin protocol. (Indeed, the equivalence of private coins and public coins
for (non-zero-knowledge) interactive proofs [GS], found numerous applications,
e.g. [BM, GS, BHZ, FGM+].)

Using Okamoto’s result as a starting point, SZKP was characterized exactly by
two natural complete problems.3 The first was Statistical Difference [SV],
which amounts to the problem of approximating the statistical difference (i.e.
variation distance) between two efficiently samplable distributions (specified
by boolean circuits that sample from the distributions). The second problem,
Entropy Difference [GV], amounts to approximating the difference in the
entropies of two efficiently samplable distributions (which is computationally
equivalent to approximating the entropy of a single efficiently samplable distri-
butions). In addition to providing a simple characterization of SZKP (as the class
of problems that reduce to either of the complete problems), these complete prob-
lems show that the class SZKP is of interest beyond the study of zero-knowledge
proofs. Indeed, estimating statistical properties of efficiently samplable distri-
butions is a natural algorithmic task, and now we see that its complexity is
captured by the class SZKP.

2 Okamoto’s results were actually proven for honest-verifier statistical zero knowledge,
but, as mentioned below, it was subsequently shown that every honest-verifier sta-
tistical zero-knowledge proof can be transformed into one that tolerates cheating
verifiers [GSV1].

3 The complete problems for SZKP, as well as some of the other problems mentioned
to be in SZKP are not actually languages, but rather promise problems. In a promise
problem, some strings are YES instances, some strings are NO instances, and the
rest are excluded (i.e. we are promised that the input is either a YES instance or a
NO instance). Languages correspond to the special case where there are no excluded
inputs.

The Complexity of Zero Knowledge 63

Using Okamoto’s results and the complete problems, other general results
about statistical zero knowledge were obtained, including more closure prop-
erties [DDPY, SV], an equivalence between honest-verifier SZKP and general,
cheating-verifier SZKP [DGW, GSV1], an equivalence between efficient-prover
SZKP and unbounded-prover SZKP for problems in NP [MV, NV], and rela-
tions between SZKP and other models of zero-knowledge protocols [GSV2, DSY,
BG2]. There have also been studies of the relation between SZKP and quantum
computation, including both the question of whether every problem in SZKP
has a polynomial-time quantum algorithm [Aar, AT] and a complexity-theoretic
study of the quantum analogue of SZKP [Wat].

4.2 Computational Security: CZKP, SZKA, and CZKA

Perhaps one reason that the complexity theory of SZKP developed more rapidly
than that of the classes involving computational security is that early results
seemed to indicate the latter were completely understood. Indeed, Theorem 2.4
says that under standard complexity assumptions, all of the classes CZKP,
SZKA, and CZKA are very powerful, in that they contain all of NP. Soon after-
wards, this result was strengthened was extended to give zero-knowledge proofs
for all of IP [IY, BGG+], again under the assumption that one-way functions ex-
ist. (This result allows for the honest prover to be computationally unbounded.
For efficient honest provers, IP should be replaced by MA, which is a slight
generalization of NP in which the verifier is a randomized algorithm.)

In cryptography, the assumption that one-way functions exist is standard;
indeed, most of modern cryptography would not be able to get off the ground
without it. However, from a complexity-theoretic perspective, there is a signif-
icant difference between results that make an unproven assumption and those
that are unconditional. So a natural question is whether the assumption that
one-way functions is really necessary to prove Theorem 2.4 and to characterize
the power of zero knowledge with computational security.

Partial converses to Theorem 2.4, suggesting that one-way functions are nec-
essary, were given by Ostrovsky and Wigderson [OW], building on an earlier
work of Ostrovsky [Ost] about SZKP. Ostrovsky and Wigderson first proved
that if there is a zero-knowledge protocol (even with both security properties
computational) for a “hard-on-average” language, then one-way functions ex-
ist. Thus, we get a “gap theorem” for zero knowledge: either one-way functions
exist and zero knowledge is very powerful, or one-way functions do not exist,
and zero knowledge is relatively weak. They also proved that if there is a zero-
knowledge protocol for a language not in BPP (probabilistic polynomial time),
then a “weak form” of one-way functions exist. (Note that we do not expect to
deduce anything for languages in BPP, since every language in BPP has a trivial
perfect zero knowledge proof, in which the prover sends nothing and the verifier
decides membership on its own.)

While it was a major step in our understanding of zero knowledge, the
Ostrovsky–Wigderson Theorems [OW] do not provide a complete characteri-
zation of the classes CZKA, CZKP, and SZKA. The reason is that for languages

64 S. Vadhan

that are neither hard on average nor in BPP, we only get the “weak form” of one-
way functions of their second result, which do not seem to suffice for constructing
commitment schemes and hence zero-knowledge protocols. Exact characteriza-
tions were obtained more recently, using a variant of the Ostrovsky–Wigderson
approach [Vad2, OV]. Instead of doing a case analysis based on whether a lan-
guage is in BPP or not, we consider whether a language is in SZKP or not, and
thus are able to replace the “weak form” of one-way functions with something
much closer to the standard notion of one-way functions. Specifically, it was
shown that every language L in CZKA can be “decomposed” into a problem4

in SZKP together with a set I of instances from which (finite analogues of)
one-way functions can be constructed. Conversely, every problem in NP hav-
ing such a decomposition is in CZKA. A similar characterization is obtained
for CZKP by additionally requiring that I contains only strings in L, and for
SZKA by requiring that I contain only strings not in L. These results, referred
to as the SZKP–OWF Characterizations, reduce the study of the com-
putational forms of zero knowledge to the study of SZKP together with the
consequences of one-way functions, both of which are well-understood. Indeed,
using these characterizations, a variety of unconditional general results were
proven about the classes CZKP, SZKA, and CZKA, such as closure properties,
the equivalence of honest-verifier zero knowledge and general, cheating-verifier
zero knowledge, and the equivalence of efficient-prover and unbounded-prover
zero knowledge [Vad2, NV, OV]. Moreover, ideas developed in this line of work
on unconditional results, such as [NV], turned out to be helpful also for condi-
tional results, specifically the construction of statistically hiding commitments
from arbitrary one-way functions [NOV, HR], which resolved a long-standing
open problem in the foundations of cryptography (previously, statistically hid-
ing commitments were only known from stronger complexity assumptions, such
as the existence of one-way permutations [NOVY]).

5 Future Directions

Recall that our discussion of zero knowledge as an interface between complex-
ity and cryptography in Section 3 ended with the non-black-box zero-knowledge
protocol of Barak [Bar1], which found a variety of other applications in cryp-
tography. It seems likely that the Barak’s work will also have an impact on
complexity theory as well. In particular, it points to the potential power of
“non-black-box reductions” between computational problems. Typically, when
we say that computational problem A “reduces” to computational problem B,
we mean that we can efficiently solve A given access to a black box that solves
problem B. We interpret such a reduction as saying that A is no harder than
B. In particular, if B can be solved efficiently, so can A. However, it is possi-
ble to establish implications of the latter form without exhibiting a (black-box)
reduction in the usual sense, because it may be possible to exploit an efficient
4 Again, the SZKP problems referred to by the SZKP–OWF Characterizations

are actually promise problems.

The Complexity of Zero Knowledge 65

algorithm for B in ways that we cannot exploit a black-box for B (e.g. by directly
using the code of the algorithm in some way). While we have had examples of
“non-black-box reductions” in complexity theory for a long time (such as the
collapse of the entire polynomial hierarchy to P if P = NP), Barak’s work has
begun to inspire complexity theorists to reexamine whether known limitations
of black-box reductions (such as for worst-case/average-case connections [BT])
can be bypassed with various types of non-black-box reductions [GT].

In terms of the complexity-theoretic study of SZKP, one intriguing open prob-
lem is to find a combinatorial or number-theoretic complete problem. The known
complete problems [SV, GV] can be argued to be “natural,” but they still make
an explicit reference to computation (since the input distributions are speci-
fied by boolean circuits). Finding a combinatorial or number-theoretic complete
problem would likely further illuminate the class SZKP, and would also provide
strong evidence that the particular problem is intractable. We are currently lack-
ing in ways to provide evidence that problems are intractable short of showing
them to be NP-hard. The recent sequence of results showing that Nash Equi-

librium is complete for the class PPAD [DGP, CD] is one of the few exceptions.
Approximate versions of lattice problems (see [GG, MV]) seem to be promising
candidates for SZKP-completeness.

Another direction for further work is to carry out complexity-theoretic inves-
tigations, similar to those described in Section 4, for common variants of zero-
knowledge protocols. These include noninteractive zero knowledge (for which
there has been some progress [DDPY, GSV2, BG2, PS], mainly for the case
of statistical security), proofs and arguments of knowledge (where the prover
demonstrates that it “knows” a witness of membership), and witness-
indistinguishable protocols (where the particular witness used by the prover
remains hidden from the verifier, but other knowledge may be leaked). Also, we
currently have a rather incomplete complexity-theoretic understanding of argu-
ment systems with sublinear communication, such as [Kil, Mic, BG1], not to
mention their zero knowledge variants. The current constructions of such argu-
ment systems rely on collision-resistant hash functions, but we do not even know
if one-way functions are necessary (cf., [Wee]).

References

[Aar] Aaronson, S.: Quantum lower bound for the collision problem. In: Proceed-
ings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
pp. 635–642. ACM, New York (2002)

[AD] Arvind, V., Das, B.: Szk proofs for black-box group problems. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 6–17.
Springer, Heidelberg (2006)

[AH] Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences 42(3), 327–
345 (1991) (Preliminary version in FOCS 1987)

[ALM+] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and the hardness of approximation problems. Journal of the ACM 45(3),
501–555 (1998)

66 S. Vadhan

[AS] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM 45(1), 70–122 (1998)

[AT] Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation. SIAM
Journal on Computing 37(1), 47–82(electronic) (2007)

[Bab] Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (STOC), pp. 421–429
(1985)

[Bar1] Barak, B.: How to go beyond the black-box simulation barrier. In: Proceed-
ings of the 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 106–115. IEEE Computer Society, Los Alamitos (2001)

[Bar2] Barak, B.: Constant-round coin-tossing with a man in the middle or realizing
the shared random string model. In: Proceedings of the 43rd Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 345–355 (2002)

[BCC] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences 37(2), 156–189 (1988)

[BFL] Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-
prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

[BFLS] Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in
polylogarithmic time. In: STOC, pp. 21–31. ACM, New York (1991)

[BG1] Barak, B., Goldreich, O.: Universal arguments and their applications. In:
IEEE Conference on Computational Complexity, pp. 194–203 (2002)

[BG2] Ben-Or, M., Gutfreund, D.: Trading help for interaction in statistical zero-
knowledge proofs. Journal of Cryptology 16(2), 95–116 (2003)

[BGG+] Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Hei-
delberg (1990)

[BGKW] Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover inter-
active proofs: how to remove intractability assumptions. In: Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pp.
113–131. ACM Press, New York (1988)

[BGW] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract).
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 1–10 (1988)

[BHZ] Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive
proofs? Information Processing Letters 25, 127–132 (1987)

[BM] Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. Journal of Computer and System Sciences 36,
254–276 (1988)

[BS] Barak, B., Sahai, A.: How to play almost any mental game over the net
- concurrent composition via super-polynomial simulation. In: FOCS, pp.
543–552. IEEE Computer Society, Los Alamitos (2005)

[BT] Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP
problems. SIAM Journal on Computing 36(4), 1119–1159(electronic) (2006)

[CCD] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, pp. 11–19 (1988)

The Complexity of Zero Knowledge 67

[CD] Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium.
In: FOCS, pp. 261–272. IEEE Computer Society, Los Alamitos (2006)

[CGH] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, re-
visited. Journal of the ACM 51(4), 557–594(electronic) (2004)

[DDPY] De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: Image Density is
complete for non-interactive-SZK. In: Automata, Languages and Program-
ming, 25th International Colloquium, ICALP, pp. 784–795 (1998) (See also
preliminary draft of full version, May 1999)

[DGOW] Damg̊ard, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier
vs. dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg
(1995)

[DGP] Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of
computing a Nash equilibrium. In: STOC 2006. Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pp. 71–78. ACM, New
York (2006)

[DGW] Damg̊ard, I., Goldreich, O., Wigderson, A.: Hashing functions can simplify
zero-knowledge protocol design (too). Technical Report RS-94–39, BRICS,
November 1994. See Part 1 of [DGOW]

[DH] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transac-
tions on Information Theory 22(6), 644–654 (1976)

[DSY] Di Crescenzo, G., Sakurai, K., Yung, M.: On zero-knowledge proofs: from
membership to decision. In: Proceedings of the 32nd Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 255–264. ACM Press, New York
(2000)

[FGL+] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs
and the hardness of approximating cliques. Journal of the ACM 43(2), 268–
292 (1996)

[FGM+] Fürer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On complete-
ness and soundness in interactive proof systems. Advances in Computing
Research 5, 429–442 (1989) (Preliminary version in FOCS 1987)

[For] Fortnow, L.: The complexity of perfect zero-knowledge. Advances in Com-
puting Research: Randomness and Computation 5, 327–343 (1989)

[FRS] Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive
protocols. Theoretical Computer Science 134(2), 545–557 (1994)

[GG] Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice
problems. In: Proceedings of the 30th Annual ACM Symposium on Theory
of Computing (STOC), pp. 1–9 (1998)

[GK1] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM Journal on Computing 25(1), 169–192 (1996) (Preliminary
version in ICALP 1990)

[GK2] Goldreich, O., Kushilevitz, E.: A perfect zero-knowledge proof system for
a problem equivalent to the discrete logarithm. Journal of Cryptology 6,
97–116 (1993)

[GMR] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)
(Preliminary version in STOC 1985)

[GMW] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM 38(1), 691–729 (1991) (Preliminary version in FOCS 1986)

68 S. Vadhan

[GO] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology 7(1), 1–32 (1994)

[Gol] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, Cambridge (2001)

[GS] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive
proof systems. Advances in Computing Research: Randomness and Compu-
tation 5, 73–90 (1989)

[GSV1] Goldreich, O., Sahai, A., Vadhan, S.: Honest verifier statistical zero-
knowledge equals general statistical zero-knowledge. In: Proceedings of the
30th Annual ACM Symposium on Theory of Computing (STOC), pp. 399–
408 (1998)

[GSV2] Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero-knowledge be made
non-interactive? or On the relationship of SZK and NISZK. In: Wiener, M.J.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg
(1999)

[GT] Gutfreund, D., Ta-Shma, A.: Worst-case to average-case reductions revisited.
In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX-
RANDOM. LNCS, vol. 4627, pp. 569–583. Springer, Heidelberg (2007)

[GV] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: IEEE Conference on
Computational Complexity, pp. 54–73. IEEE Computer Society, Los Alami-
tos (1999)

[HILL] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM Journal on Computing 28(4), 1364–
1396 (1999) Preliminary versions. In: STOC 1989 and STOC 1990

[HR] Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way
function. In: Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), 2007, New York (2007)

[IL] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography. In: Proceedings of the 30th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 230–235 (1989)

[IY] Impagliazzo, R., Yung, M.: Direct minimum-knowledge computations (ex-
tended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 40–51. Springer, Heidelberg (1988)

[Kil] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory
of Computing (STOC), pp. 723–732 (1992)

[LFKN] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for inter-
active proof systems. Journal of the ACM 39(4), 859–868 (1992)

[Lin] Lindell, Y.: Protocols for bounded-concurrent secure two-party computation
in the plain model. Chicago Journal of Theoretical Computer Science, pages
Article 1, 50 (2006)

[LMR] Luby, M., Micali, S., Rackoff, C.: How to simultaneously exchange a secret
bit by flipping a symmetrically-biased coin. In: FOCS, pp. 11–21. IEEE, New
York (1983)

[Mic] Micali, S.: Computationally sound proofs. SIAM Journal on Comput-
ing 30(4), 1253–1298 (2000), Preliminary version in FOCS 1994

[MV] Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

The Complexity of Zero Knowledge 69

[Nao] Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology
4(2), 151–158 (1991); Preliminary version In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, Springer, Heidelberg (1990)

[NOV] Nguyen, M.-H., Ong, S.J., Vadhan, S.: Statistical zero-knowledge arguments
for NP from any one-way function. In: Proceedings of the 47th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 3–14. IEEE Com-
puter Society, Los Alamitos, CA, USA (2006)

[NOVY] Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge
arguments for NP using any one-way permutation. Journal of Cryptology
11(2), 87–108 (1998); Preliminary version In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, Springer, Heidelberg (1993)

[NV] Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pp. 287–295. ACM Press, New York (2006)

[Oka] Okamoto, T.: On relationships between statistical zero-knowledge proofs.
Journal of Computer and System Sciences, 60(1), 47–108 (2000), Preliminary
version in STOC 1996

[Ost] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Proceedings of the 6th Annual Structure in
Complexity Theory Conference, pp. 133–138. IEEE Computer Society, Los
Alamitos (1991)

[OV] Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, Springer, Heidelberg
(2007)

[OW] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial
zero-knowledge. In: Proceedings of the 2nd Israel Symposium on Theory of
Computing Systems, pp. 3–17. IEEE Computer Society, Los Alamitos (1993)

[Pas] Pass, R.: Bounded-concurrent secure multi-party computation with a dis-
honest majority. In: Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, pp. 232–241. ACM, New York (2004)

[PR1] Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a
constant number of rounds. In: FOCS, p. 404. IEEE Computer Society, Los
Alamitos (2003)

[PR2] Pass, R., Rosen, A.: New and improved constructions of non-malleable cryp-
tographic protocols. In: STOC 2005: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pp. 533–542. ACM, New York (2005)

[PS] Pass, R., Shelat, A.: Unconditional characterizations of non-interactive zero-
knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 118–134.
Springer, Heidelberg (2005)

[Sha] Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)

[Sip] Sipser, M.: Introduction to the Theory of Computation, 2nd edn., Boston,
MA, USA. Thomson Course Technology (2005)

[SV] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
Journal of the ACM, 50(2), 196–249 (2003), Preliminary version in FOCS
1997

[Vad1] Vadhan, S.: Probabilistic proof systems, part I — interactive & zero-
knowledge proofs. In: Rudich, S., Wigderson, A. (eds.) Computational Com-
plexity Theory. American Mathematical Society. IAS/Park City Mathemat-
ics Series, vol. 10 (2004)

70 S. Vadhan

[Vad2] Vadhan, S.P.: An unconditional study of computational zero knowledge.
SIAM Journal on Computing, 36(4), 1160–1214 (2006). Preliminary version
in FOCS 2004

[Wat] Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In:
Proceedings of the 43rd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 459 (2002)

[Wee] Wee, H.: Finding Pessiland. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 429–442. Springer, Heidelberg (2006)

[Yao] Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the
27th Annual Symposium on Foundations of Computer Science (FOCS), pp.
162–167. IEEE Computer Society, Los Alamitos (1986)

The Priority k-Median Problem

Amit Kumar1 and Yogish Sabharwal2

1 Dept of Computer Science & Engg.,
Indian Institute of Technology, New Delhi - 110016, India

amitk@cse.iitd.ac.in
2 IBM India Research Lab,

4 Block C, Institutional Area, Vasant Kunj, New Delhi - 110070, India
ysabharwal@in.ibm.com

Abstract. In this paper, we consider a generalized version of the
k-median problem in metric spaces, called the priority k-median problem
in which demands and facilities have priorities associated with them and
a demand can only be assigned to a facility that has the same priority
or better. We show that there exists a polynomial time constant factor
approximation algorithm for this problem when there are two priorities.
We also show that the natural integer program for the problem has an
arbitrarily large integrality gap when there are four or more priorities.

1 Introduction

The problem of locating facilities to service a set of demands has been widely
studied in computer science and operations research communities [15,16]. Facil-
ity location problems have applications in diverse fields, for example, locating
fire stations in a city, locating base stations in wireless networks. The tradeoff
involved in such problems is the following – we would like to open as few facili-
ties as possible, but the demands should not be located too far from the nearest
facility.

The k-median problem balances the two costs by fixing the number of facilities
that can be opened and seeks to minimize the average distance of a demand to
the nearest open facility. More concretely, an instance of the k-median problem
consists of a set D of demand points and a set F of potential facility points.
We are also given the distance between each demand and facility points. The
k-median problem seeks to open at most k facilities in F so that the average
distance traveled by a demand in D to the nearest open facility is minimized.
We shall further assume that the distances between demands and facilities obey
the metric property.

The k-median problem is simple to state and nicely captures the trade-offs
involved in formulating facility location problems. This NP-hard problem has
been intensely studied by the approximation algorithms community. Polynomial
time constant factor approximation algorithms based on a variety of techniques
are known for this problem [2,3,4,9].

In this paper, we consider an interesting generalization of the k-median prob-
lem. In many applications of clustering problems, we can associate a notion of

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 71–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 A. Kumar and Y. Sabharwal

priority with demands and facilities. A facility can serve only those demands
which have lesser or same priority. Let us see a few motivating examples.

1. There is a retail chain store and it wants to open several stores in a city.
But because of various restrictions (space, regulations, etc.) there are some
locations where it can open small stores, and there are locations where it
can open bigger stores and hence sell more products. Now customers can be
different kinds. Those having lower income may be happy with small stores,
but those with more lavish lifestyle may prefer to go to bigger stores only.

2. In planning emergency evacuation plan for a city, the authorities want to
build locations from which people can be evacuated. But they want to build
better facilities for evacuating important people, like the mayor of the city.
But only some places in the city will be well equipped to provide such fa-
cilities, e.g., a low population zone, or a port. For evacuating other people,
they may have more options where to build the facilities.

There is a common theme in both the examples. The facilities that can be built
are of different priorities. A high priority facility is better than a low priority
facility. The demands are of different kinds as well. Some demands may be happy
with any facility, but others may require facilities of a certain priority or better
only. Motivated by the discussion above, we formulate the k-median problem
with priorities, in which demands and facilities have different priorities and a
demand can then only be assigned to a facility of its priority or better.

In this paper, we give a constant factor approximation algorithm for this
problem when there are only two priorities. Our algorithm is based on the idea
of formulating a natural linear programming relaxation for this problem and
then carefully rounding it to get an integral solution. On the other hand, we
show that such a linear program has high integrality gap for 4 priorities.

Related Work. As mentioned earlier, the k-median problem has been ex-
tensively studied in the past and several constant factor approximation algo-
rithms are known for this problem. Lin and Vitter [14] gave a bicriteria constant
factor approximation algorithm for this problem, even when distances do not
obey triangle inequality. Assuming that distances obey triangle inequality, the
first constant factor approximation algorithm was given by Charikar et al. [4].
Jain et al. [9] gave a primal-dual constant factor approximation algorithm for
this problem. Several constant factor approximation algorithms based on local
search techniques are known [2,3,11]. The techniques/analysis of these papers
do not extend to our problem. Several polynomial time approximation schemes
are known for the k-median problem in geometric settings [1,10,13].

A closely related problem is the facility location problem: here there is no
bound on how many facilities we can open but each facility comes with an
opening cost. This problem has been widely studied in computer science and
operations research communities [15,16]. Several constant factor approximation
algorithms are known for this problem (assuming distances obey triangle inequal-
ity) [3,6,9,18]. The variant of the facility location problem where the facilities

The Priority k-Median Problem 73

and demands have priorities has already been studied before. Shmoys et al. [17]
presented a 6-approximation algorithm for this problem.

Another related problem is the priority Steiner tree problem. The setting is
the same as the Steiner tree problem where we have an edge-weighted graph,
a source and a set of demand nodes. Further each edge and each demand has
a priority assigned to it. Now a demand can use only those edges which have
higher priority than itself. The goal is to find a minimum cost subset of edges
so that each demand can reach the source using these edges. This problem was
studied by [5] who gave a logarithmic approximation algorithm for this problem.
A lower bound on the approximability of this problem was given by [7].

Our Techniques. The main result of the paper is a constant factor approxima-
tion algorithm for the priority k-median problem wherin the number of priorities
is 2. Our starting step is standard : we write a natural LP relaxation for this
problem. However, the rounding steps are much more involved. Our algorithm
involves deeply analyzing the structure of the fractional solution and simplify-
ing it through a sequence of carefully formulated steps. The simpler fractional
solution guides us to write a simpler linear program for this problem and then
we show that an optimal vertex solution to this new LP must be half-integral.
We finally round the half-integral solution to an integral solution.

In Section 2 we present the natural integer program for the priority k-median
problem and also show the integrality gap for the case of 4 priorities. In
Section 3, we present the constant factor approximation algorithm for the case
of 2 priorities.

2 Preliminaries

In the priority k-median problem, we are given a set of demands, D and a set of
facilities F in a metric space. Each demand has a weight dj associated with it,
denoting the quantity of demand to be assigned to an open facility. There are m
types of demands, with the type indicates the priority of the demand. Thus D is
the disjoint union of D1, . . . , Dm, where we say that Dk are demands of type k.
Similarly, there are m types of facilities, i.e., F is a disjoint union of F1, . . . , Fm,
where we say that Fk are facilities of type k. The type of a facility specifies its
capability in serving the demands – a facility of type k can serve demands of type
at least k. Let cij denote distance between i and j where i, j can be demands or
facilities. A feasible solution opens a set of facilities F , and assigns each demand
to an open facility. We are given bounds kr on the number of facilities that can
be opened from Fr. As mentioned above, a demand j can only be assigned to
an open facility of its type or lower. Let i(j) denote the facility that a demand
j is assigned to. Then the cost of the solution is defined as

∑
j∈D dj · cji(j). The

goal of the priority k-median problem is to obtain a solution of minimum cost.
For a demand j, let type(j) = r if j ∈ Dr.

Fix an instance I of the problem as described above. We give a natural integer
programming formulation for this problem.

74 A. Kumar and Y. Sabharwal

min
∑

j∈D,i∈F
dj · cij · xij (1)

∑

i∈Fr

yi ≤ kr for r = 1, . . . , m (2)

∑

i∈F1∪...∪Ftype(j)

xij = 1 for all demands j (3)

xij ≤ yi for all demands j and facilities i (4)
xij , yi ∈ {0, 1} for all demands j and facilities i (5)

We relax the integer program to a linear program by allowing the variables xij

to take arbitrary real values between 0 and 1, and yi to take real non-negative
values. We solve this linear program and let x∗, y∗ be an optimal solution to the
linear program. Let OPT denote the cost of this solution.

We show that the integrality gap of the above relaxation is unbounded when
there are four priorities.
Theorem 1. For the priority k-median problem, the LP relaxation of its natu-
ral integer programming formulation has an unbounded integrality gap (even in
terms of the input number of demands/facilities) when there are four priorities.
The proof is deferred to the full version of the paper [12].

3 Two Priorities

In this section, we restrict our attention to the case of two priorities, i.e., demands
j ∈ D1 ∪ D2 and facilities i ∈ F1 ∪ F2. A demand in D1 can only use facilities
in F1 whereas a demand in D2 can use facilities in F1 ∪ F2. The paper contains
the statements of the Theorems and Lemmas. The proofs are deferred to the full
version of the paper [12].

We start by solving the LP mentioned in the previous section. The fractional
solution can be thought of as assigning a demand fractionally to several facili-
ties. Our first step is to consolidate demands, i.e., we merge demands into larger
demands. We do this consolidation with a constant loss in approximation ra-
tio only. The consolidated demands can be shown to form a nice hierarchical
structure called scenarios. The scenarios form the basic building blocks of our
rounding algorithm. Each scenario has several demands and facilities associated
with it (which are disjoint from those of other scenarios). This is followed by
careful reassignment of the demands so that they use the facilities which are
either associated with their own scenario or the scenario associated with one
other demand. We then show that the assignments can be modified further so
that the solution satisfies a nice property (Structure Property) that greatly limits
the number of open facilities. We then formulate a modified LP for this nicer
instance for which the modified assignments form a feasible solution. We argue
that the solution to this modified LP is half-integral. Finally we show that this
half-integral solution can be modified to an integral solution by suffering at most
a constant factor loss in our approximation.

The Priority k-Median Problem 75

3.1 Consolidating Demands

For a demand j, let C∗j denote the cost of shipping one unit of demand from j
in the optimal LP solution. In other words, C∗j =

∑
i x∗ijcij . Note that OPT =∑

j dj · C∗j . In this step, we consolidate nearby demands. This step consists of
two further substeps.

– Substep 1: Initially, we set d′j = dj for all locations j. Consider the locations
in ascending order of C∗j values. When we consider a location j, we check
if there is another location j′ which has been considered already and which
satisfies the conditions: d′j′ > 0 and cjj′ ≤ 32C∗j and type(j′) = type(j). If
there is such a location j′, then the entire demand of j is transferred to j′,
i.e., set d′j′ to d′j′ + d′j , and d′j to 0.

– Substep 2: Initially, we set d′′j = d′j for all locations j. We consider all type(2)
demands. When we consider a location j ∈ D2, we check if there is another
location j′ ∈ D1 which satisfies the conditions: d′′j′ > 0 and cjj′ ≤ 32C∗j
and C∗j′ ≤ cjj′ . If there is such a location j′, then the entire demand of j is
transferred to j′, i.e., set d′′j′ to d′′j′ + d′′j , and d′′j to 0.

Note that the condition on the type of j and j′ ensures us that the demand
j can use the facilities that j′ is assigned to.

Let I ′ be the new instance obtained thus. Let D′ denote the locations j for
which d′′j > 0. It is easy to see that x∗, y∗ is still a feasible fractional solution
for the modified instance. It is also easy to see that an integral solution to the
original LP can be obtained from an integral solution to this modified instance
with at most a constant factor loss in approximation.

Observation 1. For two demands j, j′ of the same type, cjj′ > 32·max{C∗j , C∗j′}.
Also for two demands j ∈ D′2 and j′ ∈ D′1, if C∗j′ ≤ cjj′ , then cjj′ > 32 · C∗j .

3.2 Scenarios

We now define a nice hierarchical structure around the demands called scenarios.

Definition 1. Ball(p,r): For a location p, let Ball(p, r) denote the set of all the
locations at a distance of at most r from p.

Definition 2. Nearest Assignable Demand, Critical Radius, Critical Ball: With
every demand j ∈ D′, we associate another demand from D′, denoted by n(j)
which we call its nearest assignable demand. The critical radius is denoted by rj

and is defined to be cjn(j)/16. The critical ball, denoted by Bj, is defined to be
Ball(j, rj) The nearest assignable demand is determined as follows:

– If j ∈ D′1, n(j) = argminj′∈D′
1\{j}{cjj′}

– If j ∈ D′2, n(j) = argminj′∈D′
1∪D′

2\V{cjj′}, for V = {j′ ∈ D′1|cjj′ ≤ 3
2rj′}∪{j}.

If there is no demand that is a candidate to be a nearest assignable demand to
j, then we set n(j) = Γ and rj to be twice the distance to the furthest location
(demand or facility). Thus, in this case, all facilities lie in Bj.

76 A. Kumar and Y. Sabharwal

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

j1’

j2’’

j1

j2

j2’ �����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

j1

j2’

j2

i1i2

i1’

i2’

i1’’

j2’’

i2’’

(a) (b)

Fig. 1. (a) Nearest assignable demands, (b) Example of Level 1 and Level 2 Scenarios

Figure 1 (a) shows an example of nearest assignable demands for different de-
mands under different situations. Let j1, j

′
1 ∈ D′1 and j2, j

′
2, j
′′
2 ∈ D′2. Note that

for a type(1) demand, the nearest assignable demand is always the closest type(1)
demand. Hence j1 and j′1 are nearest assignable demands of each other. For the
demand j2, j1 is not a candidate as it is not sufficiently far, i.e., cj1j2 ≤ 3

2rj1 ,
and hence the nearest assignable demand is the next closest demand, i.e., j′2.
For j′2, the closest demand is j1 and it is sufficiently far and therefore j1 is the
nearest assignable demand for j′2. j′′2 is again too close to j′1 and therefore its
nearest assignable demand is the next closest demand j1.

As we will see later, we can modify the solution by suffering a constant factor
loss in our approximation, so that any demand j uses facilities which are either
close to itself or are close to its nearest assignable demand n(j).

Observation 2. For a demand j, such that n(j) = Γ , there is only one demand
of type type(j), i.e., j. Also, for all j′ ∈ D′, n(j′) �= j.

This is straightforward to see for a type(2) demand. For a type(1) demand, this
must be the only type(1) demand. The critical radius is set so large that all
demands lie in the critical ball, and therefore this demand is not a candidate to
be the nearest assignable demand for any type(2) demand.

Lemma 1. If there exists a demand j ∈ D′2, such that n(j) = Γ , then there is
at most one type(1) demand, say j1. Moreover for this demand, n(j1) = Γ .

Observation 3. For any demand j, such that n(j) �= Γ , type(n(j)) ≤ type(j)
and cjn(j) > 3

2rn(j).

Lemma 2. For any demand j, such that n(j) �= Γ , rj + rn(j) < cjn(j). This
also implies that n(j) �= Γ , Bj ∩ Bn(j) = φ.

We now show that at least a half fraction of any demand is assigned to facilities
that lie within its critical ball.

Lemma 3. For any demand j ∈ D′, Ball(j, 2 · C∗j) ⊆ Bj.

We now define scenarios. For this, we construct graphs on the set of demands,
which we call intersection graphs.

The Priority k-Median Problem 77

Definition 3. Intersection graphs: The level 1 intersection graph is the graph
G1 = (V, E1), where V = D′ and (j1, j2) ∈ E1 iff Bj1 ∩ Bj2 �= φ and j1, j2 ∈
D′1 ∪ D′2. We will later see that any connected component in this graph has at
most one type(1) demand.

The level 2 intersection graph is the graph G2 = (V, φ), where V = D′. There-
fore, there are no edges in a level 2 intersection graph. All connected components
in this graph are isolated demands.

Let CCG(j) denote the set of demands that are in the same connected compo-
nent of the graph G as j.

Definition 4. Scenarios: We define a level 1 scenario for every connected com-
ponent in G1. Let J be the set of demands in the connected component. Then
the corresponding level 1 scenario is defined by the set of facilities ∪j∈J (Bj ∩F).

Similarly, we define a level 2 scenario for every connected component in G2.
Let j be a demand in G2.

– If j ∈ D′2, then the level 2 scenario is defined by the set of facilities Bj ∩ F
– If j ∈ D′1, then the level 2 scenario is defined by the set of facilities {i ∈

Bj ∩ F|i /∈ Bj′ for any j′ ∈ CCG1(j) \ {j}}.
Thus every level 1 scenario is the union of some level 2 scenarios. We denote

the level k scenario to which a demand j belongs by Sk(j). Also, if k = type(j),
then we simply denote the scenario as S(j), i.e. S(j) = Stype(j)(j).

Figure 1 (b) illustrates facilities in level 1 and level 2 scenarios. In this example,
S1(j1) = {i1, i

′
1, i
′′
1 , i2, i

′
2}, S2(j2) = {i1, i2}, S2(j′2) = {i′1, i′2} and S2(j1) = {i′′1}.

Also, S1(j′′2) = S2(j′′2) = {i′′2}
We now show that for any demand j of type k (= 1, 2), the distance from the

demand to any facility in Sk(j) cannot be more than 4 · rj .

Lemma 4. Let j be any demand. Let k = type(j). Consider the level k intersec-
tion graph, Gk. Let C be the connected component in Gk spanning the demands
constituting the scenario S(j). Then

1. There is only one type(k) demand in C, i.e., j.
2. For any facility i ∈ S(j), cij ≤ 4 · rj.

3.3 Changing the Assignments

We now modify the assignments so that every demand either uses facilities in its
own scenario or the scenario of its nearest assignable demand and the cost paid
by a demand to any facility in the scenario of its nearest assignable demand is
the same. Therefore, it does not matter which facility it uses in that scenario.
We will denote the (new) distance of demand j to facilities in the scenario of its
nearest assignable demand by c̄j .

Lemma 5. By suffering a loss of at most a constant factor in approximation,
we can modify the assignments such that for any demand j, (i) it either uses the
facilities in S(j) or facilities in S(n(j)) ; and (ii) for every facility i ∈ S(n(j)),
we can set cij = 11

3 cjn(j)(= c̄j) so that it does not matter which facility it uses
in that scenario.

78 A. Kumar and Y. Sabharwal

i
i

j

i ’
1

2

j

1

1

1

j

i
1

i 2

(a) (b)

Fig. 2. Different settings for type(2) demands

Therefore, we can now modify the assignments (going across to facilities that
belong to the scenario of nearest assignable demands) so that a demand uses the
same facilities from the nearest assignable demand that are used by the nearest
assignable demand itself.

We now modify the assignments so as to reduce the number of open facilities
in level 2 scenarios. We first describe a simple structure that we desire the solu-
tion to exhibit. If a solution exhibits this structure, we say that it satisfies the
Structure Property.

Definition 5. A solution (x, y) to the LP defined above is said to satisfy the
Structure Property if

1. For every demand j ∈ D′1,
(a) There is no type(2) facility in S2(j).
(b) There is at most one facility of type(1) in S2(j).
(c) If there is a type(1) facility in S2(j), then this facility is closer to j than

any other type(1) facility in S1(j).
2. For every demand j ∈ D′2,

(a) There is at most one facility of type(2) in S2(j).
(b) If there is no type(1) demand in CCG1(j), then there is at most one

facility of type(1) in S2(j).
(c) If j1 ∈ D′1 ∩ CCG1(j) and rj ≤ cjj1/4, then there is at most one facility

of type(1) in S2(j).
(d) If j1 ∈ D′1∩CCG1(j) and rj > cjj1/4, then there are at most two facilities

of type(1) in S2(j). Moreover, If there are indeed two facilities, say i and
i′, then for one of these facilities, say i,

∗ xij1 = yi = 1,
∗ 0 < xij < yi ; and
∗ i is the closest type(1) facility to j1.

Lemma 6. We can modify the solution so that it satisfies the Structure Prop-
erty, increasing the cost by at most a constant factor.

Therefore a type(2) demand, say j, may have one or two type(1) facilities in its
scenario. These settings are illustrated in Figure 2.

The Priority k-Median Problem 79

3.4 Modified LP

We now present an LP for this modified problem instance. Let F ′(j) denote the
set of facilities used by demand j, i.e., {i ∈ F|xij > 0}. Let F ′ denote the set of
facilities used by at least one demand. Let F ′1 and F ′2 denote the set of facilities
in F ′ of type(1) and type(2) respectively.

We consider the modified LP described as follows. We replace the variables
yi’s with ȳi’s and xij ’s with x̄ij ’s when solving the modified LP.

min
∑

j∈D′,i∈F ′

dj · cij · x̄ij (6)

∑

i∈F ′
r

ȳi ≤ kr for r = 1, . . . , m (7)

∑

i∈F ′(j)

x̄ij = 1 for all demands j (8)

∑

i∈F ′(j)∩S(j)

x̄ij ≥ 1
2

for all demands j (9)

x̄ij = 1 if xij = 1 (10)
ȳi = 1 if yi = 1 (11)

x̄ij ≤ ȳi for all demands j and facilities i ∈ F ′ (12)
x̄ij , ȳi ≥ 0 for all demands j and facilities i ∈ F ′ (13)

Constraint 9 ensures that at least a half-fraction of any demand is assigned to
facilities in its own scenario (and are usable by demands from other scenarios
for which this demand is a nearest assignable demand). Constraints 10 and 11
ensure that facilities that were fully open remain fully open and demands that
were fully assigned to a single facility remain so. These are required in order to
ensure that the solution to this modified LP continues to satisfy the Structure
Property (see Lemma 7 below).

Note that the modified solution obtained by changing the assignments de-
scribed above is a feasible solution to this new LP. Therefore the optimal solution
to this LP can only have cost at most as much as the above solution.

Lemma 7. The assignments in the optimal solution of the modified LP, (x̄, ȳ)
continue to satisfy the Structure Property.

3.5 Half-Integrality of a Vertex Solution

We now show that the solution to the modified LP is half integral.

Definition 6. Facility relocation cost : For a level 1 scenario, S1(j),
let D(S1(j)) = D′ ∩ CCG1(j). For a level 2 scenario, S2(j), let D(S2(j)) =
D′2 ∩ CCG2(j). Note that for a type(1) demand j1, D(S2(j1)) = φ and for a
type(2) demand j2, D(S2(j2)) = {j2}.

80 A. Kumar and Y. Sabharwal

j2’

i2’

0.7

i1

0.30.7

j2

0.7

i2

j1

i1’

0.3

.

.

Fig. 3. Example of facility adjustments

Let C denote a chain of facilities < i1, i2, .., is >. We define C + δ [C − δ resp.]
to be the operation where the extents to which the facilities are open are modified
as follows:

– ȳit = ȳit + δ, t is odd [even resp.]
– ȳit = ȳit − δ, t is even [odd resp.]

Let Δ(D(S), C + δ) [Δ(D(S), C − δ) resp.] denote the change in the cost paid by
the demands D(S) when the operation C + δ [C + δ resp.] is performed.

Our choice of the chain and the choice of δ (small enough quantity) will be such
that all constraints of the modified LP will be satisfied even after
the change except possibly constraint (7). Moreover, we will operate on mul-
tiple such (suitably selected) chains together so that even this constraint is not
violated.

Definition 7. Let Yr(S(j)) denote the sum of all the type(r) facilities in the
scenario S(j) associated with demand j, i.e., Yr(S(j)) =

∑
i∈F ′

r∩S(j) ȳi.
Let Y(S(j)) denote the sum of all the facilities in the scenario S(j) associated

with demand j, i.e., Y(S(j)) =
∑

i∈F ′∩S(j) ȳi = Y1(S(j)) + Y2(S(j)).

The idea is to find a chain of facilities, C, such that the cost of performing
the operation C + δ is equal but opposite the cost of performing the operation
C−δ, i.e., Δ(D′, C + δ) = −Δ(D′, C − δ). Moreover, none of these facilities should
be half-integral and also the total sum of all the type(1) facilities and type(2)
facilities should not be disturbed.

We show that if the solution is not half-integral, it is always possible to find
such a chain. We can then essentially adjust the chain along the direction that
does not increase the cost of the solution. The ability to do this implies that the
solution to the LP is either not an optimal solution or is a non-vertex solution.
This is a contradiction, implying that such a chain cannot exist and therefore
the solution must be half integral.

The Priority k-Median Problem 81

We illustrate the idea by means of an example (see Figure 3). The technical
details and proofs are deferred to the full version of the paper [12].

In this example type(j1) = 1, type(j2) = type(j′2) = 2, type(i1) = type(i′1) = 1
and type(i2) = type(i′2) = 2. Moreover, j1 and j2 use the same facility i1. Also,
xi1j1 = xi1j2 = yi1 = 0.7, xi2j2 = yi2 = 0.3, xi′

1j′
2

= yi′
1

= 0.3 and xi′
2j′

2
= yi′

2
=

0.7. Note that Y(S(j′2)) = 1 is already integral. Therefore, decreasing only one of
the facilities will cause j′2 to travel to facilities of its nearest assignable demand,
which may incur a large cost. Moreover, Y(S2(j2)) = 1 is also integral. Therefore,
decreasing only one of the facilities will cause j2 to travel to facilities of its nearest
assignable demand, which may incur a large cost. Therefore, we must include i1
and i2 together as well as i′1 and i′2 together in any chain that we form. Consider
the chain C = {i1, i2, i

′
2, i
′
1}. Then, Δ(D′, C + δ) = −Δ(D′, C − δ) = δ · (dj1 ·

(ci1j1 − c̄j1)+ dj2 · (ci1j2 − ci2j2)+ dj′
2
· (ci′

2j′
2
− ci′

1j′
2
)). Therefore C is the required

chain along which we can perform adjustments. Note that when adjusting i1 it
is important to ensure that increasing/decreasing it a small amount has equal
and opposite impact on both j1 as well as j2 simultaneously.

We discover the chain in parts. Any level 2 scenario for which the sum of
facilities of some type is not half-integral can form a part of such a chain. For
a level 1 scenario, we concatenate chains of some level 2 scenarios to form a
longer chain. Similarly, we concatenate such chains from level 1 scenarios to
form a chain that satisfies the required properties. Note that though individual
chains may violate constraint (7) of the LP, the final chain that we form by
concatenating these chains will not violate this constraint.

Theorem 2. The solution to the LP specified in Section 3.4 is half-integral.

3.6 Rounding to an Integral Solution

Let F̄j denote the facilities used by demand j. Let C̄∗j =
∑

i∈F̄j
cij x̄ij .

Note that since the solution is 1
2 -integral, cij ≤ 2C̄∗j for all i ∈ F̄j. Therefore,

it does not matter which of the facilities in F̄j a demand j is assigned to in
the integral solution as long as we can fully open that facility, as the cost only
increases by at most a constant factor.

Lemma 8. By loosing at most a constant factor, the 1
2 -integral solution to the

LP obtained in the previous section can be modified to an integral solution.

Putting together our discussions, we get the following algorithm. We solve the LP
relaxation of the natural integer programming formulation specified in
Section 2. We then consolidate demands in this fractional solution as specified
in Section 3.1 and then modify the assignments in this fractional solution as
specified in Section 3.3 to obtain a fractional solution that satisfies the Struc-
ture property. We then formulate a modified LP for this more structured instance
as specified in Section 3.4. The solution to this modified LP is half-integral as
shown in Theorem 2. We finally round it off to an integral solution as specified
in Lemma 8. This integral solution can now be used to obtain an integral solu-
tion to the original LP by loosing at most a constant factor of approximation

82 A. Kumar and Y. Sabharwal

when separating out the demands that were consolidated together, leading to
the following result.

Theorem 3. The priority k-median problem with two priorities can be solved
within a constant factor of approximation in polynomial time.

The approximation ratio obtained using our algorithm is fairly large (in the
region of a few hundreds). We have not attempted to minimize it. With more
careful analysis, we believe that it can be lowered significantly.

4 Open Problems

It would be interesting to know if there is a constant factor approximation al-
gorithm or a large integrality gap for the given LP for the prioritized k-median
problem when there are exactly 3 priorities.

References

1. Arora, S., Raghavan, P., Rao, S.: Polynomial time approximation schemes for the
Euclidean k-median problem. In: Proceedings of the 30th annual ACM Symposium
on Theory of Computing (1998)

2. Arya, V., Garg, N., Khandekar, R., Pandit, V., Meyerson, A., Munagala, K.: Local
search heuristics for k-median and facility location problems. In: Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing (2001)

3. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science (1999)

4. Charikar, M., Guha, S., Tardos, E., Shmoys, D.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (1999)

5. Charikar, M., Naor, J.S., Scheiber, B.: Resource optimization in QoS multicast
routing of real-time multimedia. IEEE Transactions on Networking 12(2), 340–348
(2004)

6. Chudak, F.: Improved approximation algorithms for uncapacitated facility loca-
tion problem. In: Proceedings of the 6th Conference on Integer Programming and
Combinatorial Optimization (1998)

7. Chuzhoy, J., Gupta, A., Naor, J., Sinha, A.: On the approximability of some net-
work design problems. In: Proceedings of the sixteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 943–951 (2005)

8. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Pub-
lishing (1996)

9. Jain, K., Vazirani, V.: Primal-dual approximation algorithms for the metric fa-
cility location and k-median problems. In: Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science (1999)

10. Kolliopoulos, S., Rao, S.: A nearly linear time approximation scheme for the Eu-
clidean k-medians problem. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
Springer, Heidelberg (1999)

The Priority k-Median Problem 83

11. Korupolu, M., Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for
facility location problems. In: Proceedings of the 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (1998)

12. Kumar, A., Sabharwal, Y.: The Priority k-median Problem. Full version available,
www.cse.iitd.ernet.in/∼yogish

13. Kumar, A., Sabharwal, Y., Sen, S.: Linear time approximation algorithms for clus-
tering problems in any dimensions. In: Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming (2005)

14. Lin, J.H., Vitter, J.S.: ε-approximations with minimum packing constraint viola-
tion. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(1992)

15. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Meth-
ods. North-Holland, Amsterdam (1998)

16. Mirchandani, P., Francis, R.: Discrete Location Theory. Wiley, New York (1990)
17. Shmoys, D.B., Swamy, C., Levi, R.: Facility location with service installation costs.

In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Philadelphia, PA, USA, pp. 1088–1097 (2004)

18. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location
problems. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (1997)

www.cse.iitd.ernet.in/ ~ yogish

“Rent-or-Buy” Scheduling and Cost Coloring

Problems

Takuro Fukunaga1, Magnús M. Halldórsson2, and Hiroshi Nagamochi1

1 Dept. of Applied Math. and Physics, Graduate School of Informatics,
Kyoto University, Japan

2 School of Computer Science, Reykjavik University, Iceland

Abstract. We study several cost coloring problems, where we are given
a graph and a cost function on the independent sets and are to find
a coloring that minimizes the costs of the color classes. The “Rent-or-
Buy” scheduling/coloring problem (RBC) is one that, e.g., captures job
scheduling situations involving resource constraints where one can either
pay a full fixed price for a color class (representing e.g., a server), or a
small per-item charge for each vertex in the class (corresponding to jobs
that are either not served, or are farmed out to an outside agency). We
give exact and approximation algorithms for RBC and three other cost
coloring problems (including the previously studied Probabilistic color-
ing problem), both on interval and on perfect graphs. The techniques rely
heavily on the computation of maximum weight induced k-colorable sub-
graphs (k-MCS). We give a novel bicriteria approximation for k-MCS in
perfect graphs, and extend the known exact algorithm for interval graphs
to some problem extensions.

1 Introduction

Consider the following scheduling scenario. You are given a collection of jobs,
some of which require exclusive access to a specialized resource, e.g., a brain
scanner. The jobs have all been fixed, with known start and end times, and you
must satisfy all requests. You know that the minimum number of scanners needed
is exactly the largest number χ of jobs that will be in concurrent operation, so
you could simply go out and buy χ scanners. However, here you also have the
option to rent them at a fixed price per job. The task is then to decide for which
jobs to buy a scanner and for which ones to rent a scanner.

We can formulate this more generally as a graph coloring problem, where
jobs are nodes in the graph and edges corresponds to the use of a non-sharable
resource. More generally, we may assume that each job i requires a quantity wi

of a given non-sharable resource (in the example above, it may correspond to the
rent being a function of the length of the job). We obtain the following problem:

Rent-or-Buy Coloring Problem (RBC):
Given: Graph G = (V, E), with vertex weights wv ∈ R+.
Find: A proper vertex coloring C consisting of color classes I1, I2, . . . , It.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 84–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

“Rent-or-Buy” Scheduling and Cost Coloring Problems 85

Minimize: f(C) =
∑t

i=1 f(Ii), where f(I) = min(w(I), 1) and w(I) =∑
v∈I wv.

When the weight of a color class exceeds 1, it is said to be full, and we are best off
buying a new resource at this scaled unit price. In scheduling applications where
jobs represent time intervals, the corresponding graph is an interval graph. In
ordinary graph coloring, we “pay” one unit for each color that we start to use.
The idea behind Rent-or-Buy coloring is that one may often be able to take care
of the small independent sets cheaper, e.g., by paying some elementwise “fine”.

We consider more generally cost coloring problems, where we have some non-
negative cost function f : 2V �→ R+ on the independent sets of the graph. We
will assume anywhere in the paper that the cost of a coloring C is the sum of
the costs of the color classes, i.e. f(C) =

∑
I∈C f(I).

Intuitively, this corresponds to a scheduling scenario where the cost of a re-
source is some function of the usage of the resource, when we view each color
as a (copy of a) resource. This can apply to many of the innumerable applica-
tions of graph colorings. For instance, the cost of a classroom in a timetabling
application is not really a unit; different classrooms may have different costs,
depending on size, and depending on the amount of use. The cost of a frequency
in frequency allocation may depend on time- or space-limitations of the usage.
The cost of fulfilling server requests, e.g., for bandwidth allocation in networks,
may depend on the willingness to deploy servers, outsource some of the traffic
(at a volume-dependent cost), or to pay the indirect cost of refusing service.

The cost coloring framework is very general, which leads us to consider which
types of cost functions are natural and of practical interest. First, we usually
assume the function to be monotone, in that if you request more of a resource,
it won’t cost less.

Second, most reasonable cost coloring functions have the property that they
depend only on the combined weight of the set, not the distribution of the weights
nor on which particular vertices participate in the set. We call such functions
separable when the costs can be represented by a single-variable function, i.e.,
abusing notation, when f(I) = f(w(I)), for any independent set I. We focus on
separable functions here, with one exception.

Third, as a consumer, one normally expects there to be an incentive to buy
in large quantities; i.e., that the residual unit cost goes down with request size.
This corresponds to the cost function being concave; a separable function f is
concave if f(x) + f(y) ≤ 2f((x + y)/2), for any x, y ∈ R. In practice, costs tend
to be nearly-concave, with volume incentives following a series of thresholds.

Our objective in this paper is to address some of the most basic cost color-
ing problems. The very most basic one would be the ordinary Graph Coloring
problem, which has the trivially monotone, concave and separable cost func-
tion f(I) = 1. We shall be treating, in addition to RBC, the following natural
problems. Recall that the cost of a coloring is the sum of the costs of the color
classes.

Two-tiered rents with opening costs (TTR): This is a generalization of
RBC with two residual costs, c1 and c2. Once the weight of the class reaches a

86 T. Fukunaga, M.M. Halldórsson, and H. Nagamochi

certain threshold, the per-item cost changes to the second cost. Additionally,
we allow a fixed charge c (less than 1) for the non-zero use of any color, which
can represent a cost for “opening” or initiating the use of that resource. The
cost function f for each color class I is f(I) = c+c1 ·min(w(I), T)+max(c2 ·
(w(I) − T), 0). We are not aware of previous work on TTC or RBC.

Threshold colorings: Suppose we have two modes of servicing (independent)
sets, depending on their size. E.g., we can either schedule a group by renting
a taxi, at a fixed price, or by renting a bus (that will definitely fit all), at a
higher fixed price. We seek as before a minimum cost schedule of everyone,
taking conflicts into account. The cost function f(w(I)) is now constant c1,
when w(I) is at most the threshold T , and a larger constant c2, when w(I)
is above the threshold.

A special case is when the above-threshold cost is too high to be ever
cost-effective, e.g. n-fold the below-threshold cost. We have then the bounded-
coloring problem, which models the case of scheduling conflicting unit-size
jobs with bounded number of machines. It is NP-hard on bipartite and in-
terval graphs [2].

Probabilistic coloring: In the Probabilistic coloring problem [17], we are
given a graph G with independent vertex probabilities pv ∈ [0, 1] and are to
find a coloring where the cost f(I) of a color class is the cumulative prob-
ability f(I) = P (I) = 1 −

∏
v∈I(1 − pv). This was proposed for modeling

robustness in optimization, where one is presented a priori with a super-
graph of what will be used in the future. The cost of the coloring is then
the expectation of the number of colors actually used. This cost function
is both concave and monotone, but not separable. Probabilistic coloring is
NP-hard in bipartite graphs [17], split graphs [4], and interval graphs [11,3],
but solvable in co-bipartite graphs [17], and co-interval graphs [12]. It ad-
mits a

√
ρGCn-approximation, where ρGC is the approximability of Graph

Coloring, a 3/2-factor in bipartite graphs [17], and 2-approximation in split
graphs [4].

Our Results and Techniques. We can observe that applying ordinary coloring
will not give good approximations for these cost coloring problems, nor does
the usual approach of repeatedly coloring maximum independent sets. Instead,
we make a strong link to the problem of finding a maximum (weight) induced
k-colorable subgraph (k-MCS). RBC is in fact solved exactly by finding a maxi-
mum k-MCS, for the right choice of k. For approximation, we present in
Section 2 a novel bicriteria approximation for k-MCS on perfect graphs, which
allows us to approximate RBC in Section 3 within a factor of 2.

In order to solve TTR, we modify the flow reduction of Arkin and Silverberg
[1] for weighted k-MCS in interval graphs to give an O(n2 log n)-time algorithm
to solve the following extension: given an interval graph and integers k and h,
find a maximum weight k-colorable subgraph whose removal leaves a h-colorable
subgraph. This allows us to solve TTR also optimally in interval graphs.

We then show in Section 4 that Probabilistic colorings are always within
a factor of e/(e − 1) of related RBC colorings. This gives then a complete

“Rent-or-Buy” Scheduling and Cost Coloring Problems 87

characterization of Probabilistic coloring, within constant factors, and improved
approximations for several classes of graphs.

As a third simple and natural cost function, we consider in Section 5 the
approximability of Threshold colorings. These are perhaps the simplest non-
concave but separable cost functions. We derive a 4.78-approximation for perfect
graphs.

Related work. Entropy coloring is a problem from information theory involving
the separable cost measure f(I) = w(I) ln(1/w(I)). It models transmission rate
with side information, and has applications in digital compression [3]. It is NP-
hard on interval graphs, hard to approximate within a Ω(n)-factor (its value is
always at most log n) [3], but polynomially solvable on co-interval graphs [12]
and co-bipartite graphs [3].

Gijswijt, Jost and Queyranne [12] recently introduced a general framework for
cost coloring problems that they call value-polymatroidal. It contains monotone
problems where moving vertices from a smaller class to a bigger class does not
increase the total cost, i.e., when f(I ∪ {v}) + f(J) ≤ f(I) + f(J ∪ {v}), for
any independent sets I, J with f(I) ≥ f(J). This class includes all the problems
treated in this paper, except Threshold coloring. It also includes the max coloring
problem [6,18], which has the non-separable, monotone cost function f(I) =
maxv∈I wv. They give a polynomial time algorithm for all such problems on
co-interval graphs (complements of interval graphs).

In a companion paper [11], we study separable cost coloring problems, and
give approximation algorithms on perfect graphs. In particular, we show that
concave separable functions admit a robust approximation, in that there is an
algorithm that given a graph, produces a coloring that simultaneously approx-
imates any concave function on perfect graphs. We also show how to modify
these colorings to approximate (in a function-specifical way, necessarily) any
monotone separable cost function. In comparison, our results here are more spe-
cialized, but the approximation factors are better (e.g., 2 for RBC on perfect
graphs vs. 6 for any concave function, and 4.78 for Threshold coloring vs. 12 for
any monotone separable function).

Some other types of coloring problems with weights have been considered. In
the optimal chromatic cost problem (OCCP) [16], the cost of a color class is linear
in its size, but each class has a different multiplier specific. The sum coloring
problem [14] is a special case where the multipliers are the natural numbers.
These fall outside of our framework, which assumes that all colors are equal.

Notation. Let G = (V, E) be a graph given with vertex weights wv. Let n denote
the number of vertices. For a subset S ⊂ V , G[S] denotes the subgraph of G
induced by S. For a set S, let w(S) =

∑
v∈S wv, and let w(G) = w(V).

A coloring is a partition of V into independent sets. A k-subgraph is an induced
k-colorable subgraph. We may overload the notation and refer to a vertex subset
S ⊂ V as a k-subgraph if G[S] is k-colorable. k-MCS refers to the problem of
finding a k-subgraph of maximum total weight, and Graph Coloring refers to the
classical vertex coloring problem, using the minimum number χ(G) of colors.

88 T. Fukunaga, M.M. Halldórsson, and H. Nagamochi

2 Approximation of Maximum k-Subgraphs

Our approach is heavily based on finding large induced subgraphs with small
chromatic number (k-subgraphs). The weighted k-MCS problem is known to be
polynomially solvable on interval graphs (due to total unimodularity [20] and
by a direct O(n2 log n)-time min cost flow reduction [1]), permutation graphs
[19], and on chordal graphs for fixed k [20]. The unweighted version is solvable
on comparability and cocomparability graphs [10] but is NP-hard on chordal
graphs (for k unbounded).

The solution of the max k-subgraph problem is an important component of
approximation algorithms for numerous coloring problems, e.g., sum coloring
[14], sum multi-coloring, batch sum coloring [5], and co-coloring [9]. One would
hope to replace the subroutine by an approximation algorithm, for graph classes
where k-MCS is NP-hard. However, there are different types of approximations
possible. Let W be the weight of an optimal k-subgraph.

Primal: Find a k-subgraph of weight at least cW , for c largest possible.
Dual: Find a t · k-subgraph of weight at least W , for t smallest possible.
Complementary: Find a subgraph T such that V \ T induces a k-subgraph,

and the weight of at most s times that of a minimum such subgraph, for s
smallest possible.

The primal approximation does not suffice for RBC or the abovementioned prob-
lems. For instance, suppose we are given a 3-colorable graph G with all wv = 0.2.
Then a (10/9)-approximate 3-colorable subgraph still leaves 0.1n vertices uncol-
ored, for RBC cost of 0.02n = Ω(n), while the optimal solution has cost 3.
Instead, we need an approximation of the dual objective, which has unfortu-
nately proved difficult.

We develop here a bicriteria approximation in terms of the dual and the
complementary measures. We say that a vertex set S is a (t, s)-approximation
to k-MCS if it is a tk-subgraph and w(V \ S) ≤ s · w(V \ S∗), where S∗ is a
maximum k-subgraph. Namely, it gives a subgraph that requires t times as many
colors, and leaves behind up to s times the weight left by the optimal solution.

Theorem 1. There is an algorithm that, given a perfect graph G and integers
k and t, yields a (t, t

t−1)-approximation to k-MCS.

Proof. Let an s-clique refer to an unweighted clique, i.e. a set of s mutually
adjacent vertices. Consider the following local-ratio strategy:

Let G′ = G and w′v = wv for each vertex v.
i ← 1
while there exists a t · k + 1-clique Ci in G′ do

Let wi = minu∈Ci w′u.
Let w′v ← w′v − wi, for each v ∈ Ci.
Remove all vertices v with w′v = 0 from G′.
i ← i + 1

od
Output G[S], where S = V (G′) is the remaining vertex set.

“Rent-or-Buy” Scheduling and Cost Coloring Problems 89

Note that since there exists no tk+1-clique in G[S] and G is perfect, the resulting
subgraph G[S] is tk-colorable, establishing the first part of the claim.

The weights w′ at the end of the algorithm are at most the original weights
w. Thus,

w(G \ S) = w(G) − w(S) ≤ w(G) − w′(S). (1)

The weight reduced from the cliques in G′ in each round are evenly spread over
the t · k + 1 vertices; thus, at most 1/t-fraction can belong to any k-subgraph,
including a maximum weight k-subgraph S∗. Hence, at least a (t − 1)/t-fraction
of the weight comes from outside S∗. Thus,

w(G) − w′(S) =
∑

i

wi(Ci) ≤ t

t − 1
[w(G) − w(S∗)] =

t

t − 1
w(G \ S∗).

Combined with (1), we have the second part of the claim.

This is a tight bound for this approach, as can be seen by adding to any
k-colorable graph a collection of t · k + 1-cliques, along with a single t · k-clique.

A generalization of this argument can be useful in some cases. It suffices
to change only the loop condition of the algorithm of the previous proof to
read “while the approximation algorithm finds a 2k-clique”. In particular, we
obtain a (4, 2)-approximation for circular arc graphs, and (2k, 2)-approximation
of intersection graphs of k-hypergraphs (ones with maximum edge size k).

Theorem 2. Let G be a hereditary class of graphs. Suppose there is an algorithm
that given number s and a graph in G either returns a clique of size s or a coloring
of size ρs. Then, there is a (2ρ, 2)-approximation of k-MCS in G.

Repeatedly finding large independent sets is a natural approach. While it does
not give a constant factor approximation, it can be used to get some non-trivial
bounds for hard classes of graphs. The following lemma is a slight strengthening
of an argument made numerous times before (see, e.g., [13]).

Lemma 1. Suppose the maximum independent set (MIS) problem can be ap-
proximated within a factor of ρ on a hereditary class of graphs. Then, there is
a (ρ log n, 1)-approximation of k-MCS. Further, if ρ = nΩ(1), then there is a
(O(ρ), 1)-approximation.

3 Rent-or-Buy Coloring (and TTR)

It can be quickly verified that ordinary colorings can be far off the mark under
the Rent-or-Buy measure. An optimal coloring can leave all colors balanced, for
a unit cost per color, while by using more colors, we may only need a single large
color class, with the rest in small, cheap classes.

Another approach was used for max coloring, where the vertex set was first
partitioned into weight classes [18]. However, this would reduce to ordinary col-
oring in the case of uniform weights, which again would not be sufficient. Thus,
a different approach is needed for RBC.

90 T. Fukunaga, M.M. Halldórsson, and H. Nagamochi

3.1 Exact Algorithms for Interval Graphs

The following result shows that RBC is closely related to a well-known optimiza-
tion problem. A proof of a more general result is given in Lemma 2.

Theorem 3. Let G be a graph, and suppose we can compute a maximum weighted
k-colorable subgraph in G, for any k. Then, we can solve RBC in polynomial
time.

Corollary 1. RBC is polynomially solvable on interval, comparability, and bi-
partite graphs, as well as partial k-trees.

We now give an alternative flow formulation of k-MCS problem on interval
graphs, which allows for additional constraints on the remaining subgraph. We
call a vertex set S ⊂ V a (k, h)-subgraph if it is a k-subgraph and V \ S is
an h-subgraph. The (k, h)-MCS problem is that of finding a maximum weight
(k, h)-subgraph. Observe that a maximum weight k-subgraph is also a maximum
weight (k, h)-subgraph, for some h.

Theorem 4. Let G be an interval graph and k and h be given. Then, a maximum
weight (k, h)-subgraph can be computed in time O((k + h)n logn).

Proof. We modify the construction of [1]. Recall that an interval graph can
be represented as a linearly ordered set of maximal cliques C1, . . . , Ct of sizes
q1, q2, . . . , qt. Let R be k + h. We assume that qi ≤ R for every i = 1, . . . , t since
otherwise G has no (k, h)-subgraph.

Construct a directed network H = (V, E) with vertices v0, . . . , vt. There is an
edge (vi−1, vi) of capacity R−qi and weight 0, for each i = 1, . . . , t. We call these
dummy edges, and let E1 denote the set of these in H . Also, for each vertex v
of weight wv that is contained in cliques Cj , Cj+1, . . . Cj+�, add an edge to H
from vj−1 to vj+� of capacity 1 and weight wv. We call these edges subgraph
edges, and let E2 denote the set of these in H . This completes the construction.
Observe that subgraph edges used by a 1-flow from v0 to vt in H correspond to
vertices in an independent set in G. Hence a k-flow in H gives a k-subgraph of
the same weight in G.

Now we show that a k-flow exists in H , and after removing the k-flow, H
still has an h-flow. This implies that we can obtain a maximum weight (k, h)-
subgraph of G by computing a maximum weight k-flow in H .

Let δ+(vi) (resp., δ−(vi)) denote the set of edges in H leaving (resp., entering)
vi. For a set F of edges, let c(F) denote the sum of capacities of those in F .
In H , subgraph edges in δ+(vi) correspond to vertices v in G such that v �∈ Ci

and v ∈ Ci+1. Similarly, subgraph edges in δ−(vi) correspond to vertices v in
G such that v ∈ Ci and v �∈ Ci+1. Hence c(δ+(vi) ∩ E2) − c(δ−(vi) ∩ E2) =
qi+1 − qi holds for each i = 1, . . . , t − 1. Since c(δ+(vi) ∩ E1) = R − qi+1 and
c(δ−(vi) ∩ E1) = R − qi, we can observe that c(δ−(vi)) = c(δ+(vi)) for each
i = 1, . . . , t − 1. By the construction of H , c(δ+(v0)) = c(δ−(vt)) = R also hold.
Therefore, we can observe that H has a k-flow from v0 to vt. After removing a

“Rent-or-Buy” Scheduling and Cost Coloring Problems 91

k-flow from H , c(δ−(vi)) = c(δ+(vi)) still holds for each i = 1, . . . , t − 1, and
c(δ+(v0)) = c(δ−(vt)) = R − k = h. Hence we can still push an h-flow.

The number of vertices and edges in H is linear in n, the number vertices in
G. Each flow increase can be obtained in the time required for a shortest-path
computation in the residual graph [15].

Observe that in the time spent to compute the flow, we actually obtain a series
of values (kj , hj) for each kj + hj = R. Also, observe that a maximum weight
(k, h)-subgraph problem is solvable in bipartite graphs, since in this case trivially
k = 1.

Theorem 5. TTR is polynomially solvable on interval and bipartite graphs.

Proof. Observe that the two-tiered rent cost of an independent set without open-
ing costs can be viewed as the smaller value of two linear functions:

f(I) = c2w(I) + min((c1 − c2) · w(I), y0),

where y0 = (c1 − c2)T . Thus, the cost of the coloring C can be represented as
c2w(G)+

∑
I∈C min((c1−c2)·w(I), y0). Thus, it is equivalent to RBC after scaling

the weights by a factor of y0/(c1 − c2), and adding c2 · w(G) to the objective
function. The addition of constant terms to the objective function does not affect
the optimization of the problem.

With opening costs, we want also to minimize the number of colors used on
the non-full color classes. We therefore seek a k-subgraph, with the right value
of k, whose remaining graph can be colored with few colors. Hence, it suffices to
try all maximum (k, h)-subgraphs, for all k and h.

3.2 Approximation of Perfect Graphs

Lemma 2. Suppose we have a (t, t)-approximation algorithm for k-MCS. Then,
we can approximate RBC within a factor of t.

Proof. Let k′ be the number of full colors in an optimal RBC coloring and S∗

be the set of vertices in those colors. The cost of the optimal solution is then
k′ + w(V \ S∗).

Let S be a (t, t)-approximate solution to k′-MCS. If we color S using at most
t · k′ colors, and the remaining vertices arbitrarily, we get a coloring of cost at
most t · k′+ w(V \ S) ≤ t(k′+ w(V \ S∗)). By trying all values of k, we obtain a
solution as good as when using k = k′. Thus, we have a performance ratio of t.

By Theorem 1, we get a 2-approximation of RBC, but it applies more generally
to TTR.

Corollary 2. TTR, with non-negative costs, is 2-approximable on perfect
graphs, even with opening costs.

92 T. Fukunaga, M.M. Halldórsson, and H. Nagamochi

Proof. Recall from Theorem 5 that TTR without opening costs is equivalent to
RBC after scaling. With opening costs, we want also to minimize the number of
colors used on the non-full color classes. The subgraph found in Theorem 1 is
trivially χ(G)-colorable, and if we color the remaining graph optimally, we use
at most 2χ(G) colors in total. Thus, our opening costs are at most twice that of
any coloring.

3.3 Hardness and Approximation of General and Split Graphs

For general graphs, we can obtain a bound using Lemma 1, that matches the
best approximation factor known for the ordinary graph coloring problem [13].

Corollary 3. Let ρIS be the best possible approximation ratio of MIS on general
graphs. Then, RBC and TTC can be approximated within a factor of O(ρIS). In
particular, they can be approximated within O(n(log log n)2/ log3 n) [7].

RBC is clearly equivalent to Graph Coloring when all wv = 1. Therefore, as a
more general problem, it inherits all the hardness characteristics. However, one
may still ask how hard the problem is for other vertex weights. For instance, the
problem is trivial when w(G) ≤ 1, since any coloring has then the same cost.
From the results of Feige and Kilian [8], that were derandomized by Zuckerman
[21], we have the following.

Observation 6. RBC is NP-hard to approximate within a min(n, w(G)/nε)-
factor, and is trivially w(G)-approximable.

Essentially the same reduction from X3C (exact 3-set cover) as used on related
problems [4,12] shows the hardness of RBC on split graphs, a subclass of chordal
graphs.

Theorem 7. RBC is strongly NP-hard on split graphs, even in the case of uni-
form weights.

Proof. Let (X, T) be an input to X3C, where X = {s1, s2, . . . , s3m} is a finite
set and T = {e1, . . . , en} is a set of triples from X . Form a graph with vertex set
X ∪ T , where X is independent, T is a clique, and (si, ej) is an edge iff si �∈ ej .
Assign each vertex the weight w = 1 − 1/(2n). Then, any coloring of cost less
than n uses only n colors, with each ei in a different class. The cost of such a
coloring is n − (n − t)/(2n), where t is the number of colors that contain more
than one vertex. Thus, the minimum cost of an RBC coloring is n−(n−m)/(2n)
iff (X, T) admits a cover with m sets iff (X, T) admits an exact cover.

This is complemented with a polynomial time approximation scheme (PTAS).

Theorem 8. RBC admits a PTAS on split graphs.

Proof. Let (U, V, E) be a split graph with independent set U and clique V . Let
ε > 0 be given and let k = 1/ε. Initially, assign each node in V to a different

“Rent-or-Buy” Scheduling and Cost Coloring Problems 93

color. Try for each subset S ⊂ V of size at most k the following: For each node
u ∈ N(S) = {u ∈ U : ∃v ∈ S, (u, v) �∈ E}, assign u to the color of some
non-neighbor in S. Color the rest of U in a separate color.

Consider an optimal RBC coloring C, and let S∗ be the set of nodes from
U in full color classes. If |S∗| ≤ k, then our solution is optimal when we try
S = S∗. Otherwise, OPT ≥ |S∗| > k. When trying S = ∅, our algorithm
finds a solution with cost at most 1 for U and at most OPT for V , or at most
1 + OPT ≤ OPT (1 + 1/k) = (1 + ε)OPT .

4 Probabilistic Coloring Problem

One of the useful features of Rent-or-Buy is that its colorings closely approximate
Probabilistic colorings. This is helpful, since RBC is much more amenable to
computation.

Theorem 9. Let C be a coloring of a graph G with vertex weights pv ∈ (0, 1]. Let
fRB(C) (fPr(C)) be the cost of C under the Rent-or-Buy measure (the probabilis-
tic coloring measure), respectively. Then, fRB(C) ≥ fPr(C) ≥ (1−1/e)fRB(C).

Proof. Let I be a color class under C. We can bound the cost P (I) under the
probabilistic measure from above by the weight W (I) of I, since by inclusion-
exclusion, 1 − P (I) =

∏
v∈I(1 − pv) ≥ 1 −

∑
v pv = 1 − W (I). This implies the

first inequality.
We can also bound P (I) from below by

P (I) = 1 −
∏

v∈I

(1 − pv) ≥ 1 −
∏

v∈I

e−pv = 1 − e−w(I).

If w(I) ≥ 1, then fRB(I) = 1 and we have that P (I) ≥ 1 − e−1 = 1 − 1/e.
Otherwise, fRB(I) = w(I). Observe that the function (1 − e−x)/x is decreasing
in the interval (0, 1]. Hence, the ratio is maximized for w(I) = 1. Since the ratio
holds for each color class individually, it also holds for the sum of the color
classes.

These bounds are best possible. An independent set of weight 1 can consist of
a single node of weight 1, or n nodes of weight 1/n each. In both cases, the
RBC cost is the same, while the probabilistic measure results in cost of 1, in the
former case, and 1 − 1/e + O(1/n), in the latter case.

Theorem 9 immediately implies that RBC and Probabilistic coloring have the
same approximation behavior, within this factor of 1.582.

Corollary 4. If RBC is ρ-approximable on a graph G, then Probabilistic color-
ing is approximable within a factor of ρ · e

e−1 ≤ 1.582ρ on G.

Combining this with our bounds on RBC of Corollaries 1 and 3, and Theorem 8,
we obtain the following improved bounds on Probabilistic coloring.

Theorem 10. Probabilistic coloring is approximable within 1.582 on interval
and comparability graphs, 3.164 on perfect graphs, 1.583 on split graphs, and
O(n(log log n)2/ log3 n) on general graphs.

94 T. Fukunaga, M.M. Halldórsson, and H. Nagamochi

5 Threshold Coloring

We note that neither finding an ordinary coloring nor repeatedly finding a maxi-
mum independent set leads in general to constant factor approximation. Instead,
one can treat the two costs separately.

Theorem 11. Threshold coloring can be approximated within a factor of ρ ≤
4.78 on perfect graphs.

Proof. Let us denote by R = c2/c1 the ratio between the two costs. For simplic-
ity, let us scale the costs so that c1 = 1. Observe that if R ≤ 4.78, then using an
optimal graph coloring yields an R-approximation for Threshold coloring. Thus,
we assume that R ≥ 4.78.

We first find an optimal graph coloring of the subgraph induced by vertices
of weight at least the threshold T . Since the optimal solution needs also to color
these vertices in expensive classes, our cost is at most OPT , the cost of the
optimal solution.

On the remaining graph G′, we try for each value of k the following approach
and retain the cheapest solution. Let t = 3.569. Find a (t, t/(t−1))-approximate
k-MCS by Theorem 1, and color the t ·k-subgraph with expensive classes. Then,
find an optimal graph coloring of the remaining subgraph, and divide each color
into the fewest possible cheap classes.

Suppose the optimal solution used k0 expensive classes, leaving a subgraph
of size L to be covered with cheap classes. That subgraph required at least
χ(G) − k0 colors, and also needed at least �L/T � cheap classes. Hence, OPT ≥
k0 · R + max(χ(G) − k0, �L/T �). For this value of k = k0, our solution used t · k0

expensive classes, and colored a subgraph of total weight at most t/(t − 1) · L
with the inexpensive classes. At most χ(G) of those classes had weight less than
T/2 and at most 2�t/(t − 1) · L/T � had weight more than T/2. Hence, the cost
of the algorithm’s solution is at most

OPT + t · k0 · R + 2t/(t − 1) · L/T + χ(G).

Rewrite this as the sum of three terms: OPT , 2t/(t − 1) · (k0 · R + L/T), and
[t−2t/(t−1)]R ·k0 +χ(G). The first two terms are at most 1+2t/(t−1) ≤ 3.78
times OPT . We can also verify by computation that the last term is at most
(R − 1) · k0 + χ(G) ≤ OPT .

References

1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Disc.
Applied Math. 18, 1–8 (1987)

2. Bodlaender, H., Jansen, K.: Restrictions of graph partition problems. Part I. The-
oretical Computer Science 148, 93–109 (1995)

3. Cardinal, J., Fiorini, S., Joret, G.: Minimum entropy coloring. In: Deng, X., Du, D.-
Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 819–828. Springer, Heidelberg (2005)

“Rent-or-Buy” Scheduling and Cost Coloring Problems 95

4. Della Croce, F., Escoffier, B., Murat, C., Paschos, V.Th.: Probabilistic coloring of
bipartite and split graphs. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A.,
Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480,
pp. 202–211. Springer, Heidelberg (2005)

5. Epstein, L., Halldórsson, M.M., Levin, A., Shachnai, H.: Weighted Sum Coloring
in Batch Scheduling of Conflicting Jobs. In: Dı́az, J., Jansen, K., Rolim, J.D.P.,
Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 116–
127. Springer, Heidelberg (2006)

6. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted Coloring: Further complexity
and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)

7. Feige, U.: Approximating Maximum Clique by Removing Subgraphs. SIAM J.
Discrete Math. 18(2), 219–225 (2004)

8. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. JCSS 57, 187–199
(1998)

9. Fomin, F.V., Kratsch, D., Novelli, J.-C.: Approximating minimum cocolorings. Inf.
Process. Lett. 84(5), 285–290 (2002)

10. Frank, A.: On chain and antichain families of a partially ordered set. Journal of
Combinatorial Theory Series B 29, 176–184 (1980)

11. Fukunaga, T., Halldórsson, M.M., Nagamochi, H.: Robust cost colorings. In: SODA
(2008)

12. Gijswijt, D., Jost, V., Queyranne, M.: Clique partitioning of interval graphs with
submodular costs on the cliques. EGRES TR 2006-14, www.cs.elte.hu/egres

13. Halldórsson, M.M.: A still better performance guarantee for approximate graph
coloring. Inform. Process. Lett. 45, 19–23 (1993)

14. Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum coloring interval and k-claw
free graphs with application to scheduling dependent jobs. Algorithmica 37, 187–
209 (2003)

15. Iri, M.: Network Flow, Transportation, and Scheduling: Theory and Algorithms.
Academic Press, London (1969)

16. Jansen, K.: Approximation Results for the Optimum Cost Chromatic Partition
Problem. J. Algorithms 34, 54–89 (2000)

17. Murat, C., Paschos, V.Th.: On the probabilistic minimum coloring and minimum
k-coloring. Disc. Appl. Math. 154, 564–586 (2006)

18. Pemmaraju, S.V., Raman, R.: Approximation Algorithms for the Max-coloring
Problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidelberg (2005)

19. Saha, A., Pal, M.: Maximum weight k-independent set problem on permutation
graphs. Int. J. Comput. Math. 80(12), 1477–1487 (2003)

20. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters 24(2), 133–137 (1987)

21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: STOC, pp. 681–690 (2006)

www.cs.elte.hu/egres

Order Scheduling Models: Hardness and

Algorithms

Naveen Garg1,�, Amit Kumar1,��, and Vinayaka Pandit2

1 Indian Institute of Technology, Delhi
2 IBM India Research Lab, Delhi

Abstract. We consider scheduling problems in which a job consists of
components of different types to be processed on m machines. Each ma-
chine is capable of processing components of a single type. Different
components of a job are independent and can be processed in parallel
on different machines. A job is considered as completed only when all
its components have been completed. We study both completion time
and flowtime aspects of such problems. We show both lowerbounds and
upperbounds for the completion time problem. We first show that even
the unweighted completion time with single release date is MAX-SNP
hard. We give an approximation algorithm based on linear programming
which has an approximation ratio of 3 for weighted completion time with
multiple release dates. We give online algorithms for the weighted com-
pletion time which are constant factor competitive. For the flowtime, we
give only lowerbounds in both the offline and online settings. We show
that it is NP-hard to approximate flowtime within Ω(log m) in the offline
setting. We show that no online algorithm for the flowtime can have a
competitive ratio better than Ω(

√
m).

1 Introduction

Consider the following scenario of scheduling customer orders. Each customer
order consists of several components of different types. These orders are to be
processed at m facilities each of which is specialized to execute components of
a particular type. The order of a customer can be delivered only when all its
components have been completed. In this paper, we consider scheduling problems
in this setting which can be thought of as open shop scheduling with overlaps
allowed between operations of a job. One may refer to the article by Chen and
Hall [6] for an elaborate survey of practical applications of such a scheduling
model. In their survey article, Leung et al. [11] have called this model as Order
Scheduling Model.

We observe that order scheduling models occur in computational settings as
well. Consider the following example. Large distributed computational grids are

� Work done as part of the “Approximation Algorithms” partner group of
MPI-Informatik, Germany.

�� Supported by IBM Faculty Award and a Max-Planck-Society travel award.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Order Scheduling Models: Hardness and Algorithms 97

becoming very popular in solving complex scientific problems [4,12]. The Master-
Worker scheme is one popular approach to solving these massive computation
problems [8]. Typically, the problems are solved using a master to coordinate
the exploration of the branch and bound tree with the help of a large num-
ber of worker resources [4]. There are also problems in which the computation
is divided into many independent, data parallel components and executed on
a grid [1,12]. Once the different independent components of the problem are
mapped to specific resources, the expected running time can be estimated using
the data size and the history of response times. To solve a number of these prob-
lems efficiently on the grid, the scheduler must take into account parameters
like average completion time and flow time. Some of the most challenging com-
putational problems solved on grids include genome data analysis, earthquake
simulators, drug design etc.

In the three field notation for scheduling problems we use ‘G’ in the first
field to denote this model. In this paper we consider the problem of scheduling
jobs in this model under different objectives. The problem of minimizing the
completion time, G||

∑
Cj was studied by Wagneur and Sriskandarajah [19] and

they proved it to be strongly NP-Complete. However, Leung et al. [11] showed
an error in their proof. Recently, Roemer [17] showed the problem to be strongly
NP-complete even when m = 2. In this paper, we show that the problem is
MAX-SNP hard even when there is a single release date (for all the jobs) and
the processing time of all components is one. As for approximation algorithms,
Wang and Cheng [20] gave a constant factor approximation algorithm. They
considered a time-indexed linear programming formulation and a heuristic based
on its solution to get an approximation ratio of 5.83. We show how to exploit a
different formulation by Queyranne [14] to get an approximation ratio of 2 for
the case of single release date and 3 for the case of multiple release dates. To
the best of our knowledge, no non-trivial online algorithm is known for these
problems. We present the first constant factor competitive online algorithms for
these problems.

In Section 3 we present hardness results for both offline completion time
and flowtime. We first show that the problem of minimizing the sum of com-
pletion times, G||

∑
Cj is MAX-SNP hard even when all components have

unit processing times. This makes the problem harder than the well-studied
problem of minimizing weighted completion time on parallel machines with re-
lease dates P |rj |

∑
j wjCj for which a PTAS[2] is known. We then show that

it is NP-hard to approximate the offline flowtime within Ω(log m). The re-
sults of Queyranne [14] and Schulz [18] yield approximation algorithms for
1|prec|

∑
jwjCj and 1|rj , prec|

∑
j wjCj problems with approximation ratios

2 and 3 respectively. In Section 4, we show how to exploit their ideas to get ap-
proximation ratios of 2 and 3 for the G|

∑
j wjCj and G|rj |

∑
j wjCj respectively.

Our online algorithm, in Section 5, uses the technique of time intervals with ge-
ometrically increasing lengths [9][5] and is 4-competitive. If we require that the
computation performed by the online algorithm at each step be polynomially
bounded then we obtain a 16-competitive algorithm. Hall et al.[9] gave a general

98 N. Garg, A. Kumar, and V. Pandit

technique for obtaining a 4ρ-competitive algorithm for weighted completion time
with release dates provided there exists a dual ρ-approximation algorithm for
the maximum scheduled weight problem. For our problem, we cannot show a dual
ρ-approximation algorithm for any constant ρ. However, we can show a bicri-
terion (2,2) approximation algorithm for the following problem: Given a set
of jobs and a deadline D, find a schedule which minimizes the weight of jobs
which are not completed by time D. We show that any (α, β) bicriterion ap-
proximation algorithm for this problem suffices to give a 4αβ-competitive online
algorithm for the problem of minimizing weighted completion time; this yields
the 16-competitive algorithm mentioned above.

In section 6 we consider the problem of minimizing the total flow time in the
online setting. Recall that the flowtime of a job is the difference between its
completion time and release date, i.e., the amount of time it spends in the sys-
tem. Here we show a family of instances where no online algorithm can achieve
a competitive ratio better than O(

√
m) against an adaptive adversary. In this

instance all job-components require unit processing time and hence the lower
bound on the competitive ratio applies even if preemptions are permitted. In con-
trast for parallel machines, with preemptions — the problem P |pmtn, rj |

∑
j Fj

— a non-migratory version of the shortest remaining processing time rule is
O(min(log n, P))-competitive [3] where P is the ratio of the processing time of
the longest job to the processing time of the shortest job.

The model considered in this paper is somewhat similar to open-shop schedul-
ing with the only difference that in open-shop the operations associated with a
job cannot be performed simultaneously. Some of the results known for open-
shop mirror the results we obtain in this paper. In particular, it is known that
O||

∑
j Cj is MAX-SNP hard[10]. Queyranne and Sviridenko[15] gave a 3+2

√
2-

approximation for O|rj |
∑

j wjCj which was later improved to 5.06 by[7]. How-
ever, we are not aware of any results on O|rj |

∑
j wjCj in the online setting.

2 Preliminaries

We consider the problem of scheduling jobs with components on multiple ma-
chines. We have m machines and n jobs. Each job j specifies a vector P j of
processing times – we shall call this the processing time vector of job j. For each
machine i, P j

i denotes the processing requirement of job j on machine i. Define
the length of a job j as the number of machines i such that P j

i > 0. Each job j
also has a release date rj . In a valid schedule, each job j must be processed with-
out interruption for P j

i amount of time on each machine i. Further, processing
of a job on any of the machines can not begin before its release date.

Given a valid schedule A, define Cj
i (A) as the time at which job j finishes pro-

cessing on machine i. Define the completion time Cj(A) of job j as maxi Cj
i (A).

Define the flow time F j(A) of job j as Cj(A) − rj . Often, the schedule A will
be clear from the context, and so we shall just use the notations Cj

i , Cj and F j .
We also associate a weight wj with job j. For a set S of jobs, let weight(S)

denote the total weight of jobs in S. Let W be the total weight of all the jobs.

Order Scheduling Models: Hardness and Algorithms 99

Define the weighted completion time of j in a schedule A as
∑

j wj · Cj(A).
The weighted flow time is defined similarly. We would like to compute schedules
which minimize the weighted completion time or weighted flow time.

It is easy to observe that any algorithm that maintains a busy-schedule on
each of the machines has minimum makespan even in the case of multiple release
dates. As mentioned in the introduction, we focus on the weighted completion
time and the total flowtime objective functions.

3 Hardness of Approximating Completion Time and
Flow Time

3.1 Completion Time

We first show that the off-line problem of minimizing sum of completion times
is MAX-SNP hard even when all release times are 0. We use the fact that vertex
cover is MAX-SNP hard even on constant degree graphs [13]. Let C be a constant
such that vertex cover is MAX-SNP hard on graphs where degrees of vertices
are bounded by C.

An instance I of the vertex cover problem is given by a graph G = (V, E)
where the degree of any vertex in G is at most C. We map this to an instance I′
of the problem of minimizing sum of completion times. I ′ has |E| machines, one
for each edge in G and n = |V | jobs, one for each vertex in G. Corresponding to
a vertex v ∈ V , we construct a job j(v) such that P

j(v)
i is 1 if edge i is incident

on v, 0 otherwise. All jobs have weight 1 and release time 0.

Lemma 1. There exists a constant K ′ such that it is NP-hard to get a K ′-
approximation algorithm for the minimum weighted completion time problem.

Proof. Observe that all jobs in I′ can be scheduled in two time steps as each
edge job has two components corresponding to the vertices it is incident on.
It is easy to see that the set of jobs completed in the first step correspond
to an independent set. Hence, the set of jobs completed in the second step
correspond to a vertex cover. Suppose V C(G) is the size of the vertex cover
of G that gets completed in second step. Then, the cost of such a solution is
(n − V C(G)) + 2V C(G) = n + V C(G). So the minimum completion time of I ′
has cost CT OPT (I ′) = n + V COPT (G) where V COPT (G) denotes the size of
minimum vertex cover of G. Therefore,

2n ≥ CT OPT (I ′) ≥ (n + n/C) (1)

As the degree of G is bounded by a constant, say C, we have

V COPT (G) ≥ n/C (2)

As mentioned before, there exists a constant K > 1 such that it is NP-hard to
approximate the vertex cover of graphs whose degree is bounded by C within a
factor of K. This, combined with equations 1 and 2 imply that there exists a
constant K ′ = 1+K/C

1+1/C such that it is NP-hard to approximate the completion
time of the transformed instances within a factor of K ′.

100 N. Garg, A. Kumar, and V. Pandit

3.2 Flow Time

Note that Lemma 1 implies that the problem of offline flowtime minimization is
MAX-SNP hard even in the unweighted case. We now show that it is NP-hard to
approximate the unweighted flowtime within Ω(log m). We begin by explaining
the intuitive ideas of our construction.

The flowtime of a given schedule can be written as the sum of the number of
unfinished jobs at every time step. Given an instance of set cover, we construct an
instance of the order scheduling problem such that, for any reasonable schedule,
the set of unfinished jobs at a “deadline” can be interpreted as the set cover of
the set system. Furthermore, we show that an α-approximation algorithm for
the flowtime can be turned into an α-approximation algorithm for the set cover
problem. We now proceed to the details of our construction.

We reduce the set cover problem to the problem of minimizing flowtime in
our setting. We start with an instance of the set cover problem. Let S be the
set system on the universe U . We now construct an instance of the scheduling
problem. Corresponding to each element e ∈ U , we have a machine and for each
set S ∈ S, we have a job. We use S to denote both the set and its corresponding
job, and e denotes an element and the corresponding machine. The job S has a
component of length 1 on a machine e if e ∈ S. Let T, ε be such that T > 2|S|
and 1/ε > |S|2. Let se denote the number of sets which contain e. On a machine
e, we create (T − se + 1)/ε dummy jobs with just one component of length ε
on e. All the jobs (including the dummy jobs) are released at time t = 0. After
time T , we release “filler” jobs at regular intervals of ε. Each filler job has a
component of length ε on each of the machines. The filler jobs are released for a
very long time, say L. This completes the construction of the instance of order
scheduling problem. Note that, as long as we keep L polynomially bounded in
|S|, our reduction can be done in polynomial time.

The volume of the jobs released on each machine at time t = 0 is equal to
T + 1. So, the volume of the unfinished components on any machine at T is
exactly 1. For any machine e, if all the components corresponding to the set jobs
are finished by T , then, there will be 1/ε jobs left unfinished on e. Given that
1/ε > |S|2, finishing all components belonging to set jobs would result in very
high penalty from T to L. So, every schedule is forced to be left with exactly
one component corresponding to a set job on each machine. Thus, for every
reasonable schedule, the set of unfinished tasks at time T corresponds to a set
cover. Note that the filler jobs are such that, beyond T , if a schedule tries to
reduce the unfinished set jobs, it ends up accumulating too many filler jobs. So,
every reasonable schedule is forced to schedule filler jobs between T and L.

Let SCOPT denote the size of the optimum set cover and SCPACK denote the
size of the set cover left unfinished at time T by any algorithm. Let IOPT and
IPACK be the flowtime incurred by the schedules which leave the optimum set
cover and a set cover of size SCPACK respectively. As argued above, beyond T ,
every reasonable schedule is forced to schedule only filler jobs upto L. Let FOPT

and FPACK denote the flowtime of the set cover jobs left unfinished at time L

Order Scheduling Models: Hardness and Algorithms 101

for the two schedules. Note that, FOPT ≈ L ·SCOPT and FPACK ≈ L ·SCPACK .
Let FTOPT and FTPACK be the total flowtimes of the two schedules. We have,

FTOPT = L + 2 · L · SCOPT + IOPT (3)
FTPACK = L + 2 · L · SCPACK + IPACK (4)

Note that, we can keep L such that, L � IOPT and L � IPACK . Therefore,
if FTOPT /FTOPT = α, then, SCPACK/SCOPT ≈ α. Therefore, we can turn
an o(log m) approximation algorithm for flowtime into an o(log m) approxima-
tion algorithm for set cover. As it is NP-hard to approximate set cover within
Ω(log m) [16],

Theorem 1. It is NP-hard to approximate the flowtime of order scheduling
problem within Ω(log m) where m is the number of machines.

4 Offline Weighted Completion Time

In this section, we show how to exploit a completion time linear programming
formulation by Queyranne [14] and a scheduling heuristic based on its solution
(Schulz [18]) to obtain approximation ratios of 2 and 3 for the cases of single
and multiple release dates respectively. The formulation by Queyranne is called
the completion time linear program in the literature. We adapt the completion
time formulation for our problem as follows:

min
∑n

j=n wjCj

s.t.
Cm

j ≥ rj + pm
j ∀j ∈ J, m ∈ M

Cj ≥ Cm
j ∀j ∈ J, m ∈ M

∑
j∈S pm

j Cm
j ≥ 1

2

[(∑
j∈S pm

j

)2

+
∑

j∈S(pm
j)2

]

∀S ⊆ J, m ∈ M

In this formulation, M denotes the set of machines and J denotes the set of
jobs. Further, the variable Cm

j indicates the completion time of job j on machine
m, pm

j is the processing time of j on machine m and Cj indicates the completion
time of the job j. Queyranne showed a polynomial time separation oracle for
the above set of constraints. So, the above program can be solved in polynomial
time. The approximation ratios proved here are somewhat implicit and can be
deduced from the work of Schulz [18]. We present an outline of the proof for the
sake of completeness.

Consider the optimal solution to the above linear program. Let C̄ denote the
vector of completion times Cjs and C̄i denote the vector of completion times Ci

js
on machine i. Let A be an algorithm which schedules the jobs independently on
each of the machines. Let D̄i denote the vector of completion times for the jobs
it achieves on machine i. Furthermore, let Di

j denote the completion time of job
j on machine i. We claim that:

Lemma 2. If there exists a constant K such that Di
j ≤ K ·Ci

j, then, the schedule
given by D̄is is an K-approximation for the G|rj |

∑
wjCj .

102 N. Garg, A. Kumar, and V. Pandit

Proof. Note that Cj = max{Ci
j |∀i ∈ {1, . . . , m}}. The individual schedule D̄i

on machine i satisfies Di
j ≤ KCi

j . Therefore, Dj = max{Di
j|∀i ∈ {1, . . . , m}} ≤

K · Cj . This implies that the schedule obtained by D̄is is an K-approximation.

Schulz shows that, on a single machine, scheduling the jobs in the non-decreasing
order of the completion times suggested by optimal solution to the above linear
program satisfies the condition required by Lemma 2 with K = 3 in case of
multiple release dates and K = 2 in case of single release date. Thus, schedul-
ing components on a machine i in the non-decreasing order of Ci

js we get the
approximation ratios stated above. At this point it is appropriate to highlight
that, in the standard scheduling model, the above program and the scheduling
order can be made to work even when there are precedence constraints between
jobs. However, in our case, we are not able to show that the above approach can
be made to work with precedence constraints.

The application of Schulz’s heuristic on individual machines to get an ap-
proximation for the problem of m machines gives rise to the following question:
Can algorithms for completion time minimization on single machine be used
in place of Schulz? If indeed it is possible, then one could use the PTAS for
1|rj |

∑
wjCj [2] to get a PTAS for the problem and it would contradict the

MAX-SNP hardness proved in Section 3. However, note that Lemma 2 is ap-
plicable to only those schedules which bound completion times of components
on their corresponding machines in terms of the completion times Ci

js of the
optimal solution to the above linear program. So, the heuristic by Schulz which
works specifically with the output of the linear program cannot be replaced by
other algorithms for completion time on single machine.

5 Online Algorithm for Minimizing Weighted Completion
Time

We now consider the problem of minimizing weighted completion time in the
online setting. Our approach is similar to that of Hall et al. [9] and leads to a
4-competitive algorithm for this problem.

For k ≥ 0, let tk = 2k−1. We divide the time line into intervals of geometrically
increasing size. For k ≥ 0, define the interval Ik as [tk, tk+1).

Our algorithm produces a schedule which we denote A. It maintains the invari-
ant that if it processes a job in an interval Ik, then the job will finish processing
in this interval. More formally, let RA(tk) be the set of jobs released before time
tk but not scheduled before tk in the schedule A. Then A schedules only such
jobs in Ik (and finishes them in Ik).

Our algorithm can be described as follows:

For k = 0, 1, 2, . . . do
By considering all subsets of RA(tk), determine the maximum weight
collection of jobs that can be completed in Ik.

Schedule this set of jobs in the interval Ik so that they
finish processing in this interval only.

Order Scheduling Models: Hardness and Algorithms 103

Let O be the off-line schedule which minimizes the weighted completion time.
Let weight(DA(tk)) be the total weight of jobs finished by A by time tk. Define
weight(DO(tk)) similarly.

Lemma 3. weight(DO(tk)) is at most weight(DA(tk+1)).

Proof. This is easy to see by restricting attention to the jobs in the set RA(tk).
The jobs in RA(tk) which are scheduled in O before time tk can also be scheduled
by the online algorithm in the interval Ik (whose length is larger than tk).
�

Let W be the total weight of all jobs. Then the weighted completion time of
schedule O is at least

∑

k≥1

(tk − tk−1)(W − weight(DO(tk))).

On the other hand the completion time of the schedule A is at most
∑

k≥0

(tk+1 − tk)(W − weight(DA(tk))).

Rewriting this expression we get
∑

k≥2

(tk+1 − tk)(W − weight(DA(tk))) + W + 2(W − weight(DA(t1)))

≤ 3W +
∑

k≥1(tk+2 − tk+1)(W − weight(DA(tk+1)))

≤ 3W +
∑

k≥1 4(tk − tk−1)(W − weight(DO(tk)))

which implies that the weighted completion time of schedule A is at most 4
times the completion time of the best possible schedule plus an additive 3W.
This implies a competitive ratio of 4 for our online algorithm.

Note however, that to determine the jobs to be scheduled in an interval the
online algorithm considers all possible subsets of unfinished jobs and picks the
best, leading to an exponential running time. We now describe an online algo-
rithm which takes polynomial running time. Starting from k = 0, we formulate a
linear program to decide which jobs to schedule in the intervals Ik for all values
of k (again our schedule will maintain the invariant that a job scheduled in Ik

will finish in this interval only). Each job j ∈ RA(tk) has a variable xj associated
with it which is 1 if job j is scheduled in interval Ik and 0 otherwise. The linear
program is as follows

min
∑

j

wj(1 − xj) (LP2)

s.t.
∑

j

P j
i xj ≤ 2k − 1 for all i (5)

xj ∈ [0, 1] for all j

104 N. Garg, A. Kumar, and V. Pandit

The objective function tries to minimize the total weight of jobs that cannot
be finished in Ik. We will require that the total processing on each machine in
this interval be no more that 2k − 1; note that this is equal to the total length
of intervals I0 to Ik−1. This is captured by the constraints (5). Since all jobs in
RA(tk) which are scheduled before time tk by O form a feasible solution to this
linear program, the value of the optimum solution of this linear program is at
most weight(RO(tk)).

Let x̄ be an optimum solution to this linear program. Let J be the set of jobs
for which x̄j ≥ 1/2; our algorithm schedules all the jobs in J in Ik+1. On any
machine i, the total processing time of jobs in J is at most 2(2k − 1) ≤ 2k+1

(which is at most the length of Ik+1). Further, the total weight of jobs which are
not scheduled is at most twice the value of the optimum solution of the linear
program.

The total weight of unfinished jobs at time tk+2 in A is at most twice the
weight of unfinished jobs at time tk in the schedule O. The above analysis now
extends to give a competitive ratio of 16 for this online algorithm.

6 Lower Bound for Minimizing Sum of Flow Times

In this section, we prove a lower bound of Ω(
√

m) on the competitive ratio of any
online algorithm for minimizing the sum of flowtimes. In fact this lower bound
holds even when the processing times P j

i are restricted to be either 0 or 1. Let
the number of machines m be of the form k2, where k is an integer. We first
discuss the idea at a high level.

For each subset of k machines, we define a job which requires 1 unit of pro-
cessing on these machines and 0 processing on other machines. Let J be the
set of these jobs; note that |J | =

(
k2

k

)
. All the jobs in J are released at time

t = 0. Note that all the jobs in J can be scheduled by time T0 =
(
k2−1
k−1

)
. Let

T1 = T0 − k. We show that at time T1 in any online schedule, there is a set S
of k machines such that the following condition is satisfied – there are Ω(k2)
jobs which have unscheduled components on at least one of the machines in S.
Assuming this is true, we construct an adversary as follows. Let us number the
machines in S from 1 to k. From time T1+1 onwards, we release k jobs j1, . . . , jk

of length one each. Job jl is defined as: P jl

l = 1, and P jl

i = 0 if i �= l. We then
argue that with prior knowledge of these jobs, it is possible to schedule jobs
such that, at time T1, the number of jobs with unscheduled components on S is
O(k).

Lemma 4. For the set of jobs J as defined above, in any schedule, at time
T1, there is a subset of k machines such that there are Ω(k2) jobs which have
unfinished components on these machines.

Proof. Let A be an online schedule. Let qj denote the number of unscheduled
components of job j ∈ J at time T1. Note that, 0 ≤ qj ≤ k. Also note that,∑

j∈J qj = k3. Consider a random subset N of k machines. Let U be the set of

Order Scheduling Models: Hardness and Algorithms 105

jobs which have unfinished components on at least one machine in N at time
T1. Consider a job j and let Prj

N denote the probability that j ∈ U . Note that

Prj
N = 1 −

(
k2−qj

k

)

(
k2

k

) ≥ 1 −
(

k2 − qj

k2

)k

≥ 1 −
(
1 − qj

k2

)k

≥ k · qj

2k2

where the last inequality follows from the fact that for xy ≤ 1, (1−x)y ≤ 1−xy/2
(note that qj · k/k2 ≤ 1).

The expected size of U is given by

∑

j∈J

Prj
N ≥

∑

j∈J

qjk

2k2
≥ k2

2

where the last inequality follows from the fact that
∑

j∈J qj = k3. So, there must
exists a subset of k machines with the desired property.
�

Theorem 2. There is no online algorithm for the flowtime problem with com-
petitive ratio better than Ω(

√
m).

Proof. Let A be the schedule produced by an online algorithm. The theorem
above implies that there is a set S of k machines such that there are Ω(k2) jobs
with unfinished components on at least one of these machines – let U be the set
of such jobs. Number the machines in S from 1 to k. At each time instant from
t = T1 + 1, the adversary releases k jobs j1, . . . , jl of length 1 each such that
P jl

l = 1 and P jl

i = 0 if i �= l. We continue this till time T0 + X . So, the schedule
A is forced to have Ω(k2) unfinished jobs till time T0 + X . So, the weighted
flowtime of A is at least

∑
j∈J−U F j(A) + Ω(k2) · (T0 + X).

Consider some k jobs in J which require processing on all machines 1, . . . , k−1
in S. O does not schedule any component of these jobs before T1. Further at
time T1, there are at most k jobs with unfinished components on machine k.
Thus, in the schedule O, there are at most 2 ·k jobs with unfinished components
on S by time T1 – let U ′ denote these jobs. Therefore, the weighted flow time of
O is at most

∑
j∈J−U ′ F j(O)+O(k) · (T0 +X). When X is very large compared

to T0, the ratio of the weighted flow time to A to that of O approaches k. This
proves the theorem.
�

7 Conclusion

There are many interesting open problems in the context of order scheduling
model. We highlight two of them. Firstly, we are not aware of algorithmic tech-
niques that can handle precedence constraints between different jobs. Any non-
trivial approximation of even minimum makespan would be very interesting. We
were not able to use any of the standard techniques used for lower bounding the
makespan in the presence precedence constraints. Secondly, it would be inter-
esting to either get matching upperbounds or improve the lower bounds for the
offline and online flowtime problem.

106 N. Garg, A. Kumar, and V. Pandit

References

1. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A tool for performing pa-
rameterised simulations using distributed applications. In: Proceedings of the 4th
IEEE Symposium on High Performance Distributed Computing, IEEE Computer
Society Press, Los Alamitos (1995)

2. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes
for minimizing average weighted completion time with release dates. In: FOCS,
pp. 32–44 (1999)

3. Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow time without
migration. In: ACM Symposium on Theory of Computing (STOC), pp. 198–205
(1999)

4. Brixius, N., Linderoth, J., Goux, J.: Solving large quadratic assignment problems
on computational grid. Mathematical Programming, Series B 91, 563–588 (2002)

5. Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved
scheduling algorithms for minsum criteria. In: Proc. of the 23rd Int. Colloquium
on Automata, Languages and Programming, pp. 646–657 (1996)

6. Chen, Z., Hall, N.: Supply chain scheduling: Assembly systems. Technical report,
The Ohio State University (2000)

7. Gandhi, R., Halldorsson, M., Kortsarz, G., Shachnai, H.: Improved results for data
migration and open shop scheduling. In: Proc. of the 31st Int. Colloquium on
Automata, Languages, and Programming, pp. 658–669 (2004)

8. Goux, J., Kulkarni, S., Linderoth, J., Yoder, M.: Master-worker: An enabling frame-
work for applications on the computational grids. In: Proceedings of the 9th IEEE
Symposium on High Performance Distributed Computing, pp. 43–50 (2000)

9. Hall, L., Schulz, A., Shmoys, D., Wein, J.: Scheduling to minimize average comple-
tion time: offline and online algorithms. Mathematics of Operations Research 22,
513–549 (1997)

10. Hoogeveen, H., Schuurman, P., Woeginger, G.: Non-approximability results for
scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A., Ŕıos-
Mercado, R.Z. (eds.) Integer Programming and Combinatorial Optimization.
LNCS, vol. 1412, pp. 353–362. Springer, Heidelberg (1998)

11. Leung, J., Li, H., Pindeo, M.: Multidisciplinery scheduling: Theory and Applica-
tions. chapter Order Scheduling Models: an overview, 37–56 (2005)

12. Linderoth, J., Wright, S.: Decomposition algorithms for stochastic programming on
a computational grid. Computational Optimization and Applications 24, 207–250
(2003)

13. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences 43, 425–440 (1991)

14. Queyranne, M.: Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming 58, 263–285 (1993)

15. Queyranne, M., Svirdenko, M.: New and improved algorithms for minsum shop
scheduling. In: Symposium on Discrete Algorithms, pp. 871–878 (2000)

16. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: ACM Symposium on
Theory of Computing (STOC), pp. 475–484 (1997)

17. Roemer, T.: A note on the complexity of the concurrent open shop problem. Journal
of scheduling 9, 389–396 (2006)

Order Scheduling Models: Hardness and Algorithms 107

18. Schulz, A.: Scheduling to minimize total weighted completion time: Performance
guarantees of lp-based heuristics and lower bounds. In: Cunningham, W.H.,
Queyranne, M., McCormick, S.T. (eds.) Integer Programming and Combinatorial
Optimization. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

19. Wagneur, E., Sriskandarajah, C.: Open shops with jobs overlap. European Journal
of Operations Research 71, 366–378 (1993)

20. Wang, G., Cheng, T.: Customer order scheduling to minimize total weighted com-
pletion time. Omega 35, 623–626 (2007)

On Simulatability Soundness and Mapping Soundness
of Symbolic Cryptography

Michael Backes1, Markus Dürmuth1, and Ralf Küsters2

1 Saarland University, Saarbrücken, Germany
{backes,duermuth}@cs.uni-sb.de

2 ETH Zürich, Switzerland
ralf.kuesters@inf.ethz.ch

Abstract. The abstraction of cryptographic operations by term algebras, called
Dolev-Yao models or symbolic cryptography, is essential in almost all tool-
supported methods for proving security protocols. Recently significant progress
was made – using two conceptually different approaches – in proving that Dolev-
Yao models can be sound with respect to actual cryptographic realizations and
security definitions. One such approach is grounded on the notion of simulatabil-
ity, which constitutes a salient technique of Modern Cryptography with a long-
standing history for a variety of different tasks. The other approach strives for
the so-called mapping soundness – a more recent technique that is tailored to the
soundness of specific security properties in Dolev-Yao models, and that can be
established using more compact proofs. Typically, both notions of soundness for
similar Dolev-Yao models are established separately in independent papers.

This paper relates the two approaches for the first time. Our main result is
that simulatability soundness entails mapping soundness provided that both ap-
proaches use the same cryptographic implementation. Hence, future research may
well concentrate on simulatability soundness whenever applicable, and resort to
mapping soundness in those cases where simulatability soundness constitutes too
strong a notion.

1 Introduction

Tool-supported verification of cryptographic protocols almost always relies on abstrac-
tions of cryptographic operations by term algebras with cancellation rules, called sym-
bolic cryptography or Dolev-Yao models after the first authors [16]. An example term is
Dske(Epke(Epke(N))), where E and D denote public-key encryption and decryption,
ske and pke are corresponding private and public encryption keys, and N is a nonce (ran-
dom string). The keys are written as indices for readability. Formally, E and D are binary
function symbols. A typical cancellation rule is Dske(Epke(t)) = t for all public/private
key pairs (pke, ske) and terms t, thus the above term is equivalent to Epke(N). The proof
tools handle these terms symbolically, i.e., they never evaluate them to bit strings. In other
words, the tools perform abstract algebraic manipulations on trees consisting of opera-
tors and atomic messages, using only the cancellation rules, the message-construction
rules of a particular protocol, and an abstract model of networks and adversaries.

It is not at all clear from the outset whether Dolev-Yao models are a sound abstraction
from real cryptography with its computational security definitions, where messages are

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 108–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 109

bit strings and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing
machine. In particular, the tools assume that only the modeled operations and cancella-
tion rules are possible manipulations on terms, and that terms that cannot be constructed
with these rules are completely secret. For instance, if an adversary (also called intruder)
only saw the example term above and only the mentioned cancellation rule was given,
then N would be considered secret. Bridging this long-standing gap between Dolev-Yao
models and real cryptographic definitions has recently received considerable attention,
and remarkable progress has been made using two conceptually different approaches.

One such approach, henceforth called simulatability soundness, is grounded on the
security notion of (black-box reactive) simulatability (BRSIM), which relates a real
system (also called implementation or real protocol) with an ideal system (also called
ideal functionality or ideal protocol). The real system is said to be as secure as the
ideal system if every attack on the real system can be turned into an “equivalent” attack
on the ideal system, where “equivalent” means indistinguishable by an environment
(also called honest users). This security notion essentially means that the real system
can be plugged into an arbitrary protocol instead of the ideal system without any no-
ticeable difference [20,21,10]. Basically the same notion is also called UC (universal
composability) for its universal composition properties [11].1 In terms of the seman-
tics community, BRSIM/UC could be called an implementation or refinement relation,
with a particular emphasis on retaining secrecy properties, in contrast to typical im-
plementation relations. Now, results on simulatability soundness show that a (possibly
augmented) Dolev-Yao model, specified as an ideal system, can be implemented in the
sense of BRSIM/UC by a real system using standard cryptographic definitions. The
first such result was presented in [8] and was extended to more cryptographic primi-
tives in [9,7]. The use of these results in protocol proofs was illustrated in [6,3,22,2].
Simulatability soundness with more standard cryptographic assumptions and a simpler
Dolev-Yao model, but a restricted class of protocols was proven in [12].

The other approach, henceforth called mapping soundness, is tailored to the sound-
ness of specific security properties in standard Dolev-Yao models. Mapping sound-
ness of a given protocol is established by showing the existence of a mapping from bit
strings to terms such that applying the mapping to an arbitrary trace of the real crypto-
graphic execution of the protocol yields a trace of an ideal, Dolev-Yao style execution
of the protocol. Compared to simulatability soundness, mapping soundness can often
be established by more compact proofs and sometimes more relaxed cryptographic as-
sumptions. Unlike simulatability soundness, however, mapping soundness is restricted
to specific protocol classes, and it does not entail universal composition properties. The
first result on mapping soundness considered symmetric encryption under passive at-
tacks [1]. Various later papers extended this approach to active attacks and to different
cryptographic primitives and security properties [19,18,15,14,12]. In this paper, we are
concerned with mapping soundness for active attacks.

1 While the definitions of BRSIM and UC have not been rigorously mapped, we believe that
for the results in this paper the differences do not matter, in particular if one thinks of the
equivalent blackbox version of UC [11]. Similarly, we believe that the results would hold in
the formalism put forward in [17].

110 M. Backes, M. Dürmuth, and R. Küsters

1.1 Our Results

Our paper relates these two approaches for the first time. Our main result is that simu-
latability soundness entails mapping soundness provided that both approaches use the
same cryptographic implementation. More precisely, we show that given an arbitrary
ideal system Mideal and an arbitrary real protocol Mreal, mapping soundness of Mreal

necessarily holds provided that the following two assumptions are met: First, the traces
of the ideal system constitute Dolev-Yao style traces, i.e., traces that can be constructed
according to the rules of the term algebra and of the protocol under consideration; sec-
ond, Mreal is as secure as Mideal in the sense of BRSIM/UC, i.e., simulatability sound-
ness holds for the ideal and real systems under consideration. Interestingly, this result
does not dependent on details of the simulator, which translates between cryptographic
bit strings and their Dolev-Yao abstractions in simulatability soundness.

We note that requiring the same cryptographic implementations for both simulata-
bility soundness and mapping soundness means that existing results on simulatability
soundness do not necessarily fully supersede existing results on mapping soundness: the
former results may, e.g., require stronger assumptions on the security of cryptographic
primitives, specific techniques from robust protocol design such as explicit type tags,
additional randomization, etc. in order to establish simulatability between the crypto-
graphic implementation and its Dolev-Yao abstraction. However, we believe that it is
now fair to say that future research may concentrate on simulatability soundness when-
ever applicable, and resort to mapping soundness in those cases where simulatability
soundness constitutes too strong a notion.

1.2 Paper Outline

Section 2 reviews the basic terminology of symbolic cryptography, its deduction rules,
and the syntax of protocols. Section 3 reviews the notion of simulatability and points
out necessary requirements for a Dolev-Yao model to be sound in the sense of BR-
SIM/UC. Section 4 defines executions of protocols within the reactive simulatabil-
ity framework [21,10], thus preparing a common ground for comparing both notions
of soundness. Section 5 finally proves that simulatability soundness implies mapping
soundness.

The long version of this paper [4] contains further expositions that are omitted here
for space reasons; in particular, it reviews the large body of literature substantiating
the relevance of simulatability in Modern Cryptography, and the newly arising area of
formulating syntactic calculi for dealing with probabilism and polynomial-time consid-
erations directly (without relying on Dolev-Yao models).

2 Symbolic Cryptography

In this section, we review basic terminology concerning Dolev-Yao models and the
corresponding deduction rules for deriving new messages from a given set of messages.
In addition, we describe the syntax of protocols along the lines of works on the mapping
approach [19,15,14].

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 111

2.1 Basic Terminology, Dolev-Yao Terms, and Deduction Rules

We define {0, 1}∗ to be the set of payloads. Payloads will typically be identifiers of
protocol parties, which is why we often refer to this set by ID. By ek(A), dk(A), sk(A),
and vk(A) we denote the encryption, decryption, signing, and verification key of party
A ∈ ID, respectively. Let Nonce be a set of nonces (random strings). Now, the set M of
(Dolev-Yao) messages is defined by the following grammar:

M ::= ID | 〈M, M〉 | Nonce | Eek(ID)(M) | Sigvk(ID)(M) | ek(ID) | dk(ID) | sk(ID) | vk(ID).

Given a set ϕ of messages, additional messages can be derived from ϕ according to
the following rules.

– Initial knowledge: ϕ � m for all m ∈ ϕ,
– Pairing and unpairing: If ϕ � m1 and ϕ � m2, then ϕ � 〈m1, m2〉; conversely, if

ϕ � 〈m1, m2〉, then ϕ � m1 and ϕ � m2.
– Encryption and decryption: If ϕ � ek(b) and ϕ � m, then ϕ � Eek(b)(m) for all

b ∈ ID; conversely, if ϕ � Eek(b)(m) and ϕ � dk(b), then ϕ � m for all b ∈ ID.
– Encryption-key retrieval: If ϕ � Eek(b)(m), then ϕ � ek(b) for all b ∈ ID.
– Signature: If ϕ � sk(b) and ϕ � m, then ϕ � Sigvk(b)(m) for all b ∈ ID.
– Plaintext retrieval: If ϕ � Sigvk(b)(m), then ϕ � m for all b ∈ ID.
– Verification-key retrieval: If ϕ � Sigvk(b)(m), then ϕ � vk(b) for all b ∈ ID.

2.2 Syntax of Protocols

A k-party protocol is defined by k roles, where a role specifies the behavior of a party in
a protocol run. Defining roles requires to first introduce variables. We assume disjoint
sets of typed variables X.n for nonces and X.d for payloads.

The ith role, i = 1, . . . k, is defined to be a directed, edge-labeled finite tree where
the edges originating in the same node are linearly ordered. Each edge is labeled with a
rule (l, r) for terms l and r, where terms are messages which may contain variables. The
left-hand side l of a rule serves as a pattern for received messages; these messages are
matched against the pattern and the pattern’s variables are instantiated accordingly. The
right-hand side r of a rule specifies the response message. We use certain distinguished
variables A1, . . . , Ak ∈ X.d and Nj ∈ X.n for j ≥ 0. When the ith role is instantiated
with parties a1, . . . , ak, then Aj is substituted by aj for every j = 1, . . . , k, and fresh
nonces are generated for the variables Nj occurring in the role. An instance of the ith
role is carried out by party ai.

Similarly to [14], we put syntactic restrictions on the kind of terms that can occur on
the left-hand side and right-hand side of rules to ensure that the corresponding role is
executable, and hence, can be given a meaningful computational interpretation. For the
ith role of a protocol, terms on the left-hand side of a rule are of the following form:

Tl
i ::= ID | X.n | X.d | 〈Tl

i, T
l
i〉 | Eek(Ai)(T

l
i) | Sigvk(A)(T

l
i),

where A ∈ {A1, . . . , Ak}. Here Eek(Ai)(t) intuitively means that the party Ai (carrying
out the ith role) decrypts the received message with dk(Ai) and then parses the plaintext

112 M. Backes, M. Dürmuth, and R. Küsters

according to t. Since Ai only knows its own decryption key dk(Ai), terms of the form
Eek(Aj)(t) for j �= i are excluded since they correspond to decryptions with secret keys
unknown to Ai. We, however, allow Ai to check the validity of the signatures of all other
parties since their respective verification keys are considered public, i.e., Ai is assumed
to know vk(Aj) for all j. A more comprehensive set of terms Tl

i is conceivable, e.g., by
including terms that contain specific ciphertexts, variables for encryption/verification
keys, or variables for ciphertexts in order to model ciphertext forwarding. While our
results can be lifted to these cases, we concentrate on Tl

i as to not encumber our main
ideas with details that are of only minor importance in this paper. For the ith role of a
protocol, terms on the right-hand side of a rule are of the following form:

Tr
i ::= ID | X.n | X.d | 〈Tr

i , T
r
i 〉 | Eek(A)(Tr

i) | Sigvk(Ai)(T
r
i),

where A ∈ {A1, . . . , Ak}. A term Eek(Aj)(t) means that party Ai computes a bit string
b for t and then encrypts b with the public key of Aj ; Sigvk(Ai)(t) has a similar meaning.
We require that variables on the right-hand side of a rule belong to {A1, . . . , Ak}∪{Nj |
j ≥ 0}, or occur on the left-hand side of the rule, or occur on the left-hand side of a
preceding rule in a role to ensure that these variables have been instantiated by the
time they are used. Several extensions of Tl

i are conceivable but not considered here for
reasons of clarity.

Finally, let Roles denote the set of all roles. Then, a k-party protocol is a mapping
Π : {1, . . . , k} → Roles.

3 Simulatability and Requirements for Simulatability-Sound
Dolev-Yao Models

In this section, we review the notion of simulatability and point out necessary require-
ments for a Dolev-Yao model to be sound in the sense of BRSIM/UC.

3.1 Review of Simulatability

Simulatability constitutes a general approach for comparing two systems, typically
called real and ideal system. In terms of the semantics community one might speak
of an implementation or refinement relation, specifically geared towards the preserva-
tion of what one might call secrecy properties compared with functional properties. We
believe that all our following results are independent of the differences between the def-
inition styles of the various recent papers on simulatability [20,21,11,10,17]. However,
we have to fix a specific formalism, and we use that from [21,10].

The ideal system in [21,10] typically consists of a single machine TH, the trusted
host, see Figure 1. In the context of simulatability soundness, TH represents a Dolev-
Yao model. The real system consists of a set of machines Mu, one for every user u.
In the context of simulatability soundness, the real system describes the cryptographic
implementation. The ideal or real system interacts with arbitrary so-called honest users,
collectively represented by a single machine H; this corresponds to potential protocols
or human users interacting with the ideal or real system. Furthermore, the ideal or real

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 113

A

H

M1 Mk

H

TH
ASim

...

Fig. 1. Black-box reactive simulatability (BRSIM) between the real system M1 ‖ · · · ‖ Mk and
the ideal system TH, where Mu is the machine of user u ∈ {1, . . . , k}

system interacts with an adversary A, who typically controls the network and can ma-
nipulate messages on the bit string level. The adversary is also granted the ability to in-
teract with the honest users H in order to influence their behavior, e.g., to suggest which
messages are to be sent. Technically, the interaction with H models known-message and
chosen-message attacks.

Black-box reactive simulatability (BRSIM) states that there exists a simulator Sim
such that for all A, no H can distinguish (in the sense of computational indistinguisha-
bility of families of random variables [23]) if it interacts with the real system and the
real adversary, or with the ideal system and a combination of the real adversary and
the simulator (which together form the ideal adversary). This is depicted in Figure 1.
Indistinguishability in particular entails that the ideal and real system offer identical
interfaces to the honest users to prevent trivial distinguishability. We write M1 ‖ · · · ‖
Mk ≤BRSIM TH to denote that the real system M1 ‖ · · · ‖ Mk is as secure as the ideal
system TH in the sense of BRSIM/UC.

The reader may regard the machines, i.e., the individual boxes in Figure 1, as prob-
abilistic I/O automata, Turing machines, CSP or pi-calculus processes etc. The only
requirement on the underlying system model is that the notion of an execution of a sys-
tem when run together with an honest user and an adversary is well-defined. In [21,10],
the machines are a type of probabilistic I/O automata which run in polynomial time.

3.2 On Simulatability-Sound Dolev-Yao Models and Their Cryptographic
Implementations

We now outline necessary requirements a Dolev-Yao model Mideal offering the capabil-
ities described in Section 2 and an implementation Mreal = Mreal

1 ‖ · · · ‖ Mreal
k realized

by actual cryptographic primitives have to fulfill for being simulatability-sound. Solely
fixing minimal requirements expected from Dolev-Yao models instead of considering a
specific Dolev-Yao model frees our results from specific details and idiosyncrasies of
existing models.

For achieving simulatability, the Dolev-Yao model Mideal and its cryptographic im-
plementation Mreal have to offer an identical I/O interface which the honest users con-
nect to. We hence assume that the interaction at the I/O interface is based on handles
(pointers) to objects stored in the system, i.e., the user never obtains real bit strings
(nonces, ciphertexts, etc.) from the cryptographic implementation but only handles to
such objects. The only exception are payloads which obviously have to be retrievable in

114 M. Backes, M. Dürmuth, and R. Küsters

their bit string representation in some way. Note that we do not fix any specific instanti-
ation of these handles but we only assume that they can be operated on in the expected
manner as discussed below.

The I/O interface has to permit suitable commands for constructing terms according
to the Dolev-Yao style deduction rules given in Section 2, and for sending them to other
principals. This in particular comprises the generation of nonces, pairs of messages
(i.e., concatenations of messages), pairs of public and private keys, public-key encryp-
tion/decryption, signature generation and verification, retrieval of payloads from their
handles, and sending and receiving messages to/from the network. Moreover, there have
to exist commands for parsing handles, in particular for testing handles for equality (for
simplicity, we assume that each user u is deterministically given the same handle again
if a term is reused), and for querying the types of handles.

Concerning the network interface, Mideal and Mreal differ. The network interface of
Mideal offers the adversary commands for constructing and parsing terms according
to the Dolev-Yao style deduction rules, and for sending terms to users. The machines
Mreal

u output bit strings to and receive bit strings from the adversary at their network
interfaces.

Note that we did not describe the internal behavior of the Dolev-Yao model Mideal.
It turns out not to be relevant for achieving our results. We later only have to require
two properties of Mideal: First, Mreal is as secure as Mideal in the sense of BRSIM/UC;
second, the behavior of Mideal in fact ensures that the adversary can only manipulate
messages according to the Dolev-Yao rules presented in Section 2. More precisely, the
second property requires that when Mideal is run with arbitrary honest users and an
arbitrary adversary, the resulting protocol traces are so-called Dolev-Yao traces, which
are formally defined in Section 4.

4 Reactive Execution of Protocols

We now describe the execution of a k-party protocol Π along with an adversary who
controls the network. More precisely, we describe the concrete execution of Π , i.e., the
execution in which actual cryptographic algorithms are used, rather than their Dolev-
Yao abstractions. Our definition corresponds to the one for mapping approaches
[19,15,14]. However, we present the definition in the reactive simulatability frame-
work [21,10] using Mreal in order to facilitate the presentation of our main result
(Section 5).

4.1 Emulating Concrete Executions Via HΠ

We use an honest user machine HΠ to emulate the execution of Π . This machine makes
use of Mreal to carry out the necessary cryptographic operations. Recall that Mreal uses
actual cryptographic algorithms to perform the cryptographic operations and that han-
dles are used at its I/O interface to point to the bit strings (payloads, ciphertexts, nonces
etc.) stored in Mreal. While Mreal is a composition of machines Mreal

u , u ∈ {1, . . . , k},
HΠ can emulate the execution of instances of Π by only using one Mreal

u since within
this machine key pairs for every party can be generated. This is even more general than

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 115

using a separate machine for each party since it allows to model that the adversary dy-
namically generates new parties. We emphasize that the communication between the
parties is still carried out over the network, so by using just one machine Mreal

u we do
not introduce any idealization. As usual, the network is controlled by the adversary A.
The adversary can instruct HΠ to generate a new instance of a role Π(i) of Π . Before
the execution of Π starts, A can additionally corrupt parties; this corresponds to the
prevalent static corruption model of Dolev-Yao models. Altogether, the run of the sys-
tem HΠ ‖ Mreal ‖ A corresponds to a concrete execution of instances of Π . It remains
to describe HΠ , i.e., the way HΠ emulates instances of Π .

States of HΠ . Similar to the definition of concrete executions in mapping approaches,
the machine HΠ keeps a global state to remember which instances of Π are running and
in which local state these instances are. The global state is a tuple (SId, f, ϕ), where
(i) SId is a finite set of session IDs, (ii) ϕ keeps track of the knowledge of the ad-
versary at the current point in time, and (iii) f maps every session identifier sid in
SId to the current (local) state f(sid) = (i, ν, p, (a1, . . . , ak)) of that session, see be-
low, where a session is an instance of one role of the protocol. A local state is a tuple
(i, ν, p, (a1, . . . , ak)) with the following components: i ∈ {1, . . . , k} is the index of
the role Π(i) that is executed in this session, ν is a substitution that maps those vari-
ables in Π(i) that were bound in the matching processes so far to handles (pointing
to bit strings stored in Mreal), p is a node in the role Π(i) marking the current point
in the execution of Π(i), and (a1, . . . , ak) are the parties participating in this session.
Recall that the session is carried out by ai with the parties aj , j ∈ {1, . . . , k} \ {i}.
The initial global state is (∅, ∅, ∅). The machine HΠ additionally keeps a table in which
it remembers handles to the names of honest and dishonest parties along with their
encryption/decryption/signing/verification keys (in case of honest parties) and encryp-
tion/verification keys (in case of dishonest parties). It also keeps a set of known handles
to payloads and nonces. The table and the set are updated in the obvious way; we will
not further describe it but simply assume that HΠ knows the names and keys of all hon-
est and dishonest parties as well as the (handles of) payloads and nonces which occurred
so far in the protocol run.

Transitions of HΠ . We now describe how global states evolve in HΠ in terms of transi-
tions. We often do not distinguish between payloads and their handles in the following,
since we assumed that payloads can be efficiently retrieved from Mreal using their han-
dles. In particular, we do not distinguish between the name of a party (represented as
payload data) and the handle to this name.

Corrupt message (from A via Mreal
u): Following the prevalent static corruption model

of Dolev-Yao models, the adversary can corrupt parties only at the beginning of a pro-
tocol execution. This is captured by the adversary sending a message (a bit string) of
the form (corrupt, a1, . . . , al, g1, . . . , gl, h1, . . . , hl) for l ≥ 0 to Mreal where ai are
names of parties, and gi and hi are their encryption and verification keys, respectively,
provided by A. This corruption message is forwarded by Mreal in terms of a handle
to HΠ which then tests if all ai are payloads (interpreted as names of parties), all gi

are handles to encryption keys and all hi are handles to verification keys. Otherwise,
the execution is aborted. Now, the knowledge of the adversary is recorded by HΠ as

116 M. Backes, M. Dürmuth, and R. Küsters

ϕ′ := {ai, ek(ai), dk(ai), sk(ai), vk(ai) | 1 ≤ i ≤ l}, and HΠ changes its (initial)
global state as follows:

(∅, ∅, ∅)
(corrupt,a1,...,al,g1,...,gl,h1,...,hl)−−−−−−−−−−−−−−−−−−−−−→ (∅, ∅, ϕ′).

Initiate new session (from A via Mreal
u): The adversary can initiate a new session at any

time by sending a message of the form (new, i, a1, . . . , ak) where the aj are names
of parties and i ∈ {1, . . . , k}. This message is forwarded by Mreal in terms of a han-
dle to HΠ which then tests if all aj are payloads (interpreted as names of parties) and
i ∈ {1, . . . , k}, aborting at failure. Let (SId, f, ϕ) denote the current global state of
HΠ . Let sid := |SId| + 1 be the new session identifier and SId′ := SId ∪ {sid}. MΠ

uses Mreal to create new encryption and signature pairs ek(aj), dk(aj), sk(aj), vk(aj)
for all honest parties aj that do not yet have such pairs, to create new nonces for
all variables Nj occurring in Π(i), and to create a handle to the payload sid . Let
the function f ′ on SId′ be defined by f ′(sid ′) := f(sid ′) for each sid ′ ∈ SId, and
f ′(sid) := (i, ν, ε, (a1, . . . , ak)), where ε is the root of the role tree, and where ν maps
every Aj in Π(i) to aj and every Nj occurring in Π(i) to the handle of the correspond-
ing nonce. Let ϕ′ := ϕ ∪ {sid} ∪ {ek(aj), vk(aj) | j = 1, . . . , k}. Then MΠ changes
its global state as follows:

(SId, f, ϕ)
(new,i,a1,...,ak)−−−−−−−−−−→ (SId′, f ′, ϕ′).

Finally, MΠ uses Mreal to create a list containing sid and the created encryption and
verification keys and to send this list to the adversary.

Send message (from A via Mreal
u): The adversary can at any time transmit a message m

by sending a message of the form (send,sid ,m). This message is forwarded by Mreal

in terms of a handle to HΠ . Let (SId, f, ϕ) denote the current global state, f(sid) =
(i, ν, p, (a1, . . . , ak)), and let (l1, r1), . . . , (lh, rh) be the labels of the outgoing edges
of node p in the given order. Then HΠ parses m (see below) according to ν(lj) starting
with ν(l1), continuing with ν(l2), and so on, until the first parsing can be successfully
completed. If the parsing fails for every ν(lj), the local and global state remain un-
changed.

The parsing of m according to l := ν(lj) is performed by HΠ inductively on the
structure of l. The parsing updates ν since variables that are not in the domain of the
current ν so far may now be instantiated. The machine HΠ furthermore keeps track of
new payloads and nonces created by the adversary by maintaining a set ϕnew which at
the beginning of the parsing is defined to be empty. Now, the parsing is performed by
HΠ as follows: First, it checks if m and l have the same type (by querying Mreal for
the type of m and then checking if it corresponds to the one of l), aborting at failure.
Otherwise HΠ continues as follows: (i) If l is a handle to a payload or a nonce, then it
checks if l = m. (Note that the same payloads/nonces get the same handles in Mreal.
Here we use that HΠ only employs one machine Mreal

u for some u ∈ {1, . . . , k}. We
emphasize that this is not an idealization since checking bit strings or corresponding
handles for equality is equivalent.) (ii) If l ∈ {0, 1}∗ is a payload, then it retrieves
the payload of m and checks whether it coincides with l. (iii) If l ∈ X.n (l ∈ X.d),

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 117

then it checks whether m is a handle to a nonce (to payload data), aborting at failure.
Otherwise, it extends ν by mapping l to m. If m has not occurred before (i.e., m is a
handle to a new payload or nonce that the adversary generated), then it adds m to ϕnew .
(iv) If l ∈ X.d, then it checks whether m is a handle to a payload and continues as in
the previous case. (v) If l = 〈t1, t2〉, then it recursively parses the first component of m
according to t1 and ν, and then the second component according to t2 and (the possibly
updated) ν. (vi) If l = Eek(ai)(t), then it decrypts m with dk(ai), aborting at failure.
Otherwise, it parses the resulting plaintext (given as a handle) according to t. If l is a
signature, it proceeds analogously.

If the parsing of m according to l is successful, we say that m and l match and call
the resulting substitution (the updated ν) the matching function. We call ν(l) the Dolev-
Yao term corresponding to m. In what follows, let h be minimal such that m matches
with ν(lh) and let θ be the resulting matching function.

Next, HΠ uses Mreal to construct the output message according to r := θ(rh). The
result is a handle to this message in Mreal. The construction is carried out inductively on
the structure of r as follows (Note that r does not contain variables since all variables
are substituted with handles by θ): (i) If r is a handle, then it returns this handle. (ii) If
r ∈ {0, 1}∗ is a payload, then it creates a handle to this payload and returns this handle.
(iii) If r is a pair, then it recursively constructs messages for the two components. With
the resulting handles, it retrieves a handle to the pair from Mreal. (iv) If r = Eek(aj)(t),
then it recursively constructs a message for t. With the resulting handle and the handle
to ek(aj), it retrieves a handle from Mreal to the corresponding ciphertext and returns
this handle. If r = Sigvk(ai)(t), then it proceeds analogously, using the handle to sk(ai)
to produce the signature.

Let m′hnd denote the handle to the output message. Let f ′ be defined as f ′(sid ′) :=
f(sid ′) for every sid ′ ∈ SId \ {sid} and f ′(sid) = (i, θ, ph, (a1, . . . , ak)) where ph is
the hth successor of p in Π(i). Let ϕ′ = ϕ ∪ ϕnew ∪ {r}. Then HΠ changes its global
state as follows:

(SId, f, ϕ)
(send,sid ,m)−−−−−−−−→ (SId, f ′, ϕ′).

Finally, HΠ sends the message corresponding to m′hnd to the adversary.

4.2 Dolev-Yao Traces of Π

We now define traces of Π when executed with an adversary A.

Definition 1 (Traces). A trace of Π when executed with an adversary A is a sequence

g0
C1−−→ g1

C2−−→ g2
C3−−→ · · · Cn−−→ gn of transitions gi

Ci+1−−−→ gi+1 as defined above for
HΠ obtained by executing the system HΠ ‖ Mreal ‖ A. The Ci are the corrupt, new,
and send commands and g0 = (∅, ∅, ∅) is the initial global state. A send transition only
belongs to the trace if HΠ successfully parsed the input message.

A trace is called a Dolev-Yao trace if it can be constructed according to the rules of the
term algebra and of the protocol Π under consideration (see Section 2).

Definition 2 (Dolev-Yao Traces). A trace (SId0, f0, ϕ0)
C1−−→ (SId1, f1, ϕ1)

C2−−→ · · ·
Cr−−→ (SIdr, fr, ϕr) of Π when executed with an adversary A is called a Dolev-Yao trace

118 M. Backes, M. Dürmuth, and R. Küsters

if and only if the following holds: For all i such that Ci is of the form (send, sid i, mi)
we have that ϕi−1 ∪ (ϕi−1)new � tmi where tmi is the Dolev-Yao term corresponding
to mi and (ϕi−1)new contains the new constants in tmi generated by the adversary.

5 Simulatability Soundness Implies Mapping Soundness

In this section we show that mapping soundness is implied by simulatability soundness,
i.e., by results that prove cryptographic implementations as secure as Dolev-Yao style
abstractions in the sense of BRSIM/UC.

Recall that mapping soundness is established in the following style: One defines con-
crete protocol traces where several instances of the protocol run along with a probabilis-
tic polynomial-time adversary that controls the network. Messages are bit strings and
the cryptographic operations are carried out by cryptographic algorithms. This corre-
sponds to runs of the system HΠ ‖ Mreal ‖ A. In addition, one defines symbolic protocol
traces where messages are Dolev-Yao terms. Now one aims at constructing a mapping
from bit strings to terms such that applying the mapping to an arbitrary trace of the con-
crete cryptographic execution yields a Dolev-Yao trace: Different payloads and nonces
are mapped to different constants, encryption/decryption/verification/signing keys are
represented by ek(a), dk(a), vk(a), and sk(a) where a is the constant representing the
name of a party. Pairings, ciphertexts, and signatures are represented by the correspond-
ing Dolev-Yao terms. Given such a mapping, one shows that the resulting symbolic
protocol trace constitutes a Dolev-Yao trace up to a negligible probability (measured in
the implicit cryptographic security parameter).

Before we can state and prove our result, let us make the following observation
about HΠ ‖ Mreal ‖ A. On the one hand, this system describes concrete protocol exe-
cutions: The different instances of the protocol exchange cryptographic bit strings over
the network, which is fully controlled by the probabilistic polynomial-time adversary.
On the other hand, Mreal provides an abstract interface to HΠ in the sense that HΠ does
not obtain bit strings from Mreal (except for payloads), but only abstract representations
(handles) to the bit strings stored in Mreal. Hence, Mreal already realizes the desired map-
ping from bit strings to handles, and these handles one-to-one correspond to Dolev-Yao
terms in the natural manner. (A handle to a payload/nonce corresponds to a constant rep-
resenting this payload/nonce; a handle to an encryption/decryption/verification/signing
key of a party a corresponds to the ground term ek(a), dk(a), vk(a), and sk(a), re-
spectively; handles to pairs, ciphertexts, and signatures correspond to Dolev-Yao terms
representing these objects.) Since all handles are maintained in one machine Mreal

u for
some u ∈ {1, . . . , k}, different payloads/nonces/etc. are referred to by different han-
dles. Hence, the mapping from bit strings to Dolev-Yao terms—and consequently the
translation of concrete protocol traces to symbolic traces—is implicitly already per-
formed by Mreal, which frees us from explicitly defining it. This might be surprising
since a natural intuition suggests that this translation is encompassed by the simulator.

While Mreal implicitly provides a mapping from concrete traces to symbolic traces,
this does not necessarily entail that the latter trace is a Dolev-Yao trace. Our main re-
sult now states that simulatability soundness implies that the symbolic trace derived
from this mapping constitutes a Dolev-Yao trace up to a negligible probability, which is

On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography 119

exactly what mapping soundness intends to establish. More precisely, the result relies on
two assumptions: First, we have that Mreal ≤BRSIM Mideal, i.e., the cryptographic im-
plementation is as secure as the Dolev-Yao abstraction in the sense of BRSIM/UC. Sec-
ond, if protocols are executed based on Mideal instead of Mreal, then the resulting traces
are Dolev-Yao traces, i.e., for every ideal adversary A′ (which may be a composition of
a simulator and a real adversary) all traces of HΠ ‖ Mideal ‖ A′ are Dolev-Yao traces.
This exactly reflects the intuition and purpose behind the Dolev-Yao abstraction Mideal.

Theorem 1 (Simulatability Soundness implies Mapping Soundness). Let Π be a
protocol. Assume the following two properties about Mreal and Mideal:

1. Mreal ≤BRSIM Mideal.
2. For every ideal adversary A′, all traces of HΠ ‖ Mideal ‖ A′ are Dolev-Yao traces.

Then, for all (real) adversaries A, the probability that a trace of HΠ ‖ Mreal ‖ A is not
a Dolev-Yao trace is negligible.

Proof (Sketch). We define H′Π to behave exactly as HΠ except that it checks whether
each received message can be deduced by the current intruder knowledge plus the new
handles (corresponding to payloads and nonces generated by the adversary) in the re-
ceived message. If this is not the case, then H′Π outputs failure. Since � can be decided
in polynomial time (see, e.g., [13]), H′Π runs in polynomial time. Furthermore, the def-
inition of Dolev-Yao traces implies that the probability that a trace of HΠ ‖ Mreal ‖ A
is not a Dolev-Yao trace is exactly the probability that H′Π outputs failure in a run of
H′Π ‖ Mreal ‖ A.

By the first assumption in the theorem there exists a simulator S such that for every
A the view of H′Π in H′Π ‖ Mreal ‖ A and H′Π ‖ Mideal ‖ S ‖ A is indistinguishable.
We consider the ideal adversary A′ = S ‖ A. By the second assumption in the theorem
we can conclude that H′Π never outputs failure in a run of H′Π ‖ Mideal ‖ A′. Finally, it
follows that the probability that H′Π outputs failure in a run H′Π ‖ Mreal ‖ A is negligible
as otherwise the views of H′Π in H′Π ‖ Mreal ‖ A and H′Π ‖ Mideal ‖ A′ could be
distinguished. �
A more detailed proof can be found in the long version of this paper. We emphasize
that the argument is quite generic: The proof only exploits that HΠ can be extended so
that it is able to efficiently recognize Dolev-Yao traces. Moreover, only the definition
of HΠ and the extension of HΠ depend on the specific cryptographic primitives and the
class of protocols under consideration. The rest of the argument is independent of these
details, and it resembles property preservation theorems for simulatability [5]. There-
fore, the above theorem should also hold for larger classes of cryptographic primitives
and protocols. We conclude by pointing out that the two assumptions in Theorem 1 are
met by the concrete cryptographic implementation and its Dolev-Yao abstraction put
forward in [8].

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography: The computational sound-
ness of formal encryption. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses,
P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)

120 M. Backes, M. Dürmuth, and R. Küsters

2. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Cryptographically sound
security proofs for basic and public-key Kerberos. In: Gollmann, D., Meier, J., Sabelfeld, A.
(eds.) ESORICS 2006. LNCS, vol. 4189, pp. 362–383. Springer, Heidelberg (2006)

3. Backes, M., Dürmuth, M.: A cryptographically sound Dolev-Yao style security proof of an
electronic payment system. In: Proc. 18th IEEE CSFW, pp. 78–93 (2005)

4. Backes, M., Dürmuth, M., Küsters, R.: On simulatability soundness and mapping soundness
of symbolic cryptography. IACR Cryptology ePrint Archive 2007/233 (2007)

5. Backes, M., Jacobi, C.: Cryptographically sound and machine-assisted verification of secu-
rity protocols. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 675–686.
Springer, Heidelberg (2003)

6. Backes, M., Pfitzmann, B.: A cryptographically sound security proof of the Needham-
Schroeder-Lowe public-key protocol. IEEE Journal on Selected Areas in Communica-
tions 22(10), 2075–2086 (2004)

7. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style crypto-
graphic library. In: Proc. 17th IEEE CSFW, pp. 204–218 (2004)

8. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested
operations (extended abstract). In: Proc. 10th ACM CCS, pp. 220–230 (2003)

9. Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication within a simulatable
cryptographic library. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 271–290. Springer, Heidelberg (2003)

10. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability framework for asyn-
chronous systems. Information and Computation. Preprint on IACR ePrint (2004)/082 (2007)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: Proc. 42nd IEEE FOCS, pp. 136–145 (2001)

12. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication
and key exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
380–403. Springer, Heidelberg (2006)

13. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for
protocol insecurity with XOR. In: Proc. 18th IEEE LICS, pp. 261–270 (2003)

14. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound symbolic secrecy
in the presence of hash functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS,
vol. 4337, pp. 176–187. Springer, Heidelberg (2006)

15. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security protocols.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)

16. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-
mation Theory 29(2), 198–208 (1983)

17. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Machines. In:
Proc. 19th IEEE CSFW, pp. 309–320 (2006)

18. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active ad-
versaries. In: Proc. 25th IEEE SSP, pp. 71–85 (2004)

19. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active ad-
versaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg
(2004)

20. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive sys-
tems. In: Proc. 7th ACM CCS, pp. 245–254 (2000)

21. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application
to secure message transmission. In: Proc. 22nd IEEE SSP, pp. 184–200 (2001)

22. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically sound
theorem proving. In: Proc. 19th IEEE CSFW, pp. 153–166 (2006)

23. Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd IEEE FOCS, pp.
80–91 (1982)

Key Substitution in the Symbolic Analysis of

Cryptographic Protocols

Yannick Chevalier and Mounira Kourjieh

IRIT, Université de Toulouse, France
{ychevali,kourjieh}@irit.fr

Abstract. Key substitution vulnerable signature schemes are signature
schemes that permit an intruder, given a public verification key and a
signed message, to compute a pair of signature and verification keys
such that the message appears to be signed with the new signature key.
Schemes vulnerable to this attack thus permit an active intruder to claim
to be the issuer of a signed message. In this paper, we investigate and
solve positively the problem of the decidability of symbolic cryptographic
protocol analysis when the signature schemes employed in the concrete
realisation have this property.

1 Introduction

According to West’s Encyclopedia of American Law, a signature is

“A mark or sign made by an individual on an instrument or document
to signify knowledge, approval, acceptance, or obligation. . . [Its purpose]
is to authenticate a writing, or provide notice of its source1. . . ”

We will not deal any further with legal considerations, but it is interesting to
note that while digital signatures are primarily employed to authenticate a doc-
ument, i.e. ensure that the signer endorses the content of the document, they
can also be employed to prove the origin of a document, i.e. ensure that only
one person could have signed it. Indeed, most of the cryptographic work on dig-
ital signatures has aimed at certifying that no-one could sign a document in the
place of someone else.

The analysis of digital signature primitives has however focused on the for-
mer authentication property. Formally speaking, the yardstick security notion
for assessing the robustness of a digital signature scheme is the existential en-
forceability against adaptative chosen-message attacks (UNF-CCA) [11]. This
notion states that, given a signing key/verification key pair, it is infeasible for
someone ignorant of the signing key to forge a message that can pass the verifica-
tion with the public verification key, and this even when messages devised by the
attacker are signed beforehand. The security goal provided by this property is
the impossibility (within given computing bounds) to impersonate a legitimate
user (i.e. one that does not reveal its signature key) when signing a message.
1 We have emphasised.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 Y. Chevalier and M. Kourjieh

We note that this robustness does not address the issue of the identification of
a source of a message. However, this latter concept is also pertaining to digital
signatures when they are employed in a non-repudiation protocol. While one
would not differentiate the two properties at first glance, they are different since
the authentication property requires the existence of the participation of the
signer in the creation of the message, while the latter mandates the unicity of a
possible creator of a message.

The two notions of message authentication and source authentication collapse
in the single-user setting when there exists only one pair of signature/verification
keys. They may however be different in a multi-user setting. We believe that the
first work in this direction was the discovery of a flaw on the Station-to-Station
protocol by Blake-Wilson and Menezes [6], where the authors show how it is
possible to confuse a participant into thinking it shares a key with another per-
son than the actual one. The attack consisted in the creation, by the attacker,
of a signature/verification key pair dependent upon messages sent in the proto-
col. Defining a signature scheme to have the Duplicate Signature Key Selection
(DSKS) property if it permits such a construction with non-negligible prob-
ability, they showed that several standard signature schemes (including RSA,
DSA, ECDSA and ElGamal) had this property, but also that a simple counter-
measure (signing the public key along with the message) existed in all cases,
but was rarely implemented. This DSKS property was formally defined as Key
substitution in [16], where it is also discussed, after a review of what could be
called an attack on a signature scheme in the multi-user setting. It was also later
presented independently in [17] as Conservative Exclusive Ownership. The com-
panion property of Destructive Exclusive Ownership by which an intruder may
also change arbitrarily the signed message is also introduced. While the same
attacks as in [16] are exhibited, the authors also demonstrate how this can be
used in practice to poison a badly implemented PKI with fake CRLs (T. Pornin,
personal communication).

Automated Validation of Security Protocols. Cryptographic protocols have been
applied to securing communications over an insecure network for many years.
While these protocols rely on the robustness of the employed security primitives,
their design is error-prone. This difficulty is reflected by the repeated discovery
of logical flaws in proposed protocols, even under the assumption that crypto-
graphic primitives were perfect. As an attempt to solve the problem, there has
been a sustained effort to devise formal methods for specifying and verifying the
security goals of protocols. Various symbolic approaches have been proposed to
represent protocols and reason about them, and to attempt to verify security
properties such as confidentiality and authenticity, or to discover bugs. Such
approaches include process algebra, model-checking, equational reasoning, con-
straint solving and resolution theorem-proving (e.g., [18,1,10,3]).

Our goal is to adapt the symbolic model of concrete cryptographic primitives
in order to reflect inasmuch as possible their imperfections that could be used by
an attacker to find a flaw on a protocol. The work described in this paper relies
on the compositionality result obtained in [9] that permits us to abstract from

Key Substitution in the Symbolic Analysis of Cryptographic Protocols 123

other primitives and consider protocols that only involve a signature scheme
having the DSKS properties.

Outline. In Section 2 we will present an attack by Baek et al. demonstrating
how an actual intruder can use the DSKS property of a signature scheme to
attack a protocol. We then describe in Section 3 the formalism in which we
will analyse cryptographic protocols. In Section 4 we present how we model
the possible actions of an intruder taking advantage of the DSKS property of a
signature scheme. We present in Section 5 an algorithm that permits to reduce
the analysis to an analysis in the empty equational theory, and give in Section 6
a decision procedure for the reachability problem in these protocols. We conclude
in Section 7.

2 An Example Attack

We do not present here the original attack on the station-to-station protocol, but
one that we believe to be simpler, and given by Baek et al. [4] on the KAP-HY
(Key Agreement protocol, proposed by Hirosi and Yoshida in [12]).

Presentation of the KAP-HY Protocol. This protocol relies on a redundant
signature scheme to provide key confirmation at the end of a key exchange. The
signature of a message m by agent A is denoted sA(m). Abstracting the details
of the Diffie-Hellman key construction with messages uA and uB, and of the
signature scheme, the protocol reads as follows:

A → B : uA, A
B → A : uB, sB(uA), B
A → B : sA(sB(uA), uB)

An unknown key share (UKS) attack on a key agreement protocol is an
attack whereby two entities A and B participating in a key agreement protocol
may end the protocol successfully, but with a wrong belief on who shares a
key with who. In [4], Baek et al. showed that the redundant signature scheme
employed in the KAP-HY protocol possesses the DSKS property, and elaborate
on this to show that the KAP-HY is vulnerable to a UKS attack. In this attack,
the intruder E waits that A initiates a session with him:

(1) A → E : uA, A (2) E → A : uB, sB(uA), E
(1′) E → B : uA, A (3) A → E : sA(sB(uA), uB)
(2′) B → E(A) : uB, sB(uA), B (3′) E → B : sA(sB(uA), uB)

In this attack, the intruder E records, but passes unchanged, the first mes-
sage, and initiates a session as A with B. It then intercepts the second message,
and builds from the public key of B and from the message sB(uA) a signa-
ture/verification key pair, and registers this key pair. E then passes the signa-
ture, but this time accompanied by its identity (2’). The main point is that when
A checks the signature of the incoming message, it accepts it on the ground that

124 Y. Chevalier and M. Kourjieh

it seems to originate from E. At the end of this execution, A believes that the
key is shared with E whereas it is actually shared with B.

The computation of the new pair of keys (PE , SE) proceeds as follows. At
the end of flow (2), the intruder knows the signature of uA made by Bob using
his public key, then, by using DSKS property of the used signature scheme, he
creates the new pair of keys (PE , SE). The crucial point, common to all DSKS
attacks, is the construction of a new key pair from a public verification key and
from a signed message. We will model this operation with appropriate deduction
rules, and prove that protocol analysis remains decidable.

3 Formal Setting

3.1 Basic Notions

We consider an infinite set of free constants C and an infinite set of variables
X . For any signature G (i.e. sets of function symbols not in C with arities) we
denote T(G) (resp. T(G, X)) the set of terms over G ∪ C (resp. G ∪ C ∪ X).
The former is called the set of ground terms over G, while the latter is simply
called the set of terms over G. The arity of a function symbol g is denoted
by ar(g). Variables are denoted by x, y, terms are denoted by s, t, u, v, and
finite sets of terms are written E, F, ..., and decorations thereof, respectively. We
abbreviate E ∪ F by E, F , the union E ∪ {t} by E, t and E \ {t} by E \ t. The
subterms of a term t are denoted Sub(t) and are defined recursively as follows.
If t is an atom (i.e. t ∈ X ∪ C) then Sub(t) = {t}. If t = g(t1, . . . , tn) then
Sub(t) = {t} ∪

⋃n
i=1 Sub(ti). The positions in a term t are sequences of integers

defined recursively as follows, ε being the empty sequence representing the root
position in t. We write p ≤ q to denote that the position p is a prefix of position
q. If u is a subterm of t at position p and if u = g(u1, . . . , un) then ui is at
position p · i in t for i ∈ {1, . . . , n}. We write t|p the subterm of t at position p.
We denote t[s] a term t that admits s as subterm. The size ‖t‖ of a term t is the
number of distinct subterms of t. The notation is extended as expected to a set
of terms.

A substitution σ is an involutive mapping from X to T(G, X) such that
Supp(σ) = {x|σ(x) �= x}, the support of σ, is a finite set. The application of
a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ)
and is equal to the term t (resp. E) where all variables x have been replaced by
the term σ(x). A substitution σ is ground w.r.t. G if the image of Supp(σ) is
included in T(G).

An equational presentation H = (G, A) is defined by a set A of equations u = v
with u, v ∈ T(G, X) and u, v without free constants. For any equational presen-
tation H the relation =H denotes the equational theory generated by (G, A) on
T(G, X), that is the smallest congruence containing all instances of axioms of A.
Abusively we shall not distinguish between an equational presentation H over
a signature G and a set A of equations presenting it and we denote both by H.
If the equations of A can be oriented from left to right, we write the equations
in A with an arrow, l → r. The equations can then only be employed from left

Key Substitution in the Symbolic Analysis of Cryptographic Protocols 125

to right, and A is called a rewrite system. An equational theory can in this case
be defined by a rewrite system. An equational theory H is said to be consistent
if two free constants are not equal modulo H or, equivalently, if it has a model
with more than one element modulo H.

Let A be a set of rewrite rules l → r. The rewriting relation →A between
terms is defined by t →A t′ if there exists l → r ∈ A and a substitution σ such
that lσ = s and rσ = s′, t = t[s] and t′ = t[s ← s′]. A is convergent if and only
if it is terminating and confluent. In this case, all rewriting sequences starting
from t are finite and have the same limit, and this limit is called the normal form
of t. We denote this normal form (t)↓A, or (t)↓ when the considered rewriting
system is clear from the context. A substitution σ is in normal form if for all
x ∈ Supp(σ), the term σ(x) is in normal form.

3.2 Unification Systems

In the rest of this section, we let H be an equational theory on T(G, X) and A
be a convergent rewriting system generating H.

Definition 1 (Unification systems). Let H be an equational theory on T(G, X).
A H-unification system S is a finite set of pairs of terms in T(G, X) denoted by
{ui

?= Hvi}i∈{1,...,n}. It is satisfied by a substitution σ, and we note σ |= HS, if
for all i ∈ {1, . . . , n} we have uiσ =H viσ. In this case we call σ a solution or a
unifier of S.

When H is generated by A, the confluence implies that if σ is a solution of a
H-unification system, then (σ)↓ is also a solution of the same unification system.
Accordingly we will consider in this paper only solutions in normal form of
unification systems. A complete set of unifiers of a H-unification system S is a
set Σ of substitutions such that, for any solution τ of S, there exists σ ∈ Σ and
a substitution τ ′ such that τ =H στ ′. The unifier τ is a most general unifier of
S if the substitution τ ′ in the preceding equation must be a variable renaming.

In the context of unification modulo an equational theory, standard (or syn-
tactic) unification will also be called unification in the empty theory. In this
case, it is well-known that there exists a unique most general unifier of a set of
equations. This unifier is denoted mgu(S), or mgu(s, t) in the case S =

{
s

?=∅ t
}

.

Unifiability Problem
Input: A H-unification system S.
Output: Sat iff there exists a substitution σ such that σ |=H S.

Let us now introduce the notion of narrowing, that informally permits to instan-
tiate and rewrite a term in a single step.

Definition 2 (Narrowing). Let s and t be two terms. We say t � s iff there
exists l → r ∈ A, a position p such that t|p /∈ X and s = tσ[p ← rσ], where
σ = mgu(t|p, l). We denote by � the narrowing relation.

126 Y. Chevalier and M. Kourjieh

Assume t � t′ with a rule l → r applied at a position p in t. A basic position in
t′ is either a non-variable position of t not under p or a position p · q where q is
a non-variable position in r. Basic narrowing is a restricted form of narrowing
where only terms at basic positions are considered to be narrowed. In the rest
of this paper, we denote t �b.n. t′ a basic narrowing step.

3.3 Intruder Deduction Systems

The notions that we give here have been defined in [9]. These definitions have
since been generalised to consider a wider class of intruder deduction systems
and constraint systems [8]. Although this general class encompasses all intruder
deduction systems and constraint systems given in this paper, we have preferred
to give the simpler definitions from [9] which are sufficient for stating our prob-
lem. We will refer, without further justifications, to the model of [8] as extended
intruder systems and extended constraint systems. The latter correspond to sym-
bolic derivations in which a most general unifier of the unification system has
been applied on the input/output messages.

In the context of a security protocol (see e.g. [15] for a brief overview), we
model messages as ground terms and intruder deduction rules as rewrite rules on
sets of messages representing the knowledge of an intruder. The intruder derives
new messages from a given (finite) set of messages by applying deduction rules.
Since we assume some equational axioms H are satisfied by the function symbols
in the signature, all these derivations have to be considered modulo the equa-
tional congruence =H generated by these axioms. In the setting of [9] an intruder
deduction rule is specified by a term t in some signature G. Given values for the
variables of t the intruder is able to generate the corresponding instance of t.

Definition 3. An intruder system I is given by a triple 〈G, S, H〉 where G is a
signature, S ⊆ T(G, X) and H is a set of equations between terms in T(G, X).
To each t ∈ S we associate a deduction rule Lt : Var(t) � t . The set of rules
LI is defined as the union of Lt for all t ∈ S.

Each rule l � r in LI defines an intruder deduction relation �l�r between finite
sets of terms. Given two finite sets of terms E and F we define E �l�r F if and
only if there exits a substitution σ, such that lσ =H l′, rσ =H r′, l′ ⊆ E and
F = E ∪{r′}. We denote �I the union of the relations �l�r for all l � r in LI
and by �∗I the transitive closure of �I . Note that by definition, given sets of
terms E, E′, F and F ′ such that E =H E′ and F =H F ′ by definition we have
E �I F iff E′ �I F ′. We simply denote by � the relation �I when there is
no ambiguity about I.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 �I
E0, t1 �I · · · �I En with finite sets of terms E0, . . . En, and terms t1, . . . , tn,
such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term tn is called the
goal of the derivation. We define E

I
to be equal to the set of terms that can be

derived from E. If there is no ambiguity on the intruder deduction system I we
write E instead of E

I
.

Key Substitution in the Symbolic Analysis of Cryptographic Protocols 127

3.4 Simultaneous Constraint Satisfaction Problems

We now introduce the constraint systems to be solved for checking protocols. It is
presented in [9] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 4 (I-Constraint systems). Let I = 〈G, S, H〉 be an intruder system.
An I-constraint system C is denoted ((Ei � vi)i∈{1,...,n}, S) and is defined by a
sequence of pairs (Ei, vi)i∈{1,...,n} with vi ∈ X , Ei ⊆ T(G, X) for i ∈ {1, . . . , n},
and Ei−1 ⊆ Ei for i ∈ {2, . . . , n}, and Var(Ei) ⊆ {v1, . . . , vi−1} and by an
H-unification system S.

An I-Constraint system C is satisfied by a substitution σ if for all i ∈
{1, . . . , n} we have viσ ∈ Eiσ

I
and if σ |=H S. We denote that a substitution σ

satisfies a constraint system C by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of deduction
rules and unification systems the substitution (σ)↓ is also a solution of C. In
the context of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the
knowledge of an intruder does not decrease as the protocol progresses: after
receiving a message a honest agent will respond to it, this response can then
be added to the knowledge of the intruder who listens to all communications.
The condition on variables stems from the fact that a message sent at some
step i must be built from previously received messages recorded in the variables
vj , j < i, and from the ground initial knowledge of the honest agents.

Our goal will be to solve the following decision problem for the intruder de-
duction system modelling a signature scheme having the DSKS property.

I-Reachability Problem
Input: An I-constraint system C.
Output: Sat iff there exists a substitution σ such that σ |=I C.

4 Symbolic Model for Key Substitution Attacks

A digital signature scheme is defined by three algorithms: the signing algorithm,
the verification algorithm and the key generation algorithm. The last algorithm
generates for each user a pair of keys, one of them will be used as signing key and
will be kept secret, while the other is public and will be used as a verifying key.
We abstract the key generation algorithm with two functions, PK() and SK()
denoting respectively the verification and signature keys of an agent. We assume
it is not possible, given an agent’s name A, to compute PK(A) or SK(A). The
signature of a message m with signature key k is a public algorithm Sig(,),
and the resulting signed message is denoted Sig(m, k). We consider signatures
with appendix, where the verification algorithm Ver(, ,) –which is available to
everyone– takes in its input a message m, a signature s and the public verification
key k. The application of the algorithm is denoted Ver(m, s, k), and its outcome

128 Y. Chevalier and M. Kourjieh

can be 0 (s is not the signature of m with the signature key associated with the
verification key k) or 1 (s is a valid signature).

In addition to these functions, we add two new functions, P’K and S’K, which
are public and take as argument a signed message s and a verification key k
corresponding to this signed message, and output respectively a verification and
a signature key denoted P’K(s, k) and S’K(s, k). The verification of s with the
verification key P’K(s, k) succeeds.

Given this informal description, the equational theory HDSKS to which these
operations abide by is presented by the following set ADSKS of equations:

ADSKS =

⎧
⎨

⎩

Ver(x, Sig(x, SK(y)), PK(y)) = 1
Ver(x, Sig(x, S’K(y1, y2)), P’K(y1, y2)) = 1
Sig(x, S’K(PK(y), Sig(x, SK(y)))) = Sig(x, SK(y))

The public operations defined above are now translated into an intruder sys-
tem IDSKS = 〈G, LDSKS , HDSKS〉 with:

{
G = {Sig, Ver, S’K, P’K, 0, 1, SK, PK}

LDSKS = {Sig(x, y), Ver(x, y, z), S’K(x, y), P’K(x, y), 0, 1}

Note that the presentation ADSKS is not convergent, and thus we cannot
apply results on basic narrowing as is. To this end we introduce a rewriting
system R which is convergent and obtained by Knuth-Bendix [14] completion
on ADSKS , and such that two terms have the same normal form for R iff they
are equal modulo HDSKS .

Lemma 1. HDSKS is generated by the convergent rewriting system:

R =

⎧
⎪⎪⎨

⎪⎪⎩

Ver(x, Sig(x, SK(y)), PK(y)) → 1
Ver(x, Sig(x, S’K(y1, y2)), P’K(y1, y2)) → 1
Ver(x, Sig(x, SK(y)), P’K(PK(y), Sig(x, SK(y)))) → 1
Sig(x, S’K(PK(y), Sig(x, SK(y)))) → Sig(x, SK(y))

It can easily be shown, using the criterion of termination of basic narrowing on
the right-hand side of rules of R, that basic narrowing terminates when applied
with the rules of R. The main result of [13] then implies the following proposition,
when applying basic narrowing with R non-deterministically on the two sides
of an equation modulo R and terminates with unification modulo the empty
theory.

Proposition 1. Basic narrowing is a sound, complete and terminating proce-
dure for finding a complete set of most general HDSKS-unifiers.

One can actually be more precise, and we will need the following direct conse-
quence of Hullot’s unification procedure, that states that applying basic narrow-
ing permits one to “guess” partially the normal form of a term t.

Lemma 2. Let t be any term and σ be a normalised substitution. There exists a
term t′ and a substitution σ′ in normal form such that t �∗b.n. t′ and t′σ′ = (tσ)↓.

Key Substitution in the Symbolic Analysis of Cryptographic Protocols 129

While this presentation by a convergent rewrite system ensures the decidabil-
ity of unification modulo HDSKS , we can prove (see [7]) that the unifiability
problem, as well as the partial guess of a normal form, is in fact in NPTIME.

5 Saturation

5.1 Construction

The saturation of the set of deduction rules LDSKS defined modulo the equa-
tional theory HDSKS presented by the convergent rewrite system R is the output
of the application of the saturation rules of Figure 1 starting with LDSKS′ =
LDSKS until any added rule is subsumed by a rule already present in LDSKS′.

Subsumption :
l1 � r ∈ L l2 � r ∈ L

L′ ← L′ \ {l2 � r}
l1 ⊆ l2

Closure :

l1 � r1 ∈ L′, (t, l2) � r2 ∈ L′

L′ ← L′ ∪ {(l1, l2 � r2)σ}
t /∈ X

σ = mgu∅(r1, t)

Narrow :
l � r ∈ L′ (l, r) �b.n. (l′, r′)

L′ ← L′ ∪ {l′ � r′}

Fig. 1. System of saturation rules

The application of the saturation rules terminates, and yields the following
set of rules:

LDSKS′=LDSKS∪x, SK(y) � Sig(x, SK(y)) ∪ x, S’K(PK(y), Sig(x, SK(y))) �
Sig(x, SK(y))

We define two new extended intruder systems: I′DSKS =
〈
G, LDSKS′, HDSKS

〉

and I∅ =
〈
G, LDSKS′, ∅

〉
. These intruder systems do not satisfy the requirements

that the left-hand side of deduction rules have to be variables. The deduction
relation, the derivations and the set of reachable terms are defined as usual from
ground instances of deduction rules.

5.2 Properties of a Saturated System

Let us first prove that the deduction system obtained after saturation gives
exactly the same deductive power to an intruder.

Lemma 3. For any set of normal ground terms E and any normal ground term
t we have: E �∗IDSKS

t if and only if E �∗I′
DSKS

t.

Moreover, we can prove that when considering only deductions on terms in nor-
mal form and yielding terms in normal form, it is sufficient to consider derivations
modulo the empty theory (Corollary 1).

130 Y. Chevalier and M. Kourjieh

Lemma 4. Let E (resp. t) be a set of terms (resp. a term) in normal form. We
have: E �I′

DSKS
E, t if and only if E �I∅ E, t.

Proof. See proof in [7]. �
Corollary 1. Let E (resp. t) be a set of terms (resp. a term) in normal form.
We have: E �∗I′

DSKS
E, t if and only if E �∗I∅

E, t.

Next lemma states that if a term in the left-hand side of a deduction rule of the
saturated system is not a variable, then we can assume it is not the result of
another saturated deduction rule.

Lemma 5. Let E (resp. t) be a set of terms (resp. a term) in normal form. If
t is in E

I∅, there exists a I∅-derivation starting from E of goal t such that for
all s ∈ l \ X , we have sσ ⊆ E.

6 Decidability of Reachability

The main result of this paper is the following theorem.

Theorem 1. The IDSKS-Reachability problem is decidable.

The rest of this paper is devoted to the presentation of an algorithm for solving
IDSKS-Reachability problems and to a proof scheme of its completeness. The ter-
mination and correctness are proved in [7]. This decision procedure comprises
three different steps.

6.1 First Step: Guess of a Normal Form

Step 1. Apply non-deterministically basic narrowing steps on all subterms of C.
Let C0 =

{
(E0

i � v0
i)i∈{1,...,n}, S0

}
be the resulting constraint system.

Remark. Let σ be a solution of the original constraint system, with σ in normal
form. This first step will non-deterministically transform each t ∈ Sub(C) into a
term t′ such that, according to Lemma 2 we will have (tσ)↓ = t′σ′.

6.2 Second Step: Resolution of Unification Problems

Step 2. Solve the unification system S0 modulo the empty theory, and apply
the obtained unifier on the deduction constraints to obtain a constraint system
C′ =

{
(E′i � t′i)i∈{1,...,n}

}
.

Remarks. We prove below that if there exists a solution to the original constraint
system, then there exists a solution of C′ for the extended intruder system I∅.
C’ itself is not a constraint system, but an extended constraint system.

Lemma 6. If σ is a substitution in normal form such that σ |=IDSKS C, there
exists a C′ at Step 2 and a substitution σ′ in normal form such that C �∗b.n. C′
and σ′ |=I∅ C′.

Proof. See proof in [7]. �

Key Substitution in the Symbolic Analysis of Cryptographic Protocols 131

Apply :
Cα, E � t, Cβ

(Cα, (E � y)y∈lx, Cβ)σ

lx, l1, . . . , ln � r ∈ LDSKS
′ and lx ⊆ X , t /∈ X

e1, . . . , en ∈ E and σ = mgu(
{
(ei

?
= li)i, r

?
= t

}
)

Unif :
Cα, E � t, Cβ

(Cα, Cβ)σ

u, t /∈ X
u ∈ E, σ = mgu(u, t)

Fig. 2. System of transformation rules

6.3 Third Step: Transformation in Solved Form

Step 3. To simplify the constraint system, we apply the transformation rules
of Figure 2. Our goal is to transform C’ into a constraint system such that the
right-hand sides of deduction constraints (the ti) are all variables. When this is
the case, we say that the constraint system is in solved form. It is routine to
check that a constraint system in solved form is satisfiable.

Lemma 7. Let C = {Cα, E � t, Cβ} be such that Cα is in solved form. Then, for
all substitution σ, σ |= C if and only if σ |= {Cα, (E \ X) � t, Cβ} .

Proof. See proof in [7]. �
It also can be proved that the lazy constraint solving procedure terminates. This
lemma also helps us to prove the completeness of lazy constraint solving (stated
in Lemma 9).

Lemma 8. Let C be a constraint system. The application of transformation rules
of the algorithm terminates.

Lemma 9. If C′ is satisfied by a substitution σ′, it can be transformed into a
system in solved form by the rules of Figure 2.

7 Conclusion

Besides the actual decidability result obtained in this paper, we believe that
the techniques developed to obtain this result, while still at an early stage, are
promising and of equal importance. Several recent work [5,2] have proposed
conditions on intruder systems ensuring the decidability of reachability with
respect to an active or passive intruder. In a future work we plan to research
whether the given conditions imply the termination of the saturation procedure
and the termination of the symbolic resolution.

References

1. Amadio, R., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290(1), 695–740 (2003)

2. Anantharaman, S., Narendran, P., Rusinowitch, M.: Intruders with Caps. In:
Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, Springer, Heidelberg (2007)

132 Y. Chevalier and M. Kourjieh

3. Armando, A., Compagna, L.: Automatic SAT-Compilation of Protocol Insecurity
Problems via Reduction to Planning. In: Foundation of Computer Security & Ver-
ification Workshops, Copenhagen, Denmark (July 25-26, 2002)

4. Baek, J., Kim, K., Matsumoto, T.: On the significance of Unknown Key-Share
Attacks: How to Cope With Them? In: Proc. of Symposium on Cryptography and
Information Security (SCIS 2000) (January 2000)

5. Baudet, M.: Deciding Security of Protocols against Off-line Guessing Attacks. In:
Proceedings of the 12th ACM Conference on Computer and Communications Se-
curity (CCS 2005), pp. 16–25. ACM Press, New York (2005)

6. Wilson, S.B., Menezes, A.: Unknown Key-Share Attacks on the Station-to-Station
(STS) Protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
154–170. Springer, Heidelberg (1999)

7. Chevalier, Y., Kourjieh, M.: Key substitution in the symbolic analysis of crypto-
graphic protocols. Technical report, IRIT (2007)

8. Chevalier, Y., Lugiez, D., Rusinowitch, M.: Towards an Automatic Analysis of
Web Services Security. In: Konev, B., Wolter, F. (eds.) Frocos 2007. LNCS (LNAI),
vol. 4720, pp. 133–147. Springer, Heidelberg (2007)

9. Chevalier, Y., Rusinowitch, M.: Combining Intruder Theories. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 639–651. Springer, Heidelberg (2005)

10. Chevalier, Y., Vigneron, L.: A Tool for Lazy Verification of Security Protocols.
In: Proceedings of the Automated Software Engineering Conference (ASE 2001),
IEEE Computer Society Press, Los Alamitos (2001)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Hirose, S., Yoshida, S.: An Authenticated Diffie-Hellman Key Agreement Protocol
Secure Against Active Attacks. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS,
vol. 1431, pp. 135–148. Springer, Heidelberg (1998)

13. Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
Conference on Automated Deduction, vol. 87, pp. 318–334. Springer, Heidelberg
(1980)

14. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Siek-
mann, J., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, pp. 342–376. Springer, Heidelberg (1983)

15. Meadows, C.: The NRL protocol analyzer: an overview. Journal of Logic Program-
ming 26(2), 113–131 (1996)

16. Menezes, A., Smart, N.P.: Security of Signature Schemes in a Multi-User Setting.
Des. Codes Cryptography 33(3), 261–274 (2004)

17. Pornin, T., Stern, J.P.: Digital signatures do not guarantee exclusive ownership.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 138–150. Springer, Heidelberg (2005)

18. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In: Ganzinger, H. (ed.) Automated Deduction - CADE-16. LNCS
(LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)

Symbolic Bisimulation for the Applied Pi Calculus�

Stéphanie Delaune1,2,3, Steve Kremer2, and Mark Ryan3

1 LORIA, CNRS & INRIA, France
2 LSV, ENS Cachan & CNRS & INRIA, France

3 School of Computer Science, University of Birmingham, UK

Abstract. We propose a symbolic semantics for the finite applied pi calculus,
which is a variant of the pi calculus with extensions for modelling cryptographic
protocols. By treating inputs symbolically, our semantics avoids potentially infi-
nite branching of execution trees due to inputs from the environment. Correctness
is maintained by associating with each process a set of constraints on terms. We
define a sound symbolic labelled bisimulation relation. This is an important step
towards automation of observational equivalence for the finite applied pi calculus,
e.g. for verification of anonymity or strong secrecy properties.

1 Introduction

The applied pi calculus [2] is a derivative of the pi calculus that is specialised for mod-
elling cryptographic protocols. Participants in a protocol are modelled as processes, and
the communication between them is modelled by means of channels, names and mes-
sage passing. The main difference with the pi calculus is that the applied pi calculus
allows one to manipulate complex data, instead of just names. These data are generated
by a term algebra and equality is treated modulo an equational theory. For instance
the equation dec(enc(x, y), y) = x models the fact that encryption and decryption with
the same key cancel out in the style of the Dolev-Yao model. Such complex data re-
quires the use of a special kind of processes called active substitutions. As an example
consider the following process and reduction step.

νa, k.out(c, enc(a, k)).P
νx.out(c,x)−−−−−−−→ νa, k.(P | {enc(a,k)/x}).

The process outputs a secret name a which has been encrypted with the secret key k
on a public channel c. The active substitution {enc(a,k)/x} gives the environment the
ability to access the term enc(a, k) via the fresh variable x without revealing a or k.
The applied pi calculus also generalizes the spi calculus [3] which only allows a fixed
set of built-in primitives (symmetric and public-key encryption), while the applied pi
calculus allows one to define a variety of primitives by means of an equational theory.

One of the difficulties in automating the proof of properties of systems in the ap-
plied pi calculus is the infinite number of possible behaviours of the attacker, even in

� This work has been partly supported by the RNTL project POSÉ, the EPSRC projects
EP/E029833, Verifying Properties in Electronic Voting Protocols and EP/E040829/1, Verifying
anonymity and privacy properties of security protocols, the ARA SESUR project AVOTÉ and
the ARTIST2 NoE. We also thank M. Johansson and B. Victor for interesting discussions.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 133–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

134 S. Delaune, S. Kremer, and M. Ryan

the case that the protocol process itself is finite. When the process requests an input
from the environment, the attacker can give any term which can be constructed from
the terms it has learned so far in the protocol, and therefore the execution tree of the
process is potentially infinite-branching. To address this problem, researchers have pro-
posed symbolic abstractions of processes, in which terms input from the environment
are represented as symbolic variables, together with some constraints. These constraints
describe the knowledge of the attacker (and therefore, the range of possible values of
the symbolic variable) at the time the input was performed.

Reachability properties can be verified by deciding satisfiability of constraint sys-
tems resulting from symbolic executions of process algebras (e.g. [16,4]). Similarly,
off-line guessing attacks coded as static equivalence between process states [5] can
be decided using such symbolic executions, but this requires one to check the equiv-
alence of constraint systems, rather than satisfiability. Decision procedures for both
satisfiability [11] and equivalence [5] of constraint systems exist for significant families
of equational theories. Observational equivalence properties, which can be character-
ized as a bisimulation, express the inability of the attacker to distinguish between two
processes no matter how it interacts with them. These properties are useful for mod-
elling anonymity and privacy properties (e.g. [12]), as well as strong secrecy. Symbolic
methods have also been used for bisimulation in process algebras [14,9]. In particular,
Borgström et al. [10] define a sound symbolic bisimulation for the spi calculus.

In this paper we propose a symbolic semantics for the applied pi calculus together
with a sound symbolic bisimulation. To show that a symbolic bisimulation implies the
concrete one, we generally need to prove that the symbolic semantics is both sound and
complete. The semantics of the applied pi calculus is not well suited for defining such a
symbolic semantics. In particular, we argue in Section 2 that defining a symbolic struc-
tural equivalence which is both sound and complete seems impossible. The absence of
sound and complete symbolic structural equivalence significantly complicates the proof
of our main result. We therefore split it into two parts. We define a more restricted se-
mantics which will provide an intermediate representation of applied pi calculus pro-
cesses. These intermediate processes are a selected (but sufficient) subset of the original
processes. One may think of them as being processes in some kind of normal form. We
equip these intermediate processes with a labelled bisimulation that coincides with the
original one. Then we present a symbolic semantics which is both sound and complete
with respect to the intermediate one and give a sound symbolic bisimulation. To keep
track of the constraints on symbolic variables we associate a separate constraint system
to each symbolic process. Keeping these constraint systems separate allows us to have
a clean separation between the bisimulation and the constraint solving part. In particu-
lar we can directly build on existing work [5] and obtain a decision procedure for our
symbolic bisimulation for a significant family of equational theories whenever the con-
straint system does not contain disequalities. This corresponds to the fragment of the
applied pi calculus without else branches in the conditional. For this fragment, one may
also notice that our symbolic semantics can be used to verify reachability properties
using the constraint solving techniques from [11]. Another side-effect of the separa-
tion between the processes and the constraint system is that we forbid α-conversion
on symbolic processes as we lose the scope of names in the constraint system, but al-

Symbolic Bisimulation for the Applied Pi Calculus 135

low explicit renaming when necessary (using naming environments). We believe that
the simplicity of our intermediate calculus (especially the structural equivalence) and
the absence of α-conversion is appealing in view of an implementation. Finally, one
may note that as in [10,8], our technique for deciding bisimulation is incomplete (see
Section 5.1). However, we argue that our technique works for many interesting cases.
The intermediate semantics and proofs are omitted, but can be found in [13].

2 The Applied Pi Calculus

The applied pi calculus [2] is a language for describing processes and their interactions.
We only consider the finite applied pi calculus which does not have process replication.
Details about syntax and semantics of the original applied pi calculus may be found
in [2]. We briefly recall them for the convenience of the reader.

Terms are defined as names, variables, and function symbols applied to other terms
(of base type). We denote by N (resp. X) the set of names (resp. variables) and dis-
tinguish the set Nch (resp. Xch) of channel names (resp. variables) and the set Nb

(resp. Xb) of names (resp. variables) of base type. We define the equations which hold
on terms as an equational theory E. We denote =E the equivalence relation induced
by E. A typical example of an equational theory is dec(enc(x, y), y) = x.

Plain processes (P , Q, R) are built up in a similar way to processes in the pi calculus,
except that messages can contain terms (rather than just names). Extended processes
(A, B, C) add active substitutions {M/x}, and restriction on variables. An evaluation
context C[] is an extended process with a hole instead of an extended process.

As usual, names and variables have scopes, which are delimited by restrictions and
by inputs. We write fv(A), bv(A), fn(A) and bn(A) for the sets of free and bound
variables (resp. names). In an extended process, there is at most one substitution for
each variable, and exactly one when the variable is restricted. An extended process is
closed if all its variables are either bound or defined by an active substitution. Active
substitutions allow us to map an extended process A to its frame φ(A) by replacing
every plain process in A with 0. The domain of a frame ϕ, denoted by dom(ϕ), is the
set of variables for which ϕ contains a substitution {M/x} not under νx.

Throughout the paper we always suppose that substitutions are cycle-free. Given
substitutions σ1 and σ2 with dom(σ1) ∩ dom(σ2) = ∅, we write σ1 ∪ σ2 to denote the
substitution whose domain is dom(σ1) ∪ dom(σ2) and that is equal to σ1 on dom(σ1)
and to σ2 on dom(σ2). We write σ1σ2 for the substitution σ whose domain is dom(σ1)
and such that xσ = (xσ1)σ2. We define img(σ) to be {xσ | x ∈ dom(σ)}. We write σ�

to emphasize that we iterate the substitution until obtaining idempotence.

Semantics. Structural equivalence, noted ≡, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on names and variables, application
of evaluation contexts, and some other standard rules such as associativity and com-
mutativity of the parallel operator and commutativity of the bindings. In addition the
following three rules are related to active substitutions and equational theories:

νx.{M/x} ≡ 0, {M/x} | A ≡ {M/x} | A{M/x}, and {M/x} ≡ {N/x} if M =E N

136 S. Delaune, S. Kremer, and M. Ryan

As mentioned in the introduction, it seems difficult to define symbolic structural
equivalence (≡s) which is sound and complete in the following (informal) sense:

– Soundness: Ps ≡s Qs implies for any valid instantiation σ, Psσ ≡ Qsσ;
– Completeness: Psσ ≡ Q implies there exists Qs such that Ps ≡s Qs and Qsσ = Q.

To see this, consider the process P = in(c, x).in(c, y).out(c, f(x)).out(c, g(y)) which
can be reduced to P ′ = out(c, f(M1)).out(c, g(M2)) where M1 and M2 are two ar-
bitrary terms provided by the environment. In the case that f(M1) =E g(M2), we
have P ′ ≡ νz.(out(c, z).out(c, z) | {f(M1)/z}), but this structural equivalence does
not hold whenever f(M1) �=E g(M2). The aim of our symbolic semantics is to avoid
instantiating the variables x and y: the process P would reduce to P ′s = out(c, f(x)).
out(c, g(y)). In this case we need to keep auxiliary information that allows us to in-
fer that x and y may take arbitrary values. The process P ′s represents the two cases
in which x and y are equal or distinct. Hence, the question of whether the sym-
bolic structural equivalence P ′s ≡s νz.(out(c, z).out(c, z) | {f(x)/z}) is valid cannot
be decided, as it depends on the concrete values of x and y. Therefore, our notion
of symbolic structural equivalence is sound but not complete in the sense above
(we will give a weaker completeness result). This seems to be an inherent prob-
lem and it propagates to internal and labelled reduction, since they are closed under
structural equivalence. In this example, the control flow is not affected by whether
f(x) =E g(y). When control flow is affected by conditions on input variables, we
maintain those conditions as a set of constraints.

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
THEN if M = N then P else Q → P where M =E N
ELSE if M = N then P else Q → Q where M, N are ground and M �=E N

Note that the presentation of the internal reduction slightly differs from the one given
in [2], but it is easily shown to be equivalent.

The operational semantics is extended by a labelled operational semantics enabling
us to reason about processes that interact with their environment. Below, a and c are
channel names whereas x is a variable of base type.

IN in(a, x).P
in(a,M)
−−−−−→ P{M/x}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A
out(a,c)
−−−−−→ A′ c �= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a,M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}
x �∈ fv(P) ∪ fv(M)

SCOPE
A
α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

bn(α) ∩ fn(B) = ∅

PAR
A
α
−→ A′ bv(α) ∩ fv(B) = ∅

A | B
α
−→ A′ | B

STRUCT
A ≡ B B

α
−→ B′ A′ ≡ B′

A
α
−→ A′

Symbolic Bisimulation for the Applied Pi Calculus 137

Our rules differ slightly from those described in [2], although we prove in [13] that
labelled bisimulation in our system coincides with labelled bisimulation in [2].

Equivalences. In [2], it is shown that observational equivalence coincides with labelled
bisimilarity. This relation is like the usual definition of bisimilarity, except that at each
step one additionally requires that the processes are statically equivalent.

Definition 1 (static equivalence (∼)). Two closed frames ϕ1, ϕ2 are statically equiva-
lent if ϕ1 ≡ νñ.σ1 and ϕ2 ≡ νñ.σ2 for some names ñ and substitutions σ1, σ2 s.t.

(i) dom(ϕ1) = dom(ϕ2),
(ii) ∀M, N such that (fn(M) ∪ fn(N)) ∩ ñ = ∅, Mσ1 =E Nσ1 ⇔ Mσ2 =E Nσ2.

Example 1. Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where σ0 = {enc(s0, k)/x1, k/x2},
σ1 = {enc(s1, k)/x1, k/x2} and s0, s1 and k are names. Let E be the theory de-
fined by the axiom dec(enc(x, y), y) = x. We have dec(x1, x2)σ0 =E s0 whereas
dec(x1, x2)σ1 �=E s0, thus ϕ0 �∼ ϕ1.

Definition 2 (labelled bisimilarity (≈)). Labelled bisimilarity is the largest symmetric
relation R on closed extended processes, such that A R B implies

1. φ(A) ∼ φ(B),
2. if A → A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A

α→ A′ and fv (α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗ B′

and A′ R B′ for some B′.

3 Constraint Systems

The idea of symbolic semantics is to avoid infinite branching due to inputs from the
environment. This is achieved by inputting a variable rather than one of infinitely many
possible terms, and maintaining constraints on what value the variable may take.

Definition 3 (constraint system). A constraint system C is a set of constraints where
every constraint is either

– a deducibility constraint of the form ϕ � x where ϕ is a frame and x a variable, or
– a constraint of the form M = N , M �= N or gd(M) where M, N are terms.

The constraint ϕ � x is useful for specifying the information ϕ held by the environ-
ment when it supplies an input x. The constraint gd(M) means that M is ground. We
denote by names(C) (resp. vars(C)) for the names (resp. variables) of C. We define
cv(C) = {x | ϕ � x ∈ C} to be the constraint variables of C, and assume that those
constraint variables do not appear in the domain of any frame in C. The constraint sys-
tems that we consider arise while executing symbolic processes. We therefore restrict
ourselves to well-formed constraint systems, capturing the fact that the knowledge of
the environment always increases along the execution: we allow it to use more names
and variables (less restrictions) or give it access to more terms (larger substitution).

138 S. Delaune, S. Kremer, and M. Ryan

More formally, φ1
def
= νũ1.σ1 � νũ2.σ2

def
= φ2 if ũ1 ⊇ ũ2, and dom(σ1) ⊆ dom(σ2)

and ∀y ∈ dom(σ1). yσ1 = yσ2.

Definition 4 (well-formed constraint system). A constraint system C is well-formed
if its deducibility constraints can be written φ1 � x1, . . . , φ� � x� such that φ1 � φ2 �
. . . � φn and ∀i. 1 ≤ i ≤ �, ∀x ∈ vars(img(φi)) ∩ cv(C), ∃j < i. x = xj .

The second condition corresponds to the way in which variables are bound: each time
a symbolic message M (which may contain variables) is put in the frame the variables
in vars(M) have to have been previously instantiated. Hence, those variables have to
appear on the right of a smaller deducibility constraint. Given a constraint system C we
write Ded(C)={φ1 � x1, . . . , φ� � x�}. Two well-formed constraint systems C and C′
with Ded(C) = {φ1 � x1, . . . , φ� � x�} and Ded(C′)={φ′1 � x′1, . . . , φ′� � x′�} have
same basis if xi = x′i and dom(φi) = dom(φ′i) for 1 ≤ i ≤ �.

Definition 5 (E-solution). Let C be a well-formed constraint system such that Ded(C)
= {φ1 � x1, . . . , φ� � x�} where each φi = νũi.σi for some ũi and some substitu-
tion σi. An E-solution of C is a substitution θ whose domain is cv(C) and such that

– vars(xiθ) ∩ cv(C) = ∅ and vars(xiθ) ∩ (dom(φ�) � dom(φi)) = ∅;
– names(xiθ) ∩ ũi = ∅ and vars(xiθ) ∩ ũi = ∅;
– for “M = N” ∈ C (resp. “M �= N” ∈ C) , we have M(θσ�)� =E N(θσ�)� (resp.

M(θσ�)� �=E N(θσ�)�);
– for “gd(M)” ∈ C, we have that the term M(θσ�)� is ground.

We denote by SolE(C) the set of E-solutions of C. An E-solution θ of C is closed if
vars(xiθ) ⊆ dom(φi) for any i ∈ {1, . . . , �}.

Example 2. Let C = {νk.νs.{enc(s,k)/y1,
k /y2} � x′ , gd(c) , x′ = s}. Let E be the

equational theory dec(enc(x, y), y) = x and θ = {dec(y1,y2)/x′}. We have that θ is a
closed E-solution of C. Note that θ′ = {dec(y1,k)/x′} is not an E-solution of C.

4 Symbolic Applied Pi Calculus

Intermediate extended processes (denoted A, B, C) are given by the grammar below.
They may be seen as an extended process in normal form.

P, Q, R := inter. plain process
0
P | Q
if M = N then P else Q
in(u, x).P
out(u, N).P

F, G, H := P inter. framed process
{M/x}
F | G

A, B, C := F inter. extended processes
νn.A

A symbolic process is an intermediate extended process together with a constraint
system. We require intermediate extended processes to be

Symbolic Bisimulation for the Applied Pi Calculus 139

– name and variable distinct (nv-distinct): bn(A)∩ fn(A) = bv (A)∩ fv (A) = ∅ and
any name and variable is bound at most once; and

– applied, meaning that each variable in dom(A) occurs only once in A.

Intuitively, in an applied process all active substitutions have been applied. For instance
the extended process out(c, x) | {M/x} is not applied, as x occurs twice. A symbolic
process is made up of two parts: a process and a constraint system. The nv-distinctness
condition allows us to link the names and the variables in the constraint systems to
those used in the process. We denote by ψ(A) the substitution obtained when taking
the active substitutions {M/x} in A. We now define the ↓ operator which transforms an
nv-distinct process into an intermediate process.

Definition 6 (A↓). Given an nv-distinct extended process A, the intermediate extended
process A↓ is defined inductively as follows.

0↓ = 0
{M/x}↓ = {M/x}

in(u, x).P↓ = νñ.in(u, x).P ′

out(u, N).P↓ = νñ.out(u, N).P ′
(νn.A)↓ = νn.(A↓)
(νx.A)↓ = Ã

if M = N then P else Q↓ = νñ.νm̃.if M = N then P ′ else Q′

(A | B)↓ = νñ.νm̃.(A′ | B′)(ψ(A′) ∪ ψ(B′))�

where P↓ = νñ.P ′, Q↓ = νm̃.Q′, A↓ = νñ.A′, B↓ = νm̃.B′, and Ã is A↓ but with
the unique occurrence of {M/x} replaced by 0.

For example, let A = νx.(in(c, y).νb.out(a, x) | {f(b)/x}). Then A↓ = νb.in(c, y).
out(a, f(b)). Note that the processes A and A↓ are bisimilar but not structurally equiv-
alent. As expected, an intermediate context is an intermediate extended process with a
hole instead of an intermediate extended process. An intermediate evaluation context is
an intermediate context whose hole is not under a conditional, an input or an output. We
also define what it means to apply an evaluation context on a constraint system. This is
needed because we define the semantics in a compositional way.

Definition 7 (constraint system C[C]). Let C = νñ.(| D) be an intermediate evalu-
ation context and e be a constraint. We have that

– C[e] = eψ(D) when e is a constraint of the form M = N , M �= N or gd(M);
– C[νṽ.σ � x] = νñ.νṽ.(σ ∪ ψ(D)) � x otherwise.

Given a constraint system C, we have that C[C] = {C[e] | e ∈ C}.

As we do not allow α-conversion we explicitly run intermediate extended processes in
a naming environment N : N ∪ X → {n, f, b, c}. Intuitively, N(u) = f if the name or
variable u occurs free in A, and N(u) = b if u has been bound and will not be used
again. N(u) = n means u is new and has not been used before, either as free or bound.
N(x) = c means that the variable x is a constraint variable (i.e. an input from the en-
vironment subject to constraints in C). This discipline helps us avoid name and variable
conflicts. If N(u) = t then the naming environment N′ = N[u �→ t′] is defined to be the
same as N except that N′(u) = t′; and N[U �→ t′] is defined as N[u1 �→ t′, . . . , un �→ t′]
if U ={u1, . . . , un}. If U is a set of names and variables then N(U)={N(u) | u∈U},

140 S. Delaune, S. Kremer, and M. Ryan

and we write N(U) = t if N(U) ⊆ {t}. A naming environment N is compatible with
an intermediate extended process A and a constraint system C if

– N(fn(A)) = f
– N(fv(A)) ⊆ {f, c}

– N(bn(A) ∪ bv(A)) = b
– N(x) = c iff x ∈ cv(C)

– N(names(C)) ⊆ {f, b}
– N(vars(C)) ⊆ {f, c, b}

Definition 8 (Symbolic process). A symbolic process is a triple (A ; C ; Ns) where A
is an intermediate extended process, C a constraint system and Ns a naming environ-
ment compatible with A and C. The symbolic process (A ; C ; N) is well-formed if C is
well-formed and if φ(A) � max{φ | φ � x ∈ C} when Ded(C) �= ∅.

Given a well-formed symbolic process (A ; C ; N) we define by SolE(C ; N) the set of
solutions of C which are compatible with N, i.e.

SolE(C, N) = {θ | θ ∈ SolE(C), N(names(img(θ)) ∪ vars(img(θ))) = f}.

Example 3. Let A = out(c, x), C = {νa.νb.{b/y} � x, x �= c} and N be a naming en-
vironment compatible with A and C such that N(d) = f. Let θ1 = {d/x}, θ2 = {y/x}.
We have that θ1, θ2 ∈ SolE(C, N). Hence out(c, d) (resp. out(c, b)) is the concrete pro-
cess obtained by the solution θ1 (resp. θ2). However, note that out(c, a) is not a con-
cretization of (A ; C ; N).

4.1 Symbolic Semantics

Symbolic structural equivalence (≡s) is the smallest equivalence relation on
well-formed symbolic processes such that:

PAR-0s (A ; C ; N) ≡s (A | 0 ; C ; N)
PAR-As (A | (B | D) ; C ; N) ≡s ((A | B) | D ; C ; N)
PAR-Cs (A | B ; C ; N) ≡s (B | A ; C ; N)
NEW-Cs (νn.νm.A ; C ; N) ≡s (νm.νn.A ; C ; N)

(A ; CA ; N) ≡s (B ; CB ; N)
(C[A] ; C[CA] ; N′) ≡s (C[B] ; C[CB] ; N′)

where N′ = N[S �→ b] for some set
of names S such that N(S) = f

Symbolic internal reduction →s is the smallest relation on well-formed symbolic pro-
cesses closed under ≡s, application of intermediate evaluation context and such that:

COMMs (out(u,M).P | in(v, x).Q ; C ; N)→s
(P | Q{M/x} ; C ∪ {u = v , gd(u) , gd(v)} ; N)

where u, v ∈ Nch ∪ (cv(C) ∩ Xch).

THENs (ifM = N then P else Q ; C ; N)→s (P ; C ∪ {M = N} ; N)

ELSEs (ifM = N then P else Q ; C ; N)→s (Q ; C ∪ {M �= N ; gd(M) ; gd(N)} ; N)

Symbolic labelled reduction is the smallest relation closed under symbolic structural
equivalence (≡s) and such that

Symbolic Bisimulation for the Applied Pi Calculus 141

INs (in(u, x).P ; C ; N)
in(u,y)−−−−→s (P{y/x} ; C∪{0 � y, gd(u)} ; N[y �→ c])

where u ∈ Nch∪(Xch ∩ cv(C)), N(y)=n.

OUT-CHs (out(u, v).P ; C ; N)
out(u,v)−−−−−→s (P ; C∪{gd(u), gd(v)} ; N)

where u, v ∈ Nch∪(Xch ∩ cv(C)).
OUT-Ts

(out(u, M).P ; C ; N)
νx.out(u,x)−−−−−−−→s (P | {M/x} ; νx.C∪{gd(u)} ; N[x �→ f])

where x ∈ Xb, N(x)=n.

OPEN-CHs (A ; C ; N)
out(u,c)−−−−−→s (A′ ; C′ ; N′) u �=c, d ∈ Nch, N(d)=n

(νc.A ; νc.C ; N[c �→ b])
νd.out(u,d)−−−−−−−→s (A′{d/c} ; νd.(C′{d/c}) ; N′[c �→ b, d �→ f])

SCOPEs
(A ; C ; N) α−→s (A′ ; C′ ; N′) n does not occur in α

(νn.A ; νn.C ; N[n �→ b]) α−→s (νn.A′ ; νn.C′ ; N[n �→ b])

PARs
(A ; C ; N) α−→s (A′ ; C′ ; N′)

(A | B ; C | ψ(B) ; N) α−→s (A′ | B ; C | ψ(B) ; N′)

We may note that the rules INs and OPEN-CHs require “on-the-fly renaming”. This
will be needed in the bisimulation because we require both the left- and right-hand
processes to use the same label without allowing α-conversion. When a transition is ex-
ecuted under a context (by the rules SCOPEs and PARs) the constraint system must
also be put in the context (according to Definition 7). In particular, these rules al-
low to add restrictions and active substitutions to the constraint 0 � y inserted by
the rule INs.

Example 4. To illustrate our symbolic semantics, consider the process (A ; ∅ ; N)
where A = νk.νs.(in(c, x).if x = s then out(c, ok) | {enc(s,k)/y1} | {k/y2}) and N is
a naming environment compatible with A. Let x′ be a variable such that N(x′) = n.

(A ; ∅ ; N)
in(c,x′)−−−−−→s (A′ ; {νk.νs.{enc(s,k)/y1 ,

k /y2} � x′ , gd(c)} ; N[x′ �→ c])

−−→s (νk.νs.(out(c, ok) | {enc(s,k)/y1} | {k/y2}) ; C ; N[x′ �→ c])

where A′ = νk.νs.(if x′ = s then out(c, ok) | {enc(s,k)/y1} | {k/y2}) and C is the
system {νk.νs.{enc(s,k)/y1 ,

k /y2} � x′ , gd(c) , x′ = s}. Let θ = {dec(y1,y2)/x′}. We
have θ ∈ SolE(C ; N[x′ �→ c]) (see Example 2).

4.2 Symbolic Equivalences

We define symbolic static equivalence using a similar encoding as [5]. The tests used
to distinguish two frames in the definition of static equivalence are encoded by means
of two additional deduction constraints on fresh variables x, y and by the
equation x = y.

Definition 9 (symbolic static equivalence (∼s)). Two closed well-formed symbolic
processes are statically equivalent, written (As ; CA ; N) ∼s (Bs ; CB ; N) if for

142 S. Delaune, S. Kremer, and M. Ryan

some variables x, y such that N({x, y}) = n, the constraint systems C′A, C′B have the
same basis and SolE(C′A ; N[x, y �→ c]) = SolE(C′B ; N[x, y �→ c]) where

– C′A = CA∪{φ(As) � x , φ(As) � y , x = y}, and
– C′B = CB ∪ {φ(Bs) � x , φ(Bs) � y , x = y}.

Proposition 1 (soundness of ∼s). Consider two closed and well-formed symbolic pro-
cesses such that (As ; CA ; N) ∼s (Bs ; CB ; N). We have that:

1. SolE(CA ; N) = SolE(CB ; N), and
2. for all closed θ ∈ SolE(CA ; N) we have φ(As(θσA)�) ∼ φ(Bs(θσB)�), where σA

(resp. σB) is the substitution corresponding to the maximal frame of CA (resp. CB).

Definition 10 (Symbolic labelled bisimilarity (≈s)). Symbolic labelled bisimilarity is
the largest symmetric relation R on closed well-formed symbolic processes with same
naming environment, such that (As ; CA ; N) R (Bs ; CB ; N) implies

1. (As ; CA ; N) ∼s (Bs ; CB ; N)
2. if (As ; CA ; N) →s (A′s ; C′A ; N) with SolE(C′A ; N) �= ∅, then there exists

(B′s ; C′B ; N) such that (Bs ; CB ; N) →∗s (B′s ; C′B ; N) and (A′s ; C′A ; N) R
(B′s ; C′B ; N);

3. if (As ; CA ; N) αs→s (A′s ; C′A ; N′) with SolE(C′A ; N′) �= ∅, then there exists
(B′s ; C′B ; N′) such that (Bs ; CB ; N) →∗s

αs−→s→∗s (B′s ; C′B ; N′), and
(A′s ; C′A ; N′) R (B′s ; C′B ; N′).

Baudet [6] presents a (co-NP) decision procedure to check ∼s (condition 1) for con-
straint systems without disequality constraints and subterm convergent1 equational the-
ories. This includes among others the well-known Dolev-Yao theory used to model
symmetric (resp. asymmetric) encryption with composed keys, signatures and pairing.
Building on this existing work, we obtain a procedure to decide our symbolic bisim-
ulation for the fragment of the finite applied pi calculus without else branches in the
conditional.

Theorem 1 (Main result). Let A and B be two closed, nv-distinct extended processes
and N be a naming environment compatible with A↓, B↓. We have that

(A↓ ; ∅ ; N) ≈s (B↓ ; ∅ ; N) implies A ≈ B.

Note that limiting the theorem to nv-distinct processes is not a real restriction. If we
want to prove that A ≈ B, we can construct by α-conversion two nv-distinct pro-
cesses A′, B′ such that A′ ≡ A and B′ ≡ B. Showing A′ ≈ B′ implies that A ≈ B,
since ≈ is closed under structural equivalence.

Theorem 1 is proved by using our intermediate semantics. We define labelled bisim-
ilarity on intermediate extended processes, and show it to coincide with labelled bisim-
ilarity in applied pi. Soundness and completeness of the symbolic semantics is shown
with respect to the intermediate semantics. This allows to obtain soundness of the sym-
bolic bisimulation. All the details are given in [13].

1 An equational theory induced by a finite set of equations M = N where N is a subterm of M
and such that the associated rewriting system is convergent.

Symbolic Bisimulation for the Applied Pi Calculus 143

5 Discussion, Related and Future Work

5.1 Sources of Incompleteness

Our techniques suffer from the same sources of incompleteness as the ones described
for the spi calculus in [10]. In a symbolic bisimulation the instantiation of input vari-
ables is postponed until the point at which they are actually used, leading to a finer
relation. We illustrate this point on an example, similar to one given in [10].

Example 5. Consider the two following processes:

P1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | if x = a then in(c1, z).out(c2, a))
Q1 = νc1.in(c2, x).(out(c1, b) | in(c1, y) | in(c1, z).if x = a then out(c2, a))

We have that P1 ≈ Q1 whereas (P1 ; ∅ ; N) �≈s (Q1 ; ∅ ; N) for any compatible
naming environment N. Depending on the value of the input, i.e. if x is equal to a or
not, P1 and Q1 know if the test x = a will succeed or not. However, on the symbolic
side, the instantiation of x is postponed until the moment where x is really used, i.e.
until the moment of the test itself, when it is too late to choose the right branch.

5.2 Related Work

A pioneering work has been done by Henessy and Lin [14] for value-passing CCS.
However, the result which is most closely related to ours is by Borgström et al. [10]:
they define a symbolic bisimulation for the spi calculus with the same sources of in-
completeness as we have. However, our treatment of general equational theories is non
trivial as illustrated by the problems implied for structural equivalence.

For many important equational theories, static equivalence has been shown to be
decidable in [1]. More interestingly, some works have also been done to automate
observational equivalence. The ProVerif tool [7] automates observational equivalence
checking for the applied pi calculus (with process replication), but since the problem
is undecidable the technique it uses is necessarily incomplete. The tool aims at prov-
ing a finer equivalence relation and relies on easily matching up the execution paths
of the two processes [8]. In his thesis, Baudet [6] presents a decision procedure for
a similar equivalence, called diff-equivalence, in a simplified process calculus. Exam-
ples where this equivalence relation is too fine occur when proving the observational
equivalence required to show vote-privacy [15,12]. Although our symbolic bisimula-
tion is not complete, we are able to conclude on examples where ProVerif fails. For in-
stance, ProVerif is unable to prove that the processes out(c, a) | out(c, b) and out(c, b) |
out(c, a) are bisimilar whereas of course we are able to deal with such examples. A
more interesting example, for which our symbolic semantics plays an important role is
as follows.

Example 6. Consider the following two processes

P = νc1.(in(c2, x).out(c1, x).out(c2, a) | in(c1, y).out(c2, y))
Q = νc1.(in(c2, x).out(c1, x).out(c2, x) | in(c1, y).out(c2, a))

144 S. Delaune, S. Kremer, and M. Ryan

These two processes are labelled bisimilar and our symbolic labelled bisimilation
is complete enough to prove this. In particular, let P ′ = νc1.(out(c1, x

′).out(c2, a) |
in(c1, y).out(c2, y)) and Q′ = νc1.(out(c1, x

′).out(c2, x
′) | in(c1, y).out(c2, a)). The

relation R, that witnesses the symbolic bisimulation, includes

(P ; ∅ ; N) R (Q ; ∅ ; N)

(P ′ ; {νc1.0 � x′ , gd(c2)} ; N′) R (Q′ ; {νc1.0 � x′ , gd(c2)} ; N′)
(νc1.(out(c2, a) | out(c2, x

′)) ;
{νc1.0 � x′ , gd(c2) , gd(c1)} ; N′) R (νc1.(out(c2, x

′) | out(c2, a)) ;
{νc1.0 � x′ , gd(c2) , gd(c1)} ; N′)

The technique used in ProVerif will generally fail in the case where the two processes
take different branches at some point. This is the case in Example 6: after a synchro-
nisation (modelled by a communication on the private channel c1) between the two
parallel components of process P (resp. Q), the output action of the left component
of P matches the output action of the right component of Q. This example is actually
inspired by the problems we encountered when we tried to verify privacy in electronic
voting protocols using ProVerif. In order to establish privacy of an electronic voting
protocol (according to the definition given in [15]), we need a bisimulation relation, as
the one described in this paper, which is coarse enough to allow processes to differ on
their structure. We think that our symbolic bisimulation is complete enough to deal with
many other interesting cases since other privacy and anonymity properties are facing the
same difficulty.

5.3 Future Work

The obvious next step is to study the equivalence of solutions for constraint systems
under different equational theories. Promising results have already been shown in [5]
for a significant class of equational theories but for constraint systems that do not have
disequalities. These results readily apply for deciding our symbolic bisimulation on
the fragment without else branches in conditionals. We plan to implement an auto-
mated tool for checking observational equivalence. In particular we aim at automating
proofs arising in case studies of electronic voting protocols which currently rely on
hand proofs [12].

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
Theoretical Computer Science 387(1-2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. 28th
Symposium on Principles of Programming Languages, pp. 104–115 (2001)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. In: Proc.
4th Conference on Computer and Communications Security, pp. 36–47. ACM Press, New
York (1997)

4. Amadio, R., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes with crypto-
graphic functions. Theoretical Computer Science 290, 695–740 (2002)

Symbolic Bisimulation for the Applied Pi Calculus 145

5. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In: Proc. 12th
Conference on Computer and Communications Security, pp. 16–25. ACM Press, New York
(2005)

6. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calculatoires.
Thèse de doctorat, LSV, ENS Cachan, France (January 2007)

7. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proc.
14th Computer Security Foundations Workshop, pp. 82–96. IEEE Comp. Soc. Press, Los
Alamitos (2001)

8. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: Proc. 20th Symposium on Logic in Computer Science, pp. 331–340.
IEEE Comp. Soc. Press, Los Alamitos (2005)

9. Boreale, M., Nicola, R.D.: A symbolic semantics for the pi-calculus. Information and Com-
putation 126(1), 34–52 (1996)

10. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the spi calculus. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, Springer, Heidelberg (2004)

11. Delaune, S., Jacquemard, F.: A decision procedure for the verification of security protocols
with explicit destructors. In: Proc. 11th ACM Conference on Computer and Communications
Security (CCS 2004), pp. 278–287. ACM Press, New York (2004)

12. Delaune, S., Kremer, S., Ryan, M.D.: Coercion-resistance and receipt-freeness in electronic
voting. In: Proc. 19th Computer Security Foundations Workshop, pp. 28–39. IEEE Comp.
Soc. Press, Los Alamitos (2006)

13. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi calculus.
Research Report LSV-07-14, LSV, ENS Cachan, France, pp. 47 (April 2007)

14. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138(2), 353–
389 (1995)

15. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi-calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005)

16. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol
analysis. In: Proc. 8th Conference on Computer and Communications Security, pp. 166–175
(2001)

Non-mitotic Sets

Christian Glaßer1, Alan L. Selman2,�, Stephen Travers1,��, and Liyu Zhang3

1 Julius-Maximilians-Universität Würzburg, Germany
{glasser,travers}@informatik.uni-wuerzburg.de

2 University at Buffalo, USA
selman@cse.buffalo.edu

3 University of Texas at Brownsville, USA
liyu.zhang@utb.edu

Abstract. We study the question of the existence of non-mitotic sets in
NP. We show under various hypotheses that

– 1-tt-mitoticity and m-mitoticity differ on NP.
– T-autoreducibility and T-mitoticity differ on NP (this contrasts the

situation in the recursion theoretic setting, where Ladner showed
that autoreducibility and mitoticity coincide).

– 2-tt autoreducibility does not imply weak 2-tt-mitoticity.
– 1-tt-complete sets for NP are nonuniformly m-complete.

1 Introduction

A recursive set A is T-mitotic if there is a set B ∈ P such that A ≡p
T A ∩

B ≡p
T A ∩ B. Ambos-Spies [AS84] introduced this notion of mitoticity into

complexity theory and he also showed how to construct recursive non-mitotic
sets. Buhrman, Hoene, and Torenvliet [BHT98] showed that EXP contains non-
mitotic sets. Here we investigate the question of the existence of non-mitotic sets
in NP. This is a difficult question because there are no natural examples of non-
mitotic sets. Natural NP-complete sets are all paddable, and for this reason are
T-mitotic. Moreover, Glasser et al. [GPSZ06] proved that all NP-complete sets
are m-mitotic (and therefore T-mitotic). Also, nontrivial sets belonging to the
class P are T-mitotic. So any unconditional proof of the existence of non-mitotic
sets in NP would prove at the same time that P �= NP.

Our first result was prompted by the question of whether NP contains sets that
are not m-mitotic. We prove that if EEE �= NEEE∩coNEEE, then there exists an
L ∈ (NP∩coNP)−P that is 1-tt-mitotic but not m-mitotic. From this, it follows
that under the same hypothesis, 1-tt-reducibility and m-reducibility differ on sets
in NP. On the one hand, this consequence explains the need for a reasonably
strong hypothesis. On the other hand, with essentially known techniques using

� This work was done while the author was visiting the Department of Computer
Science at the University of Würzburg, Germany. Research supported in part by
NSF grant CCR-0307077 and by the Alexander von Humboldt-Stiftung.

�� Supported by the Konrad-Adenauer-Stiftung.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 146–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Non-mitotic Sets 147

Table 1. Summary of our results related to NP

Assumption Conclusion Remark

NP ∩ coNP contains
n-generic sets

∃A ∈ NP that is 2-tt-auto-
reducible but not T-mitotic

A ∈ (NP ∩ coNP) − P

EEE �= NEEE ∩ coNEEE ∃A ∈ NP that is 1-tt-mitotic
but not m-mitotic

A ∈ (NP ∩ coNP) − P

E �= NE ∩ coNE ∃A, B ∈ NP such that A≤p
1−ttB

but A �≤p
mB

A, B ∈ (NP ∩ coNP) − P

NP
i.o.

⊆/ coNP 1-tt-complete sets for NP are
nonuniformly m-complete

P-selective sets, we show that 1-tt-reducibility and m-reducibility separate within
NP under the weaker hypothesis that E �= NE ∩ coNE.

This foray into questions about 1-tt-reducibility and m-reducibility provides
a segue into our next result: We would like to know whether 1-tt-complete sets
for NP are m-complete as well. We prove under a reasonable hypothesis that
every 1-tt-complete sets for NP is complete under nonuniform m-reductions.
The hypothesis states that the NP-complete set SAT does not infinitely-often
belong to the class coNP.

In Glasser et al. [GPSZ06] the authors proved that every m-autoreducible
set is m-mitotic. The same result follows for 1-tt-autoreducibility. In contrast,
Ambos-Spies [AS84] proved that T-autoreducible does not imply T-mitotic. Also,
Glasser et al. [GPSZ06] constructed a 3-tt-autoreducible set that is not weakly-
T-mitotic. Hence, it is known that autoreducibility and mitoticity are not equiv-
alent for all polynomial-time-bounded reductions between 3-tt-reducibility and
Turing-reducibility. However, the question for 2-tt-reducibility has been open.
Here we settle this question by showing the existence of a set in EXP that is
2-tt-autoreducible, but not weakly 2-tt-mitotic.

The last result to be proved gives evidence of non-mitotic sets in NP. We show
that if NP∩coNP contains n-generic sets, then there exists a set L ∈ NP∩coNP
such that L is 2-tt-autoreducible and L is not T-mitotic. Roughly speaking, a set
L is n-generic [ASFH87] if membership of x in L cannot be predicted from the
initial segment L|x in time 2n, for almost all x, where |x| = n. This result is inter-
esting, since under the mentioned hypothesis it shows that within NP the notions
of T-autoreducibility and T-mitoticity differ. In contrast, Ladner [Lad73] showed
that in the recursion theoretic setting, autoreducibility and mitoticity coincide.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters,
Σ∗ denotes the set of all words, and |w| denotes the length of a word w. A tally

148 C. Glaßer et al.

set is a subset of 0∗. The language accepted by a machine M is denoted by
L(M). L denotes the complement of a language L and coC denotes the class of
complements of languages in C. FP denotes the class of functions computable in
deterministic polynomial time.

We recall standard polynomial-time reducibilities [LLS75]. A set B many-
one-reduces to a set C (m-reduces for short; in notation B≤p

mC) if there exists
a total, polynomial-time-computable function f such that for all strings x, x ∈
B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if

there exists a deterministic polynomial-time-bounded oracle Turing machine M
such that for all strings x, x ∈ B ⇔ M with C as oracle accepts the input x.

Let Q(M, x) denote the set of all queries to the oracle made by the nonadaptive
oracle Turing machine M on input x.

A set B truth-table-reduces to a set C (tt-reduces for short; in notation B≤p
ttC)

if there exists a deterministic polynomial-time-bounded oracle Turing machine
M that behaves non-adaptively such that for all strings x, x ∈ B ⇔ M with C
as oracle accepts the input x. This means there exists a polynomial-time function
g such that on input x, g(x) = cq1c . . . cqn where c �∈ Σ and for all 1 ≤ i ≤ n,
qi ∈ Σ∗, and Q(M, x) = {q1, . . . , qn}.

Furthermore, B 1-tt reduces to C (in notation B≤p
1−ttC) if for some M ,

B≤p
ttC via M and for all x, |Q(M, x)| = 1. Similarly, we define 2-tt, and so on.

If B≤p
mC and C≤p

mB, then we say that B and C are many-one-equivalent (m-
equivalent for short, in notation B ≡p

m C). Similarly, we define equivalence for
other reducibilities. A set B is many-one-hard (m-hard for short) for a complexity
class C if every B ∈ C m-reduces to B. If additionally B ∈ C, then we say
that B is many-one-complete (m-complete for short) for C. Similarly, we define
hardness and completeness for other reducibilities. We use “C-complete” as an
abbreviation for m-complete for C.

A set B is p-selective [Sel79] if there exists a total function f ∈ FP (the
selector function) such that for all x and y, f(x, y) ∈ {x, y} and if either of x
and y belongs to B, then f(x, y) ∈ B.

Definition 1 ([AS84]). A set A is polynomial-time T-autoreducible (T-auto-
reducible, for short) if there exists a polynomial-time-bounded oracle Turing ma-
chine M such that A = L(MA) and for all x, M on input x never queries x. A
set A is polynomial-time m-autoreducible (m-autoreducible, for short) if A≤p

mA
via a reduction function f such that for all x, f(x) �= x.

Let ≤p
r be a polynomial time reducibility.

Definition 2 ([AS84]). A recursive set A is polynomial-time r-mitotic (r-mi-
totic, for short) if there exists a set B ∈ P such that:

A ≡p
r A ∩ B ≡p

r A ∩ B.

A recursive set A is polynomial-time weakly r-mitotic (weakly r-mitotic, for
short) if there exist disjoint sets A0 and A1 such that A0 ∪ A1 = A, and

A ≡p
r A0 ≡p

r A1.

Non-mitotic Sets 149

Let EEE = DTIME(222O(n)

) and let NEEE = NTIME(222O(n)

). A is paddable
[BH77] if there exists p(·, ·), a polynomial-time computable, polynomial-time
invertible function, such that for all a and x, a ∈ A ⇐⇒ p(a, x) ∈ A.

3 Separation of Mitoticity Notions

Ladner, Lynch, and Selman [LLS75] and Homer [Hom90, Hom97] ask for reason-
able assumptions that imply separations of polynomial-time reducibilities within
NP. In this section we demonstrate that a reasonable assumption on exponential-
time classes allows a separation of mitoticity notions within NP. This implies
a separation of the reducibilities ≤p

m and ≤p
1−tt within NP. Then we show the

same separation under an even weaker hypothesis. On the technical side, a key
ingredient to our proof is the observation by Beigel and Feigenbaum [BF92] that
very sparse sets lack certain redundancy properties.

Theorem 3. If EEE �= NEEE ∩ coNEEE, then there exists an L ∈ (NP ∩
coNP) − P that is 1-tt-mitotic but not m-mitotic.

The proof of this theorem can be found in the appendix.
Selman [Sel82] showed under the hypothesis E �= NE ∩ coNE that there exist

A, B ∈ NP − P such that A tt-reduces to B but A does not positive-tt-reduce
to B. The separation of mitoticity notions given in the last theorem allows us
to prove a similar statement:

Corollary 4. If EEE �= NEEE∩coNEEE, then there exist A, B ∈ (NP∩coNP)−
P such that A≤p

1−ttB, but A �≤p
mB.

However, a weaker assumption separates 1-tt-reducibility from m-reducibility
within NP.

Theorem 5. If E �= NE ∩ coNE, then there exist A, B ∈ (NP ∩ coNP) − P such
that A≤p

1−ttB, but A �≤p
mB.

We now discuss that autoreducibility and weak mitoticity do not coincide for
2-tt reducibility. This completes a result by Glaßer et al. [GPSZ06] which shows
that for all reducibilities between 3-tt and T, autoreducibility does not imply
weak mitoticity. We present a counterexample in EXP, i.e., we construct a set
L ∈ EXP such that L is 2-tt-autoreducible but not weakly 2-tt-mitotic.

Theorem 6. There exists L ∈ SPARSE ∩ EXP such that

– L is 2-tt-autoreducible, but
– L is not weakly 2-tt-mitotic.

The proof is based on the diagonalization proof of Theorem 4.2 in Glasser et al.
[GPSZ06]. However, a straightforward adaptation does not work. The reason is
that if one considers groups of three strings at certain super-exponential lengths
for diagonalization, the set constructed as in the previous proof will have to be

150 C. Glaßer et al.

2-tt-mitotic if we were to make it 2-tt-autoreducible. The new idea is to consider
two groups of three strings at super-exponential lengths that overlap at one
string. This way we can make the set 2-tt-autoreducible while not 2-tt-mitotic.
The detailed construction is omitted due to space restrictions.

The full paper demonstrates that the proof technique cannot be generalized
to show that there exists a set in EXP that is 2-tt-autoreducible, but not weakly
T-mitotic. So this question remains open.

4 Non-mitotic Sets of Low Complexity

Buhrman, Hoene, and Torenvliet [BHT98] show that EXP contains non-m-
mitotic sets. We are interested in constructing non-T-mitotic sets in NP. Recall
that the existence of such sets implies that P �= NP and hence we cannot expect
to prove this without a sufficiently strong hypothesis. Moreover, the same holds
for the non-existence of non-m-mitotic sets in NP, since this implies NP �= EXP
[BHT98].

It is known that mitoticity implies autoreducibility [AS84], hence it suffices to
construct non-T-autoreducible sets in NP. Beigel and Feigenbaum [BF92] con-
struct incoherent sets in NP under the assumption that NEEEXP �⊆ BPEEEXP.
In particular, these sets are non-T-autoreducible. Moreover, Buhrman and
Torenvliet [BT96] show that if NEE �⊆ EE, there are non-T-autoreducible sets
in NP.

Under a slightly stronger assumption, we construct non-T-autoreducible sets
in (NP ∩ coNP) − P. We then prove that 2-tt-autoreducibility and T-mitoticity
(and hence r-autoreducibility and r-mitoticity for every reduction r between 2-tt
and T) do not coincide for NP. To show this, we assume that NP∩coNP contains
generic sets.

Corollary 7. If EEE �= NEEE∩coNEEE, then there exists C ∈ (NP∩coNP)−P
such that

– C is not T-autoreducible and
– C is not T-mitotic.

Ladner [Lad73] showed that autoreducibility and mitoticity coincide for com-
putably enumerable sets. Under the strong assumption that NP∩coNP contains
n-generic sets, we can show that the similar question in complexity theory has
a negative answer.

The notion of resource-bounded genericity was defined by Ambos-Spies, Fleis-
chhack, and Huwig [ASFH87]. We use the following equivalent definition [BM95],
[PS02], where L(x) denotes L’s characteristic function on x.

Definition 8. For a set L and a string x let L|x = {y ∈ L
∣
∣ y < x}. A de-

terministic oracle Turing machine M is a predictor for a set L, if for all x,
ML|x(x) = L(x). L is a.e. unpredictable in time t(n), if every predictor for L
requires more than t(n) time for all but finitely many x.

Non-mitotic Sets 151

Definition 9. A set L is t(n)-generic if it is a.e. unpredictable in time t(2n).

This is equivalent to say that for every oracle Turing machine M , if ML|x(x) =
L(x) for all x, then the running time of M is at least t(2|x|) for all but finitely
many x.

For a given set L and two strings x and y, there are 4 possibilities for the
string L(x)L(y). For 1-cheatable sets L, a polynomial-time-computable function
can reduce the number of possibilities to 2.

Definition 10 ([Bei87, Bei91]). A set L is 1-cheatable if there exists a poly-
nomial-time-computable function f such that f : Σ∗ × Σ∗ −→ {0, 1}2 × {0, 1}2

and for all x and y, the string L(x)L(y) belongs to f(x, y).

Note that in this definition and in the following text we identify the pair f(x, y) =
(w1, w2) with the set {w1, w2}. Moreover, if f(x, y) = (w1, w2), then f(x, y)R

denotes the pair (wR
1 , wR

2) where wR denotes the reverse of the word w.

Theorem 11. If NP ∩ coNP contains n-generic sets, then there exists a tally
set S ∈ NP ∩ coNP such that

– S is 2-tt-autoreducible and
– S is not T-mitotic.

Proof. Let t(0) = 2 and t(n+1) = 22t(n)
be a tower function. Let A′ = {0t(n)

∣
∣n ≥

0}, A′′ = A′ ∪0A′, and A′′′ = A′ ∪0A′ ∪00A′. In this way, the number of primes
indicates the number of words in the set with length around t(n) for each n. By
assumption, there exists an n-generic set L ∈ NP ∩ coNP. Define L′′ = L ∩ A′′

and observe that L′′ ∈ NP ∩ coNP.

Claim 12. L′′ is not 1-cheatable.

Assuming that L′′ is 1-cheatable we will show that L is not n-generic. Let f be
a function that witnesses the 1-cheatability of L′′. Without loss of generality we
may assume that if f(x, y) = (v, w), then v �= w.

g(x, y) =def

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(x, y) : if x < y

f(y, x)R : if x > y

(00, 11) : if x = y

Observe that also g witnesses the 1-cheatability of L′′ such that if g(x, y) =
(v, w), then v �= w. In addition, for all x and y,

g(x, y) = g(y, x)R. (1)

We describe a predictor M for L on input x.

1. if x /∈ A′′ then accept if and only if x ∈ L
2. // here either x = 0t(n) or x = 0t(n)+1 for some n

152 C. Glaßer et al.

3. if x = 0t(n) then let y = 0t(n)+1 else let y = 0t(n)

(i.e., with y we compute the neighbor of x in A′′)
4. compute g(x, y) = (ab, cd) where a, b, c, and d are suitable bits
5. if a = c then return a
6. if b = d then accept if and only if x ∈ L
7. // here ab = cd and hence g(x, y) = {00, 11} or g(x, y) = {01, 10}
8. if a = b and |x| > |y| then accept if and only if y belongs to

the oracle L|x
9. if a = b and |x| ≤ |y| then accept if and only if x ∈ L
10. // here g(x, y) = {01, 10}
11. if |x| > |y| then accept if and only if y does not belong to the

oracle L|x
12. accept if and only if x ∈ L

In the algorithm, the term accept if and only if x ∈ L means that first,
in deterministic time 2nO(1)

, we find out whether x belongs to L, and then we
accept accordingly.

We observe that M is a predictor for L: In line 5, M predicts correctly, since
g(x, y) = (ab, ad) and therefore, L(x) = a. M predicts correctly in line 8, since
g(x, y) = {00, 11} implies x ∈ L ⇔ y ∈ L and |y| < |x| implies y ∈ L|x ⇔ y ∈ L.
M predicts correctly in line 11, since g(x, y) = {01, 10} implies x ∈ L ⇔ y /∈ L
and again |y| < |x| implies y ∈ L|x ⇔ y ∈ L. Hence M is a predictor for L.

If we do not take the lines 1, 6, 9, and 12 into account, then the running time
of M is polynomially bounded, say by the polynomial p. Now we are going to
show the following.

For all n, at least one of the following holds: ML|x(x) stops within p(|x|) steps
or ML|y(y) stops within p(|y|) steps, where x = 0t(n) and y = 0t(n)+1. (∗)

Assume (∗) does not hold for a particular n, and let x = 0t(n) and y = 0t(n)+1.
Hence, both computations, ML|x(x) and ML|y(y) must stop in one of the lines
1, 6, 9, and 12. Since, x, y ∈ A′′, these computations do not stop in line 1.

Assume ML|x(x) stops in line 6. In this case, g(x, y) = (ab, cb). By (1), the
computation ML|y(y) computes the value g(y, x) = (ba, bc) in line 4. So ML|y(y)
stops in line 5, which contradicts our observation that we must stop in the lines
6, 9, or 12. This shows that ML|x(x) does not stop in line 6. Analogously we
obtain that ML|y(y) does not stop in line 6. So both computations must stop in
line 9 or line 12.

ML|y(y) does not stop in line 9, since in this computation, the second condi-
tion in line 9 evaluates to false. So ML|y(y) stops in line 12. However, this is not
possible, since ML|y(y) would have stopped already in line 11. This proves (∗).

From (∗) it follows that for infinitely many x, ML|x(x) stops within p(|x|)
steps. Hence L is not (log p(n))-generic and in particular, not n-generic. This
contradicts our assumption on L. (Note that we obtain also a contradiction if we
assume L to be t(n)-generic such that t(n) > c log n for all c > 0.) This finishes
the proof of Claim 12.

Non-mitotic Sets 153

So far we constructed an L′′ ∈ NP ∩ coNP such that L′′ ⊆ A′′ and L′′ is
not 1-cheatable. Now we define a set L′′′ ⊆ A′′′ (this will be the set asserted
in the theorem). For n ≥ 0 let xn = 0t(n), yn = 0t(n)+1, zn = 0t(n)+2, and
cn = L′′(xn)L′′(yn). Define L′′′ to be the unique subset of A′′′ that satisfies the
following conditions where dn = L′′′(xn)L′′′(yn)L′′′(zn):

1. if cn = 00 then dn = 000
2. if cn = 01 then dn = 110
3. if cn = 10 then dn = 101
4. if cn = 11 then dn = 011

Observe that L′′′ is a tally set in NP ∩ coNP. Moreover, note that for all n,
either 0 or 2 words from {xn, yn, zn} belong to L′′′. This implies that L′′′ is 2-tt-
autoreducible: If the input x is not in A′′′, then reject. Otherwise, determine the n
such that x ∈ {xn, yn, zn}. Ask the oracle for the two words in {xn, yn, zn}−{x}
and output the parity of the answers.

Claim 13. L′′′ is not T-mitotic.

Assume L′′′ is T-mitotic, and let S ∈ P be a witnessing separator. Let L′′′≤p
TL′′′∩

S via machine M1 and let L′′′≤p
TL′′′ ∩ S via machine M2. We will obtain a con-

tradiction by showing that L′′ is 1-cheatable. We define the witnessing function
h(x, y) as follows.

1. If x = y then output (00, 11).
2. If |x| > |y| then output h(y, x)R.
3. If x /∈ A′′ then output (00, 01).
4. If y /∈ A′′ then output (00, 10).
5. // Here |x| < |y| and x, y ∈ A′′.
6. If |y| − |x| > 1 then let a = L′′(x) and output (a0, a1).
7. Determine n such that x = xn and y = yn.
8. Distinguish the following cases.

(a) S∩{xn, yn, zn} = ∅: Simulate M2(xn), M2(yn), and M2(zn) where oracle
queries q of length ≤ t(n − 1) + 2 are answered according to q ∈ L′′′ ∩
S and all other oracle queries are answered negatively. Let dn be the
concatenation of the outputs of these simulations. Let cn be the value
corresponding to dn according to the definition of L′′′. Output (cn, 00).

(b) S ∩ {xn, yn, zn} = ∅: Do the same as in step 8a, but use M1 instead of
M2 and answer short queries q according to q ∈ L′′′ ∩ S.

(c) |S ∩ {xn, yn, zn}| = 1: Without loss of generality we assume xn ∈ S and
yn, zn /∈ S. For r ∈ {yes, no} we simulate M2(xn), M2(yn), and M2(zn)
where oracle queries q of length ≤ t(n − 1) + 2 are answered according
to q ∈ L′′′ ∩ S, the oracle query xn is answered with r, and all other
oracle queries q are answered negatively. Let dr be the concatenation of
the outputs of these simulations. Let cr be the value corresponding to
dr according to the definition of L′′′ (if such cr does not exist, then let
cr = 00). Output (cyes, cno).

(d) |S ∩ {xn, yn, zn}| = 1: Do the same as in step 8c, but use M1 instead of
M2 and answer short queries q according to q ∈ L′′′ ∩ S.

154 C. Glaßer et al.

We argue that h is computable in polynomial time. Note that if we recursively
call h(y, x) in step 2, then the computation of h(y, x) will not call h again. So
the recursion depth of the algorithm is ≤ 2. In step 6, |x| < |y| and x, y ∈ A′′,
since |x| = |y| implies that we stop in line 3 or 4. From the definition of A′′ it
follows that there exists an n such that |x| ≤ t(n − 1) + 1 and |y| ≥ t(n). So the
computation of a in step 6 takes time

≤ 2|x|
O(1) ≤ 2t(n−1)O(1) ≤ 22t(n−1)

= t(n) ≤ |y|. (2)

The n in step 7 exists, since x, y ∈ A′′ and |y| − |x| = 1. In step 8, queries q of
length ≤ t(n − 1) + 2 must be answered according to q ∈ L′′′ ∩ S or according
to q ∈ L′′′ ∩ S. Similar to (2) these simulations can be done in polynomial time
in |x|. This shows that h is computable in polynomial time.

We now argue that h witnesses that L′′ is 1-cheatable, i.e., if f(x, y) = (ab, cd),
then L′′(x)L′′(y) = ab or L′′(x)L′′(y) = cd. It suffices to show this for the
case |x| < |y|. If we stop in step 3, then x /∈ L′′ and hence L′′(x)L′′(y) = 00
or L′′(x)L′′(y) = 01. Similarly, if we stop in step 4, then y /∈ L′′ and hence
L′′(x)L′′(y) = 00 or L′′(x)L′′(y) = 10. If we stop in step 6, then L′′(x) = a and
so L′′(x)L′′(y) = a0 or L′′(x)L′′(y) = a1. So it remains to argue for step 8.

Now assume the output is made in step 8a. Consider the computations
ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). Since these are polynomial-time
computations, they cannot ask for words of length ≥ t(n + 1) = 22t(n)

. So xn,
yn, and zn are the only candidates for words that are of length > t(n − 1) + 2
and that can be queried by these computations. But by assumption of case 8a,
these words are not in L′′′ ∩ S. Therefore, the simulations of M2(xn), M2(yn),
and M2(zn) in step 8a behave the same way as the computations ML′′′∩S

2 (xn),
ML′′′∩S

2 (yn), and ML′′′∩S
2 (zn). Hence we obtain dn = L′′′(xn)L′′′(yn)L′′′(zn) and

cn = L′′(xn)L′′(yn). So the output contains the string L′′′(x)L′′′(y). Step 8b is
argued similar to step 8a.

Assume the output is made in step 8c. We can reuse the argument from step
8a. The only difference is the words xn. It can be an element of L′′′∩S and it can
be queried by the computations ML′′′∩S

2 (xn), ML′′′∩S
2 (yn), and ML′′′∩S

2 (zn). So
we simulate both possibilities, the one where xn ∈ L′′′ ∩ S and the one where
xn /∈ L′′′ ∩ S. So at least one of the strings cyes and cno equals L′′′(x)L′′′(y)
and so the output contains the string L′′′(x)L′′′(y). Step 8d is argued similar to
step 8c.

This shows that L′′ is 1-cheatable via function h. This contradicts Claim 12
and therefore, L′′′ is not T-mitotic. This finishes the proof of Claim 13 and of
Theorem 11. ��

Corollary 14. If NP ∩ coNP contains n-generic sets, then T -autoreducibility
and T -mitoticity differ on NP.

Corollary 15. Let t(n) be a function such that for all c > 0, t(n) > c logn. If
NP∩coNP contains t(n)-generic sets, then there exists a tally set L ∈ NP∩coNP
that is 2-tt-autoreducible, but not T-mitotic.

Non-mitotic Sets 155

5 Uniformly Hard Languages in NP

In this section we assume that NP contains uniformly hard languages, i.e., lan-
guages that are uniformly not contained in coNP. After discussing this assump-
tion we show that it implies that every ≤p

1−tt-complete set for NP is nonuniformly
NP-complete.

Recall that we have separated 1-tt-reducibility from m-reducibility within NP
under a reasonable assumption in Section 3. Nevertheless the main result of
this section indicates that these two reducibilities are pretty similar in terms of
NP-complete problems: Every ≤p

1−tt-complete set for NP is m-complete if we
allow the reducing function to use an advice of polynomial length.

Definition 16. Let C and D be complexity classes, and let A and B be subsets
of Σ∗.

1. A
i.o.= B

df⇐⇒ for infinitely many n it holds that A ∩ Σn = B ∩ Σn.
2. A

i.o.∈ C df⇐⇒ there exists C ∈ C such that A
i.o.= C.

3. C
i.o.

⊆ D df⇐⇒ C
i.o.∈ D for all C ∈ C.

The following proposition is easy to observe.

Proposition 17. Let C and D be complexity classes, and let A and B be subsets
of Σ∗.

1. A
i.o.= B if and only if A

i.o.= B.
2. A

i.o.∈ C if and only if A
i.o.∈ coC.

3. C
i.o.

⊆ D if and only if coC
i.o.

⊆ coD.

Proposition 18. The following are equivalent:

(i) coNP
i.o.

⊆/ NP
(ii) NP

i.o.

⊆/ coNP
(iii) There exists an A ∈ NP such that A

i.o.∈/ coNP.
(iv) There exists a paddable NP-complete A such that A

i.o.∈/ coNP.

We define polynomial-time many-one reductions with advice. Non-uniform re-
ductions are of interest in cryptography, where they model an adversary who is
capable of long preprocessing [BV97]. They also have applications in structural
complexity theory. Agrawal [Agr02] and Hitchcock and Pavan [HP06] investi-
gate non-uniform reductions and show under reasonable hypotheses that every
many-one complete set for NP is also hard for length-increasing, non-uniform
reductions.

Definition 19. A≤p/poly
m B if there exists an f ∈ FP/poly such that for all

words x, x ∈ A ⇔ f(x) ∈ B.

The following theorem assumes as hypothesis that NP
i.o.∈/ coNP. This hypothesis

states that for sufficiently large n, there exists a tautology of size n without
short proofs. We use this hypothesis to show that 1-tt-complete sets for NP are
nonuniformly m-complete.

156 C. Glaßer et al.

Theorem 20. If NP
i.o.

⊆/ coNP, then every ≤p
1−tt-complete set for NP is ≤p/poly

m -
complete.

Proof. By assumption, there exists an NP-complete K such that K
i.o.∈/ coNP.

Choose g ∈ FP such that {(u, v)
∣
∣u ∈ K ∨ v ∈ K}≤p

mK via g. Let A be ≤p
1−tt-

complete for NP. So K≤p
1−ttA, i.e., there exists a polynomial-time computable

function f : Σ∗ → Σ∗ ∪ {w
∣
∣w ∈ Σ∗} such that for all words x:

1. If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w ∈ A).
2. If f(x) = w for some w ∈ Σ∗, then (x ∈ K ⇔ w /∈ A).

Moreover, choose r ∈ FP such that A≤p
mK via r. Define

EASY =def {u
∣
∣∃v, |v| = |u|, f(g(u, v)) = w for some w ∈ Σ∗, and r(w) ∈ K}

EASY belongs to NP. We see EASY ⊆ K as follows: Let u ∈ EASY and v, w be
as above. Then r(w) ∈ K implies w ∈ A, hence g(u, v) /∈ K, and hence u /∈ K.
From our assumption K

i.o.∈/ NP it follows that there exists an n0 ≥ 0 such that

∀n ≥ n0, K
=n �⊆ EASY=n.

So for every n ≥ n0 we can choose a word wn ∈ K
=n − EASY. For n < n0, let

wn = ε. Choose fixed z1 ∈ A and z0 /∈ A. We define a reduction which witnesses
K≤p/poly

m A.

h(v) =def

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f(g(w|v|, v)) : if |v| ≥ n0 and f(g(w|v|, v)) ∈ Σ∗

z1 : if |v|≥n0 and f(g(w|v|, v))=w for some w∈Σ∗

z1 : if |v| < n0 and v ∈ K

z0 : if |v| < n0 and v /∈ K

Observe that h ∈ FP/poly (even FP/lin) with the advice n �→ wn. We claim for
all v,

v ∈ K ⇔ h(v) ∈ A. (3)

This equivalence clearly holds for all v such that |v| < n0. So assume |v| ≥ n0

and let n = |v|. If f(g(wn, v)) ∈ Σ∗, then h is defined according to the first line
of its definition and equivalence (3) is obtained as follows.

v ∈ K ⇔ g(wn, v) ∈ K ⇔ f(g(wn, v)) ∈ A

Otherwise, f(g(wn, v)) = w for some w ∈ Σ∗. We claim that v must belong
to K. If not, then g(wn, v) /∈ K and hence w ∈ A (since K≤p

1−ttA via f). So
r(w) ∈ K which witnesses that wn ∈ EASY. This contradicts the choice of wn

and it follows that v ∈ K. This shows v ∈ K ⇔ h(v) = z1 ∈ A and proves
equivalence (3). ��

Non-mitotic Sets 157

References

[Agr02] Agrawal, M.: Pseudo-random generators and structure of complete degrees.
In: IEEE Conference on Computational Complexity, pp. 139–147. IEEE
Computer Society Press, Los Alamitos (2002)

[AS84] Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Rödding, D., Hasenjaeger,
G. (eds.) Logic and Machines: Decision Problems and Complexity. LNCS,
vol. 171, pp. 1–23. Springer, Heidelberg (1984)

[ASFH87] Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over poly-
nomial time computable sets. Theoretical Computer Science 51, 177–204
(1987)

[Bei87] Beigel, R.: Query-Limited Reducibilities. PhD thesis, Stanford University
(1987)

[Bei91] Beigel, R.: Relativized counting classes: Relations among thresholds, parity,
mods. Journal of Computer and System Sciences 42, 76–96 (1991)

[BF92] Beigel, R., Feigenbaum, J.: On being incoherent without being very hard.
Computational Complexity 2, 1–17 (1992)

[BH77] Berman, L., Hartmanis, J.: On isomorphism and density of NP and other
complete sets. SIAM Journal on Computing 6, 305–322 (1977)

[BHT98] Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and struc-
ture of complete sets. SIAM Journal on Computing 27, 637–653 (1998)

[BM95] Balcazar, J., Mayordomo, E.: A note on genericty and bi-immunity. In: Pro-
ceedings of the Tenth Annual IEEE Conference on Computational Com-
plexity, pp. 193–196. IEEE Computer Society Press, Los Alamitos (1995)

[BT96] Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new char-
acterization of P. Journal of Computer and System Sciences 53, 210–217
(1996)

[BV97] Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic ap-
plications. In: SODA, pp. 675–681 (1997)

[GPSZ06] Glaßer, C., Pavan, A., Selman, A.L., Zhang, L.: Redundancy in complete
sets. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
444–454. Springer, Heidelberg (2006)

[Hom90] Homer, S.: Structural properties of nondeterministic complete sets. In:
Structure in Complexity Theory Conference, pp. 3–10 (1990)

[Hom97] Homer, S.: Structural properties of complete problems for exponential time.
In: Selman, A.L., Hemaspaandra, L.A. (eds.) Complexity Theory Retro-
spective II, pp. 135–153. Springer, New York (1997)

[HP06] Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. Tech-
nical Report TR06-039, Electronic Colloquium on Computational Com-
plexity (2006)

[Lad73] Ladner, R.E.: Mitotic recursively enumerable sets. Journal of Symbolic
Logic 38(2), 199–211 (1973)

[LLS75] Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time
reducibilities. Theoretical Computer Science 1, 103–123 (1975)

[PS02] Pavan, A., Selman, A.L.: Separation of NP-completeness notions. SIAM
Journal on Computing 31(3), 906–918 (2002)

[Sel79] Selman, A.L.: P-selective sets, tally languages, and the behavior of
polynomial-time reducibilities on NP. Mathematical Systems Theory 13,
55–65 (1979)

[Sel82] Selman, A.L.: Reductions on NP and p-selective sets. Theoretical Computer
Science 19, 287–304 (1982)

Reductions to Graph Isomorphism

Jacobo Torán

Institut für Theoretische Informatik
Universität Ulm

D-89069 Ulm, Germany
jacobo.toran@uni-ulm.de

Abstract. We show that several reducibility notions coincide when ap-
plied to the Graph Isomorphism (GI) problem. In particular we show
that if a set is many-one logspace reducible to GI, then it is in fact
many-one AC0 reducible to GI. For the case of Turing reducibilities we
show that for any k ≥ 0 an NCk+1 reduction to GI can be transformed
into an ACk reduction to the same problem.

Keywords: Computational complexity, reducibilities, graph isomor-
phism.

1 Introduction

The Graph Isomorphism problem (GI) is one of the few problems in NP that is
neither known to be complete for this class nor known to be solvable in poly-
nomial time. Because of its special nature GI has been intensively studied and
research on this problem has produced important results in several areas of
complexity theory going beyond the GI problem itself. Examples for this are
Arthur-Merlin games, interactive proof systems, descriptive complexity or quan-
tum algorithms. The importance of the problem is such, that some authors have
used the term GI-complete (see e.g. [5]) for the problems that are equivalent to
GI under polynomial time reductions, as if GI were a complexity class. Often
computational problems such as SAT, the set of satisfiable Boolean formulas, or
the Graph Reachability problem have been identified with complexity classes.
The difference here is that there in no machine model known to characterize the
complexity of GI.

In this paper we study several reducibilities to GI proving gap results in
the complexity of the models performing the reduction. The results we obtain
basically show that the GI problem is very robust under reductions and that
in some sense it behaves like a complexity class. We prove that if a set A is
reducible to GI under several kinds of reducibility, then the complexity of the
reduction can be reduced, and A is in fact AC0 reducible to GI.

The motivation for studying the complexity of the reductions to GI is twofold.
On the one hand, only relatively weak hardness results for GI are known. The
strongest known result [11] is that GI is many-one AC0 hard for DET, the class of
problems reducible to the Determinant [4], a class included within NC2. Several

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 158–167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reductions to Graph Isomorphism 159

attempts to extend these results to other complexity classes like P, or even NC2

or AC1, have not been successful, even under the consideration of reductions
that can use more resources than AC0. The study of reductions to GI give some
insight on why it is difficult to improve the known hardness results.

On the other hand our results help to understand the nature of several re-
ducibility notions like for example the ACk or NCk+1 reducibilities. These re-
ducibilities are quite well understood and it is known that both notions coincide
when reducing to complexity classes like the NC and AC hierarchies [12], L and
NL [2], or NP [8]. We show here that they coincide also when reducing to GI1.
This is somehow surprising since GI is not a machine based complexity class,
and intuitively points to the following property of the reducibilities: If the oracle
set is strong enough to encode a logarithmic space computation, then ACk and
NCk+1 reducibilities to this set coincide.

Our results are based on a fact that is easy to state: Imagine we have to decide
whether two graphs G and H are isomorphic, but the adjacency matrices of G
and H are encoded by sequences of graph pairs. The 1’s and 0’s in the matrix
are given respectively as pairs of isomorphic and non-isomorphic graphs 2. How
hard is it to decide the isomorphism question then? We show in Lemma 2 that
this problem is not harder that GI itself. This innocent looking fact has many
consequences roughly implying that for several reducibilities to GI, part of the
complexity of the reduction can be transferred to the isomorphism problem,
thus simplifying the reduction. In Section 3 we show that sets many-one NC1

or logarithmic space reducible to GI are in fact many-one AC0 reducible to
GI. This result can be strengthen to reductions that as strong as the hardest
complexity class that can be reduced to GI. Observe that an even stronger gap
result is known to hold for SAT. SAT is known to be AC0 hard for NP (and
even NC0 hard [1]). Since every problem many-one polynomial time reducible to
SAT is in NP, it is therefore also many-one AC0 reducible to SAT. Again, the
difference with our result is that we cannot build our proof on a machine based
characterisation of the complexity class.

In Section 4 we study Turing reducibilities to GI. We show that the classes
FL(GI) and AC0(GI) coincide. Using this fact and adapting a result from [2] on
AC and NC reductions to L to the case of GI we prove that for every k ≥ 0,
ACk(GI) = NCk+1(GI).

2 Preliminaries

We assume familiarity with basic notions of complexity theory such as can be
found in the standard textbooks in the area.

1 Ogihara [8] even shows that both reducibilities coincide when performed to a com-
plexity class that is closed under non-deterministic conjunctive truth-table reducibil-
ity, but it is not hard to see that the closure of GI under such reducibility is NP and
therefore Ogihara’s result cannot be applied here.

2 A more formal version of the statement is given in Lemma 2.

160 J. Torán

The elements of the sets we use are encoded as strings over the binary alphabet
{0, 1}. A Boolean circuit is an acyclic directed graph with nodes or gates that can
either be inputs x1, . . . , xn, constants 0 or 1 or are labelled with the AND, OR
or NOT functions. Some of the nodes are specified as output nodes y1, . . . , ym.
A circuit family {αn} computes a function f in the usual way. The size of a
circuit is the number of nodes it contains. The depth of a circuit in the length
of its longest path from an input node to an output node. The NC and AC
hierarchies contain all those functions that are computable by bounded fan-in
(resp. unbounded fan-in) circuits of polynomial size and polylogarithmic depth
satisfying a certain uniformity condition. Throughout this paper we consider all
circuits to be DLOGTIME uniform [9,3]. Each gate i of a circuit is described
by a tuple 〈i, t, p1, p2, ..., pl〉 specifying the name i of the gate, its type t and the
name pj of its j-th input gate. For k ≥ 0 we denote by NCk (resp. ACk) the class
of functions computable by uniform bounded fan-in (resp. unbounded fan-in)
circuits of polynomial size and depth O(logk n). L and FL are the classes of set
and functions computable by logarithmic space bounded Turing machines.

The known relationships among the considered function classes are:

AC0 ⊆ NC1 ⊆ FL⊆ AC1 ⊆ . . . ⊆ NCk ⊆ ACk ⊆ NCk+1 . . .

2.1 Reducibilities

We deal with many-one and Turing reducibilities. For a function class F and two
sets A and B, we say that A is many-one F reducible to B (A ≤Fm B) if there is
a total function f ∈ F such that for every x ∈ {0, 1}∗, x ∈ A ⇔ f(x) ∈ B.

In order to perform Turing reductions, the NC and AC circuits can have ac-
cess to oracle gates which compute the value of a functional oracle f . For AC
circuits, oracle nodes have depth 1. For NC circuits, a oracle gate with m in-
puts contributes log m to the depth of the circuit. This is the standard way of
counting the depth of oracle nodes [12]. For a complexity class of functions F ,
we denote by NCk(F) and ACk(F) the class of functions computable by NC rep.
AC circuits of depth O(logk n) with oracle access to a function in F . A Turing
reduction to an oracle set A can be seen as a reduction to the characteristic
function of A.

For the case of FL we will only consider here sets as oracles. FL(A) is the class
of functions that can be computed in logarithmic space making queries to an
oracle set A. A closer description of this model is given when it is needed in the
proof of Theorem 4.

2.2 Graph Isomorphism

An isomorphism between two graphs G and H is a bijection between their sets of
vertices which preserves the edges. G ∼= H denotes that G and H are isomorphic.
GI is the problem

GI = {(G, H) | G and H are isomorphic graphs}

Reductions to Graph Isomorphism 161

A central role in some of the proofs will be played by the set of graph pairs
((G, H), (I, J)) with exactly one of the pairs consisting of isomorphic graphs:

PGI = {((G, H), (I, J))| G
 H if and only if I �
 J}}.

PGI will be used as a promise problem [10] in the sense that we will work
in settings in which 2 given pairs of graphs will be known to be in PGI and
the question will be to find which of the pairs are isomorphic: the first or the
second3. It is not hard to see that GI is many-one reducible to PGI. But we need
a stronger kind of reducibility:

Definition 1. Let F be a class of functions. We say that a set A is strong
many-one F reducible to PGI if there is a total function f ∈ F that for every
x ∈ {0, 1}∗ f(x) = (G, H), (I, J) ∈ PGI and x ∈ A ⇔ G ∼= H.

It is known that every set in NC1, L, NL and in several other complexity classes
is strong many-one AC0 reducible to PGI [6,11].

In some of the proofs we will talk about graphs with colored nodes. A color is
just a graph gadget or marking that forces the vertices of a color to be mapped
to vertices of the same color in every possible isomorphism (see [7]).

For the proof of Lemma 2 the following result describing a parity check con-
struction is needed. This result appears implicitly in [11].

Lemma 1. Let G = (VG, EG) and H = (VH , EH) be two isomorphic graphs
with n nodes. Suppose that there is an isomorphism ϕ between G and H map-
ping a sequence UG {ui

G0
, ui

G1
}m

i=1 of distinct node pairs in G to a sequence
UH {ui

H0
, ui

H1
}m

i=1 of distinct node pairs in H in such a way that pairs in one of
the sequences are mapped to the corresponding pairs, (i.e. for all i, 1 ≤ i ≤ m,
{ui

G0
, ui

G1
} is mapped to {ui

H0
, ui

H1
}) Let s be the number of i, 1 ≤ i ≤ m, such

that ϕ maps ui
G0

to ui
H0

. Then it is possible to compute in AC0 extensions G′, H ′

of G and H (just by adding a parity check gadget to the nodes in UG and an-
other one to the nodes in UH) such that there is an isomorphism ϕ′ from G′ to
H ′ extending ϕ if and only if s is even. In addition the number of nodes in the
extensions G′, H ′ is O(n).

3 Many-One Reducibility

Definition 2. Let A be an undirected graph with n vertices. A PGI represen-
tation of A is sequence of

(
n
2

)
tuples of PGI graphs (given by their adjacency

matrices) (GA
i,j , H

A
i,j), (I

A
i,j , J

A
i,j), 1 ≤ i < j ≤ n, such that for every i, j:

(i, j) ∈ E ⇒ GA
i,j

∼= HA
i,j and IA

i,j �∼= JA
i,j ,

(i, j) �∈ E ⇒ GA
i,j �∼= HA

i,j and IA
i,j

∼= JA
i,j .

3 In fact, in the promise problem setting this problem has been introduced by Selman
[10] with the name PP-ISO.

162 J. Torán

Our results are based on the following lemma. Intuitively this result can be
understood as a version of the fact NP(NP ∩ coNP) = NP scaled down from NP
to Graph Isomorphism.

Lemma 2. Consider two undirected graphs A and B with n vertices each, given
in PGI representation. There is an AC0 circuit that on input these representa-
tions produces the adjacency matrices of two graphs A′, B′ such that A ∼= B if
and only if A′ ∼= B′.

Proof. (sketch) The idea of the proof is to consider as a basis for A′ and B′

two cliques KA
n and KB

n with n vertices, and substitute each edge (i, j) in the
KA

n -clique by a graph gadget EA
i,j and every edge (k, l)in the KB

n -clique by a
gadget EB

k,l so that EA
i,j

∼= EB
k,l if and only if (GA

i,j
∼= HA

i,j and GB
k,l

∼= HB
k,l) or

(IA
i,j

∼= JA
i,j and IB

k,l
∼= JB

k,l). In other words, EA
i,j and EB

k,l are isomorphic if and
only if the edge (i, j) exists in A and the edge (k, l) exists in B or both edges do
not exist. An isomorphism between A′ and B′ encodes then a mapping from the
vertices of A to the vertices of B (the mapping restricted to the clique nodes)
that guarantees that edges in A are being mapped to edges in B and non-edges
are being mapped to non-edges. This is an isomorphism between A and B.

Let us define the graph gadgets. For every pair of indices a, b, 1 ≤ a < b ≤
n consider the component CA

a,b containing the four graphs GA
a,b, H

A
a,b, I

A
a,b, J

A
a,b

connected in a ring as in Fig. 1. There are six new vertices u0,u1, w, x, y and z in
the component. A connection in the figure between a graph and one of the new
vertices means that there is an edge in CA

a,b between every vertex in the graph
and the new vertex.

We define also the twisted component CA
a,b in the same way but interchanging

the positions of the graphs GA
a,b and HA

a,b. The components CB
a,b are defined in

exactly the same way but using the graphs with superscript B. Observe that
since we are dealing with PGI graphs, for every a, b, Ca,b is isomorphic to Ca,b

GA
a,b HA

a,b

IA
a,b JA

a,b

�

� �

�� �
u0 u1w

x y

z

HA
a,b GA

a,b

IA
a,b JA

a,b

�

� �

�� �
u0 u1w

x y

z

Fig. 1. The components CA
a,b and CA

a,b

Reductions to Graph Isomorphism 163

(in both cases A and B). Such an isomorphism would map vertex u0 in Ca,b

either to u0 or to u1 in Ca,b depending on whether Ga,b
∼= Ha,b or Ia,b

∼= Ja,b.
Exactly one of the two cases is always true.

We are now ready to define the gadgets EA
i,j and EB

i,j . Consider i, j with
1 ≤ i < j ≤ n. (For the case i > j, Ei,j is equal to Ej,i for both cases A and B).
EA

i,j consists basically of the sequence of components

CA
1,2, C

A
1,3, . . . , C

A
i,j , . . . , C

A
n−1,n, CB

1,2, . . . , C
B
n−1,n.

This is the sequences of all the A components followed by all the B components
but with the twisted CA

i,j component. The components are connected by merging
the z vertex of one component and the w vertex of the next component in the
sequence. This means that the graph EA

i,j has just one connected component.
The gadget EB

i,j is defined in the same way, having all the A components followed

by the B components but including the twisted component CB
i,j in the sequence

(and having CA
i,j straight).

Consider now two gadgets EA
i,j and EB

k,l and let us observe that they are
isomorphic. An isomorphism between both graphs must map each component
in the EA graph to the same component in the EB graph. All components
are identical except for CA

i,j , twisted in the EA graph and straight in the EB

graph, and CB
k,l, straight in the EA graph and twisted in the EB graph. We

have mentioned that every component is isomorphic to its twisted version and
therefore EA

i,j and EB
k,l are always isomorphic. But the type of isomorphism can

tell us whether GA
i,j

∼= HA
i,j and whether GB

k,l
∼= HB

k,l. In case GA
i,j

∼= HA
i,j the

vertex u0 in CA
i,j is mapped to u0 in CA

i,j and otherwise this vertex is mapped

to u1. Analogously, if GB
k,l

∼= HB
k,l then vertex u0 in CB

k,l is mapped to u0 in CB
k,l

and otherwise this vertex is mapped to u1. Let s be the number of u0 vertices
in EA

i,j being mapped to u1 vertices in EB
k,l. s is either

s =

⎧
⎨

⎩

0 if GA
i,j

∼= HA
i,jand GB

k,l
∼= HB

k,l

1 if GA
i,j

∼= HA
i,j ⊕ GB

k,l
∼= HB

k,l

2 if GA
i,j �∼= HA

i,j and GB
k,l �∼= HB

k,l

This means that the number is even if and only if the edges (i, j) in A and
(k, l) in B both exist or both do not exist. Since this is the condition we need in
order to allow an isomorphism between EA

i,j and EB
k,l we complete the gadgets

connecting all the u0 and u1 vertices in the EA
i,j subgraphs with a parity check

construction as done in Lemma 1 and doing the same thing with the u0 and
u1 vertices in all the EB

k,l subgraphs. This implies that an isomorphism between
gadgets EA

i,j and EB
k,l exists if an only if s is even.

Graph A′ results from considering the n-clique Kn and substituting every edge
(i, j) by EA

i,j . Graph B′ is obtained in the same way but substituting edge (i, j)
by EB

i,j . If every graph in the input tuples (Gi,j , Hi,j), (Ii,j , Ji,j) has at most m

vertices, each gadget Ei,j has O(mn2) vertices and therefore the size of A′ and

164 J. Torán

B′ is bounded by O(mn4) which is polynomial in the input size. Moreover the
construction of A′ and B′ is completely local and can be performed by an AC0

circuit. �

This result can be used to move part of the complexity of a reduction to GI to
the isomorphism problem itself.

Lemma 3. Let L be a set many-one reducible to GI via a function f : {0, 1}∗ →
{0, 1}∗ such that the set

Bitf = {〈x, i, b〉 |x ∈ {0, 1}∗, b ∈ {0, 1} and the i-th bit of f(x) is b}

is strongly many-one AC0 reducible to PGI. Then L is many-one AC0 reducible
to GI.

Proof. If L is many-one reducible to GI then we can consider that for every x
f(x) ∈ {0, 1}∗ is a string representing the adjacency matrices of two graphs A
and B, that are isomorphic if and only if x ∈ L. Each bit of f(x) corresponds
to one position in one of the adjacency matrices and it is 1 or 0 depending
on whether the corresponding edge exists or not. Since the set Bitf is strongly
many-one AC0 reducible to PGI, there is an AC0 circuit that produces for each
bit of the adjacency matrices two pairs of PGI graphs (G, H), (I, J) with G ∼= H
if the bit is 1 and I ∼= J if it is 0. This is exactly a PGI representation of A
and B and by Lemma 2 there is an AC0 circuit that on input this representation
produces an adjacency matrix representation of two new graphs A′, B′ with
A ∼= B iff A′ ∼= B′. Putting together the strong many-one reduction from Bitf

to PGI and the circuit constructing A′ and B′ from the PGI representation of
A and B, we have an AC0 circuit many-one reducing L to GI. �

This result has several consequences.

Theorem 1. For any set A, if A is many-one logarithmic space reducible to GI
then A is many-one AC0 reducible to GI.

Proof. If A is many-one logarithmic space reducible to GI via a function f , then
the set Bitf belongs to L. The result follows from Lemma 3 since it is known
that every set in L is strongly many-one AC0 reducible to PGI [6,11]. �

Wider gaps in the complexity of the reductions to GI are possible since PGI is
known to be hard for classes above L [11]. Although we do not know whether GI
is hard for P, the following result relates this question to the equivalence of the
closure of GI under many-one reducibilities of different strengths.

Theorem 2. The following statements are equivalent

i) GI is hard for P under logspace many-one reductions.
ii) the many-one AC0 and polynomial time closures of GI coincide.

Reductions to Graph Isomorphism 165

Proof. We show that the first statement implies the second. Let L be a set
many-one reducible to GI via a polynomial time computable function f . The
sets

Bit0f = {〈x, i〉 |x ∈ {0, 1}∗, and the i-th bit of f(x) is 0}
and Bit1f defined in a similar way are both in P. PGI is strongly many-one AC0

hard for logarithmic space [11] and therefore, if GI is hard for P under logspace
many-one reductions, using Corollary 1, GI would be also hard for P under AC0

reductions. Because of this, both sets Bit0f and Bit1f are many-one AC0 reducible
to GI. Let h0 and h1 be the functions performing these reductions. Then, for
every x ∈ {0, 1}∗, i ∈ {1, . . . , |x|} and b ∈ {0, 1}, (hb(〈x, i〉), hb(〈x, i〉)) are two
pairs of PGI graphs and define a strong many-one AC0 reduction from the set
Bitf to PGI. Now using Lemma 3 we conclude that L is in fact many-one AC0

reducible to GI.
For the other direction, let L be a set in P. L is trivially many-one polynomial

time reducible to GI. Since we we are supposing that the many-one polynomial
time and AC0 closures of GI coincide, L is many-one AC0 reducible to GI and
therefore also reducible in logarithmic space to GI. �

Observe that logarithmic space reducibility in the first statement is not really
important for the proof of the result. The result would hold also for any re-
ducibility computed by a class of functions with bit sets Bitf strong many-one
AC0 reducible to PGI.

4 Turing Reducibility

Álvarez, Balcázar and Jenner [2] using a functional non-adaptive reduction as
an intermediate step, prove the following result:

Theorem 3. [2] For every set A and every k≥0, ACk(FL(A))=NCk+1(FL(A)).

They prove this result for the oracle function class FL but it can be observed
that it relativizes to FL(A) for any set A queried by the function in FL. In order
to apply this result directly to GI (without the FL level) we need the following
theorem:

Theorem 4. FL(GI) = AC0(GI).

Proof. Let f be a function in FL(GI) and M be a logarithmic space bounded
Turing machine computing f . A configuration of M contains a state, a position
in the input tape and the contents of the work tape. Some of the configurations
are query configurations. These contain states of a special kind. If M reaches a
query configuration then the machine writes in the following steps a query to
GI in the oracle tape and when M enters a special query state the oracle tape is
deleted, one bit with the answer to the query appears in it and the computation
continues. Observe that the length of the query is not affected by the logarithmic

166 J. Torán

space bound of the work tape. However, the query configuration (of logarithmic
size) generating the query, defines the query completely. With this configuration
the query can be computed in logarithmic space. Both the number of possible
query configurations and the length of f(x) are polynomially bounded in the
length of the input x. Consider the set

A = {〈x, K〉 | K is a possible query configuration on input x and
the query produced by this configuration belongs to GI}.

A is many-one logarithmic space reducible to GI and as a consequence of The-
orem 1 also many-one AC0 reducible to GI. Consider new machine M ′ that
on input a string x and a set of possible query configurations and answer bits
〈x, K1, a1, K2, a2, . . . , Km, am〉 simulates M on input x and each time M enters
a query configuration K, M ′ looks whether K is part of its input. If this is not
the case then it produces some special output sequence and halts. Otherwise
M ′ just continues its computation taking the bit next to K in its input as the
answer to the corresponding query. Clearly M ′ is logarithmic space bounded and
computes some function g ∈ FL. If the set of queries is complete and the set of
answers is correct then M ′ computes f . The set Bitg is then in L and therefore
many-one AC0 reducible to GI [6]. We want to show that f can be computed
in AC0(GI). In order to do so we just have to put together the AC0 circuits we
already have. On input x the circuit first produces all polynomially many pos-
sible query configurations of M(x). Then using the reduction from A to GI, for
every such configuration the circuit produces a pair of graphs G, H and queries
to the oracle set GI whether they are isomorphic. With the answers the circuit
constructs a list of queries and correct answers x, K1, a1, K2, a2, . . . , Km, am. Fi-
nally using the AC0 circuit reducing Bitg to GI, for each bit of f(x) a pair of
graphs is constructed. A second round of queries to GI gives the value of f(x) in
the form of a sequence of bits as output of the circuit. The constructed circuit
has constant depth, polynomial size and has two levels of queries to GI. �

We can now prove the main result of this section:

Theorem 5. For any k ≥ 0, ACk(GI) = NCk+1(GI).

Proof. The inclusion ACk(GI)⊆ NCk+1(GI) is straightforward. For the other in-
clusion we just have to put together the previous two results. We have NCk+1(GI)
⊆ NCk+1(FL(GI)) and by Theorem 3 this is equal to ACk(FL(GI)). Using Theo-
rem 4 this class is equal to ACk(AC0(GI)). Since every query to AC0(GI) can be
simulated by the ACk circuit making the queries directly to GI, just by adding
a constant number of levels to the circuit, we have ACk(AC0(GI))=ACk(GI). �

We observe that the proofs of Theorems 4 and 5 can be extended to any com-
plexity class in the oracle that is many one AC0 hard for L, and for which the
many-one AC0 and logarithmic space closures coincide.

Reductions to Graph Isomorphism 167

5 Conclusions and Open Problems

We have proven that several kinds of many-one and Turing reducibilities to GI
coincide thus showing that the isomorphism problem is very robust and behaves
in some sense as a machine based complexity class. There are several problems
related to the complexity of reductions that are worth considering:

We know that GI is not hard for NP unless the polynomial time hierarchy
collapses. Can one show some relation between the difficulty of showing hardness
of GI for a class like P and the hardness for NP? (Something like if GI is P-hard
then GI would be NP-hard.)

In this paper we have not talked about randomized reductions to GI. It has
been observed in [11] that the Matching problem is randomly reducible to GI.
Can also this reduction be simplified making it a deterministic reduction to GI?

We have mentioned that Lemma 2 can be considered as a version of the result
NP(NP ∩ coNP) = NP scaled down to GI. If the input of the problem given
in the lemma instead of being encoded as PGI graphs were just normal graph
pairs, isomorphic when encoding a 1 and non-isomorphic when encoding a 0, we
would have something like a GI version of the second level of the polynomial
time hierarchy. Can one prove a collapse of this hierarchy?

Acknowledgment. The author would like to thank the anonymous referees for
many helpful comments.

References

1. Agrawal, M., Allender, E., Rudich, S.: Reductions in Circuit Complexity: An Iso-
morphism Theorem and a Gap Theorem. JCSS 57, 17–143 (1998)

2. Álvarez, C., Balcázar, J.L., Jenner, B.: Adaptive Logspace Reducibilities and Par-
allel Time. Math. Systems Theory 28, 117–140 (1995)

3. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1.
Journal of Computer and System Sciences 41, 274–306 (1990)

4. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information
and Control 64(1), 2–22 (1985)

5. Hoffmann, C.M. (ed.): Group-Theoretic Algorithms and Graph Isomorphism.
LNCS, vol. 136. Springer, Heidelberg (1982)

6. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph
isomorphism. Journal of Computer and System Sciences 66, 549–566 (2003)

7. Köbler, J., Schöning, U., Torán, J.: Graph Isomorphism: its Structural Complexity,
Birkhäuser, Boston (1992)

8. Ogihara, M.: Equivalence of NCk and ACk−1 closures of NP and other classes.
Information and Computation 120(1), 55–58 (1995)

9. Ruzzo, W.: On uniform circuit complexity. Journal of Computer and System Sci-
ences 22, 365–383 (1981)

10. Selman, A.: Promise problems complete for complexity classes. Information and
Computation 78, 87–98 (1988)

11. Torán, J.: On the hardness of Graph Isomorphism. SIAM Journal on Comput-
ing 33(5), 1093–1108 (2004)

12. Wilson, C.B.: Decomposing NC and AC. SIAM Journal on Computing 19(2), 384–
396 (1990)

Strong Reductions and Isomorphism of

Complete Sets

Ryan C. Harkins1,�, John M. Hitchcock1,��, and A. Pavan2,���

1 Department of Computer Science, University of Wyoming
2 Department of Computer Science, Iowa State University

Abstract. We study the structure of the polynomial-time complete sets
for NP and PSPACE under strong nondeterministic polynomial-time re-
ductions (SNP-reductions). We show the following results.

– If NP contains a p-random language, then all polynomial-time com-
plete sets for PSPACE are SNP-isomorphic.

– If NP ∩ co-NP contains a p-random language, then all polynomial-
time complete sets for NP are SNP-isomorphic.

1 Introduction

The celebrated isomorphism conjecture [13] states that all polynomial-time
NP-complete sets are polynomial-time isomorphic. This conjecture can be nat-
urally extended to other complexity classes. The isomorphism conjecture for a
class C states that all polynomial-time complete sets for C are p-isomorphic. The
evidence in support of this conjecture comes from the observation that for every
natural complexity class, all known complete sets are polynomial-time isomor-
phic. The evidence to the contrary comes from the one-way functions. It has been
hypothesized that if one-way functions exist, then the isomorphism conjecture
is false [17].

In spite of many years of research, we do not know of a single complexity
class for which the isomorphism conjecture is resolved. This naturally led to the
study of several variants of the conjecture that can be obtained by varying the
resource bounds of the reductions and isomorphisms. In most general terms,
the conjecture for a class C and resource bounds r and s can be phrased as
follows: “All r-complete sets for C are s-isomorphic.”

This question has been studied extensively for resource bounds that are much
smaller than polynomial-time that led to several exciting results. For example, we
now know that all 1-L-complete sets for NP and PSPACE are p-isomorphic [8,7].
Allender, Balcazar, and Immerman showed that all sets that are complete under
first-order projections are DLOG-uniform AC0-isomorphic [10]. This result set
the stage to investigate the structure of sets complete under AC0-reductions. Suc-
cessive papers [6,2,4] improved this result, and this line of research culminated

� Research supported in part by NSF grant CCF-0515313.
�� Research supported in part by NSF grant CCF-0515313.

��� This research was supported in part by NSF grant 0430807.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 168–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strong Reductions and Isomorphism of Complete Sets 169

with the result of Agrawal [3]. This result states that all DLOG-uniform AC0-
complete sets for many natural classes are DLOG-uniform AC0-isomorphic.
Some of these results are surveyed in [19,14,9].

As mentioned earlier, these results concern sets that are complete under
weaker reductions (i.e., where r has less resources than polynomial-time com-
putation). In this paper, we study the isomorphism conjecture for polynomial-
time complete sets. In particular we consider the following question: “Are the
polynomial-time complete sets for a class s-isomorphic?”

As a candidate for s, we consider strong nondeterministic polynomial-time re-
ductions (SNP-reductions for short). These reductions were introduced by Adle-
man and Manders [1]. They showed that certain number-theoretic problems,
which are not known to be polynomial-time NP-complete, are complete under
SNP-reductions. Informally, these reductions can be thought as NP ∩ co-NP-
reductions.

We show that if NP contains a p-random sequence, then all polynomial-time
PSPACE-complete sets are SNP-isomorphic. This result also holds for any class
that is closed under complement and union, in particular for all Δ-levels of the
polynomial-time hierarchy. This hypothesis, which is equivalent to “NP does not
have p-measure 0,” is one of the most widely studied hypotheses in computa-
tional complexity and many plausible consequences are known to follow from
it [21,22]. With a stronger hypothesis we obtain a similar consequence for the
NP-complete sets. We show that if NP ∩ co-NP contains a p-random sequence,
then all polynomial-time NP-complete sets are SNP-isomorphic.

We first show that if NP does not have p-measure zero, then all polynomial-
time complete sets for PSPACE are also complete via one-one, length-increasing
SNP-reductions. We then use the resource-bounded analogue of the Cantor-
Bernstein theorem to exhibit the isomorphism [13].

Our proofs use a bound on the longest consecutive run of 0’s or 1’s in a
p-random sequence. In classical probability theory this result is proved using
the Borel-Cantelli lemma [15], but the proof does not carry over to polynomial-
time randomness. Wang [24] overcame this same problem for the law of the
iterated logarithm. We use his technique to prove the bound on longest runs in
the polynomial-time setting.

This paper is organized as follows. Section 2 contains preliminaries on
SNP-reductions and polynomial-time measure and randomness. In section 3 we
present our main results. Section 4 concludes with a discussion.

2 Preliminaries

In this paper we consider both single-valued and multi-valued functions. When
f is a multi-valued function, f(x) is a set. Recall that if f is a total, multi-valued
function, then f(x) is a nonempty set. Unless otherwise mentioned all functions
in this paper are total.

Definition 2.1. Let f be a multi-valued function. A function g is a single-valued
refinement of f if g is single-valued function, and for every x, g(x) ∈ f(x).

170 R.C. Harkins, J.M. Hitchcock, and A. Pavan

Definition 2.2. Let f be a multi-valued function. We say that f is strong non-
deterministic polynomial-time computable, SNP-computable for short, if there
is a nondeterministic polynomial-time machine M such that for every x, every
path of M on x outputs a member of f(x) or outputs a special symbol ⊥. At least
one path of M(x) outputs a member of f(x).

Definition 2.3. Let f be a total, multi-valued function and A and B be two
languages. We say A is reducible to B via f if for every x the following conditions
hold:

x ∈ A ⇒ f(x) ⊆ B,

x /∈ A ⇒ f(x) ∩ B = ∅.

Remark. Since we require the function f to be total, f(x) can not be ∅ even
when x /∈ A.

Definition 2.4. A language A is SNP-reducible to a language B, if there is a
(possibly multi-valued) function f that reduces A to B and f is SNP-computable.

Definition 2.5. A single-valued function f is an isomorphism from A to B, if
f is a reduction from A to B and f is a bijection.

Recall that two languages A and B are polynomial-time isomorphic if there is
a function f such that f reduces A to B, f−1 reduces B to A, both f and
f−1 are polynomial-time computable, and f is a bijection. We can extend this
definition to strong nondeterministic isomorphisms. When f is a multi-valued
function f−1(y) is the set of all x for which y ∈ f(x).

Definition 2.6. Let A be B be two languages. We say that A is strong non-
deterministic isomorphic to B, SNP-isomorphic for short, if there is a (possibly
multi-valued) function f such that following conditions hold:

– A reduces to B via f .
– B reduces to A via f−1.
– Both f and f−1 are SNP-computable.
– There is a single-valued refinement g of f that is an isomorphism from

A to B.

Observe that the definition implicitly requires f−1 to be a total function. We re-
mark that there are several alternate ways to define the notion of
SNP-isomorphism. We discuss these in Section 4.

2.1 Polynomial-Time Measure and Randomness

We now review the definition of polynomial-time measure [20]. The Cantor space
C is the set of all infinite binary sequences. Each language (a subset of {0, 1}∗)
is identified with the element of Cantor space that is its characteristic sequence
according to the standard enumeration of {0, 1}∗. In this way, each complexity

Strong Reductions and Isomorphism of Complete Sets 171

class (a set of languages) is viewed as a subset of Cantor space. A martingale is
a function d : {0, 1}∗ → [0, ∞) satisfying the averaging condition

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗. We say d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S �n) = ∞.

Here S �n is the length n prefix of S. The success set of d is

S∞[d] = {S ∈ C | d succeeds on S}.

Ville [23] showed a class X ⊆ C has Lebesgue measure 0 if and only if there
is a martingale d with X ⊆ S∞[d]. Polynomial-time measure [20] arises from
putting resource bounds on the martingales. We say that d : {0, 1}∗ → [0, ∞)
is polynomial-time computable if there is an approximation d̂ : N × {0, 1}∗ → Q

such that |d̂(r, w) − d(w)| ≤ 2−r for all r ∈ N, w ∈ {0, 1}∗ and d̂ ∈ Δ (with r
encoded in unary and the outputs encoded in binary).

Definition 2.7. Let X ⊆ C.

1. X has p-measure 0, written μp(X) = 0, if there is a polynomial-time com-
putable martingale d with X ⊆ S∞[d].

2. X has p-measure 1, written μp(X) = 1, if μp(Xc) = 0.

We also use the notion of resource-bounded randomness [11].

Definition 2.8. Let L be a language.

1. Given a time bound t(n), L is t(n)-random if no O(t(n))-time computable
martingale succeeds on L.

2. L is p-random if for every polynomial p(n), L is p(n)-random.

The following result relates p-measure to p-randomness.

Lemma 2.9. ([11,18]) If C is a class that is closed under polynomial-time many-
one reductions, then the following are equivalent.

1. C does not have p-measure 0.
2. C contains a p-random language.

3 SNP Reductions and Isomorphisms

We prove our main theorem in this section. In our proof we use certain properties
of p-random languages. Let R be a p-random language. Given a bit b and a finite
string w, let lr(b, w) denote the longest consecutive run of the bit b in w. Let
R�n denote the first n bits of the characteristic sequence of R.

172 R.C. Harkins, J.M. Hitchcock, and A. Pavan

Theorem 3.1. If R is a p-random language, then for each b ∈ {0, 1},

lim
n→∞

lr(b, R�n)
log n

= 1.

Proof of this theorem is omitted due to lack of space.
Given a string y let r(y) be the rank (in lexicographic order) of y among

strings of length |y|. Let sn
r denote the string y such that |y| = n, and r(y) = r.

Given a string y of length n let by = sn2

2r(y)n2 and ey = sn2

2(r(y)+1)n2−1. The
following observation follows from Lemma 2.9 and Theorem 3.1.

Observation 3.2. Assume that NP does not have p-measure zero. Then there
is a p-random language R in NP such that for every y, the interval [by, ey] has
at least one string from R.

We say that a multi-valued function f is length-increasing if the length of x is
smaller than the length of every string from f(x). We say that a multi-valued
function f is one-one if for every x and y with x �= y, f(x) ∩ f(y) = ∅.

We first show that if NP does not have p-measure zero, PSPACE-complete
sets are complete via one-one, length-increasing, SNP-reductions.

Lemma 3.3. If NP does not have p-measure 0, then all PSPACE-complete sets
are complete via one-one, length-increasing SNP-reductions.

Proof. Let L be any PSPACE-complete language. Let K be the standard
PSPACE-complete language that is complete via one-one, length increasing re-
ductions. Observe that K can be decided in time 2n. It suffices to show that K is
reducible to L via a one-one, length-increasing SNP reduction. We first define an
intermediate language A in PSPACE, and describe a one-one, length-increasing
SNP reduction f from K to A. Then we describe a polynomial-time reduction
from A to L that is one-one and length-increasing on f(Σ∗). Combining these
two reductions we obtain the desired reduction from K to L.

By our hypothesis, there is a n4-random language R in NP.

A = {〈x, y〉 | |x| = |y|2, and x ∈ R ⊕ y ∈ K = 0},

where ⊕ denotes the xor operation. Clearly, A is in PSPACE.

Claim. There is a one-one, length-increasing SNP reduction from K to A.

Proof. Since R is in NP, there is a polynomial-time computable function h and
a polynomial q(.) such that a string x is in R if and only if there is a witness w
of length at most q(|x|) for which h(x, w) = 1.

The following nondeterministic machine N is a reduction from K to A.

1. Input y, |y| = n.
2. Compute by and ey.
3. Guess a string xy between by and ey and a possible witness w of length at

most q(n2).
4. If h(xy , w) = 0, then Output ⊥ and this branch stops. If h(xy , w) = 1, then

Output 〈x, y〉 and stop.

Strong Reductions and Isomorphism of Complete Sets 173

Let f be the function computed by N . We first show that f is a valid reduction
from K to A. Observe that N outputs a tuple 〈x, y〉 only if x ∈ R. If x ∈ R,
then y belongs to K if and only if x ∈ R ⊕ y ∈ K = 0. Thus y ∈ K if and only
if 〈x, y〉 ∈ A. Next we claim that at least one path of N does not output ⊥.

By Observation 3.2, at least one string from the interval [by, ey] belongs to R.
So at least one path of N guesses such string and a valid witness of that string.
The output along this path is not ⊥.

Thus f is a total, multi-valued function that reduces K to A. For every y,
every element of f(y) is of the form 〈xy, y〉, where xy is a string of length n2.
Thus f is length-increasing. Let y and z two distinct strings. Every element of
f(y) is of the form 〈., y〉 and every element of f(z) is of the form 〈., z〉. Thus
f(y) ∩ f(z) = ∅. Thus f is one-one.

This completes proof of Claim 3.

Since A is in PSPACE and L is PSPACE-complete, there is a polynomial-time
many-one reduction g from A to L. We now show that g must be one-one and
honest on f(Σ∗). Observe that every string v in f(Σ∗) is of the form 〈x, y〉,
where |x| = |y|2. We first observe that f satisfies the following stronger one-one
property.

Observation 3.4. Let y1 < y2, f(y1) = 〈x1, y1〉, and f(y2) = 〈x2, y2〉. Then
x1 < x2

Proof. Since y1 < y2, ey1 < by2 . Thus the intervals [by1 , ey1] and [by2 , ey2] are
disjoint. Observe that x1 belongs to the interval [by1 , ey1] and x2 belongs to the
interval [by2 , ey2]. Thus x1 < x2.

We first show that g must be one-one on f(Σ∗).

Claim. For all but many strings u and v in f(Σ∗), g(u) �= g(v).

Proof. We have to show that the following set is finite.

S = {u ∈ f(Σ∗) | ∃v ∈ f(Σ∗), u �= v, g(u) = g(v)}.

Assume that S is infinite. Observe that a string u in f(Σ∗) is a tuple of the
form 〈x, y〉. Let t1(u) denote the first component of the tuple and t2(u) denote
the second component of the tuple. Consider the following set.

T1 = {u ∈ f(Σ∗) | ∃v ∈ f(Σ∗), t1(u) �= t1(v), t2(u) �= t2(v), g(u) = g(v)},

T2 = S − T1.

If S is infinite, then at least one of T1 or T2 must be infinite. We first consider
the case T1 is infinite. We will show that this contradicts the randomness of R.

Consider the following martingale d that bets on R as follows. Assume that
d has capital d(n − 1) before it bets on any string of length n. Before betting on
string of length n, d computes two tuples 〈x1, y1〉, and 〈x2, y2〉 such that the all
of the following conditions hold.

174 R.C. Harkins, J.M. Hitchcock, and A. Pavan

– |x2| = n, |y2| =
√

n.
– x1 < x2, |x1| = |y1|2.
– g(〈x1, y1〉) = g(〈x2, y2〉).

If d can not find such tuples, then it does not bet on any string at length n.
In this case d(n) = d(n − 1). Suppose d finds such tuples. Since we assume that
T1 is infinite, d will find such tuples for infinitely many n. Now, d does not bet
on any string up to x2. Recall that when d is ready to bet on x2, it has access to
the partial characteristic sequence of R up to x2. Thus d can easily determine
the membership of x1 in R. Now, d computes the membership of y1 and y2 in
K. Since g(〈x1, y1〉) = g(〈x2, y2〉),

(x1 ∈ R ⊕ y1 ∈ K) = (x2 ∈ R ⊕ y2 ∈ K)

Since d knows the values of x1 ∈ R, y1 ∈ K, and y2 ∈ K, it can compute the
value of x2 ∈ R. Thus d bets on x2 accordingly. This way d can double its capital.
Thus we have d(n) = 2d(n − 1).

Thus for every n either d(n) = d(n− 1) or d(n) = 2d(n− 1), and for infinitely
many n, d(n) = 2d(n − 1). Thus d(n) approaches infinity as n tends to ∞.

Observe that the time taken by d to search for the tuples with desired prop-
erties is bounded by 24n. In addition d needs at most 2

√
n time to decide mem-

bership of y1 and y2 in K. This is because K is in DTIME(2n) and length’s of
y1 and y2 are bounded by

√
n. Recall that running time of d is measured with

respect to the length of the partial characteristic sequence, thus d runs in time
O(n4). Thus if T1 is infinite, then R is not n4-random. The case where T2 can
be treated similarly.

Thus g is one-one on strings from f(Σ∗). This completes the proof of Claim 3

Next we show that any reduction from A to L must be honest. Since the complete
set L is in PSPACE, there is a constant k such that L can be decided in time 2nk

.

Claim. Let g be a reduction from A to L. Let T = {〈x, y〉 | |x| = |y|2}. For all
but finitely many strings w = 〈x, y〉 from T |g(w)| ≥ |x|1/k.

Proof. Let U be the set of strings w = 〈x, y〉 from T for which |g(w)| < |y|1/k.
We show that if U is infinite, then R is not n4-random.

Consider the following martingale d. Denote the capital that d has, before it
starts to bet on strings of length n, with d(n − 1). Before betting on strings of
length n, the martingale cycles through all tuples w = 〈x, y〉, n = |x| = |y|2, and
finds a tuple w in U . If no such tuple exists, then d does not bet on any strings
at length n. In this case, d(n) = d(n − 1).

By our assumption, d finds such tuple at infinitely many lengths. If the martin-
gale succeeds in finding a tuple in w, then it computes the membership of w ∈ A,
by computing the membership of g(w) ∈ L. Thus d knows x ∈ R ⊕ y ∈ K. Now,
d decides the membership of y in K and finds the membership of x in R. Thus
d(n) = 2d(n − 1).

If U is infinite, then for infinitely many n d(n) = 2d(n − 1). Thus d makes
infinite amount of money on R. The time taken by d can be bounded as follows:

Strong Reductions and Isomorphism of Complete Sets 175

It takes O(22n) time to find a string in U . Once it finds such string, it decides the
membership of w in A, by deciding the membership of g(w) in L. Since w ∈ U ,
|g(w)| < n1/k. Since L can be decided in 2nk

time, this step takes O(2n) time.
Since |y| =

√
n, and K is in DTIME(2n), membership of y ∈ K can be computed

in O(2n) time. Thus the running time of the martingale, when measured with
respect to the length of the characteristic sequence, is bounded by O(n2). Thus
R is not n4-random.

This completes the proof of Claim 3.

Now we will complete the proof of Lemma 3.3. By Claim 3, there is a one-one,
length-increasing SNP-reduction f from K to A. By Claims 3 and 3, there is a
polynomial-time reduction g from A to L that one-one is and honest on strings
from f(Σ∗). Combining the reduction f with g, we obtain a one-one, honest
reduction from K to L. Since K is weakly paddable, we conclude that there is a
one-one, length-increasing, SNP reduction from K to L.

Thus all PSPACE-complete sets are complete via one-one, length-increasing,
SNP-reductions.

We are now ready to prove isomorphism theorem for PSPACE. We start with
the following easy to prove observation.

Observation 3.5. Let f be a length-increasing SNP-computable function. There
is a nondeterministic polynomial-time machine M such that for every y that has
an inverse, every path of M(y) either outputs ⊥ or outputs a member of f−1(y),
and at least one path outputs a member of f−1(y). If f−1(y) does not exist, then
every path of M outputs ⊥.

Theorem 3.6. If NP does not have p-measure zero, then all polynomial-time
many-one complete sets for PSPACE are SNP-isomorphic.

Proof. Let A and B be any two PSPACE-complete sets. By Lemma 3.3, there is
a one-one, length-increasing SNP-reduction f from A to B, and similarly there
is a one-one, length-increasing SNP-reduction g from B to A.

Consider the following multi-valued function h: If if g−1(x) exists, h(x) =
f(x) ∪ {g−1(x)}, else h(x) = f(x). Observe that since g is a one-one function,
g−1(x), if exists, is unique.

By Proposition 3.5, there is a nondeterministic machine N that computes
g−1. Consider the following non-deterministic machine. On input x, it guesses a
bit b ∈ {0, 1}. If b = 0, then it simulates the SNP-machine that computes f . If
b = 1, the it simulates N . If g−1(x) exists, then the output set of this machine is
exactly f(x)∪{g−1(x)}. If g−1(x) does not exist, then output set of this machine
is f(x). Thus h is SNP-computable. Observe that h−1(x) = g(x)∪ f−1(x). Thus
it follows that h−1 is also SNP-computable.

The value of h(x) is either f(x) or f(x) ∪ {g−1(x)}. Since f is a reduction
from A to B and g is a reduction from B to A, it follows that h is a reduction
from A to B, and h−1 is a reduction from B to A.

We now exhibit a single-valued refinement of h that is an isomorphism between
A and B. Let fs(x) denote the smallest element of f(x), and gs(x) denote the

176 R.C. Harkins, J.M. Hitchcock, and A. Pavan

smallest element of g(x). Observe the fs and gs are one-one, length increasing,
single-valued functions.

Given a string x of length n, consider the following sequence.

Sx = g−1
s (x), f−1

s (g−1
s (x)), g−1

s (f−1
s (g−1

s (x))), · · ·

The sequence stops when either g−1
s or f−1

s does not exist. Since both fs and
gs are length-increasing, f−1

s and g−1
s are length-decreasing. Thus the above

sequence contains at most n strings.
Consider the following function e. If Sx has even number of elements then

e(x) = fs(x), else e(x) = g−1
s (x). Clearly, e is single-valued. Consider the case

Sx has odd number of elements. In this case g−1(x) must exist. Thus h(x) =
f(x) ∪ {g−1(x)}. Hence, if Sx has odd number of elements, then e(x) ∈ h(x).
Observe that for every x, f(x) ⊆ h(x). Thus if Sx has even number of elements,
then e(x) = fs(x) ∈ h(x). Thus e is a single-valued refinement of h.

It remains to show that e is an isomorphism from A to B. The proof of this is
exactly the same as the proof given by Berman and Hartmanis [13], so we omit
the details here.

Thus A and B are SNP-isomorphic. This completes the proof of Theorem 3.6.

We observe that the isomorphism exhibited in the above proof can be computed
in PNP. This yields the following result.

Theorem 3.7. If NP does not have p-measure zero, then all polynomial-time
PSPACE-complete sets are PNP-isomorphic.

Observe that the above proof goes through for any class that is closed under ⊕
operation. In particular, it holds Δp

k levels of the polynomial-time hierarchy.

Theorem 3.8. Assume that NP does not have p-measure zero. For every k ≥ 1,
all sets that are polynomial-time complete for Δp

k are SNP-isomorphic and PNP-
isomorphic.

We next consider whether we can prove a similar result for NP-complete sets.
We need a stronger hypothesis to do this.

Theorem 3.9. If NP∩co-NP does not have p-measure zero, then all polynomial-
time complete sets for NP are SNP-isomorphic.

For the most part, the the structure of the proof is similar to the proof of
Theorem 3.6. We can first prove that all NP-complete sets are complete via
one-one, length-increasing, SNP-reductions. For this we define an intermediate
language A and argue that there is a one-one, length-increasing reduction from
SAT to A and a one-one, length-increasing reduction from A to the desired
NP-complete language. The main difference is in definition of the intermediate
language A. Here we define the intermediate language A as

A = {〈x, y, z〉 | |x| = |z| = |y|2, Maj{x ∈ R, y ∈ SAT, z ∈ R} = 1}.

This ensures that A is also in NP. The remainder of the proof uses similar
ideas.

Strong Reductions and Isomorphism of Complete Sets 177

4 Discussion

This paper initiates the study of structure of polynomial-time complete sets
under more powerful SNP reductions. The results in this paper raises several
questions. We briefly discuss a few interesting questions.

As mentioned in preliminaries, there are several ways of defining the notion
of SNP-isomorphism. Our current definition asks for a function h such that both
h and h−1 are SNP-computable and some single valued-refinement of h is an
isomorphism. Perhaps a more natural definition would the following: A set A is
SNP-isomorphic to B if there is a (multi-valued) function h such that h reduces
A to B, h−1 reduces B to A, both h and h−1 are SNP-computable, and h is
bijection. A multi-valued function h : Σ∗ → Σ∗ is a bijection if every y ∈ Σ∗ has
an inverse and h(x)∩h(y) = ∅ for every x that is not equal to y. Another way of
defining SNP-isomorphism is to require that h is a single-valued SNP-computable
function.

Can we prove that PSPACE-complete sets or NP-complete sets are SNP-
isomorphic using these definitions? One way to achieve this is to strengthen
Lemma 3.3 to the following: If the p-measure of NP is not zero, then PSPACE-
complete sets are complete via monotone, length-increasing, SNP reductions?

We note that we can obtain an affirmative answer to this question for EXP.
It is known that polynomial-time EXP-complete sets are complete via one-one,
length-increasing reductions [12]. A function f is monotone if f(x) < f(y) when-
ever x < y. It is easy to modify Berman’s proof to show that polynomial-time
EXP-complete sets are complete via monotone, polynomial-time reductions.
Thus we unconditionally obtain that all EXP-complete sets are single-valued
SNP-isomorphic.

Ideally, we would like the resource bounds of isomorphisms and the reduc-
tions to be the same. Can we show that all SNP-complete sets for PSPACE
are SNP-isomorphic? How about p-isomorphisms? Can we prove or disprove the
isomorphism conjecture under the measure hypothesis?

Finally, can we show that NP-complete sets or PSPACE-complete sets are com-
plete via one-one, length-increasing, polynomial-time computable reductions?
Agrawal [5] and Hitchcock and Pavan [16] obtain some partial results.

References

1. Adleman, L., Manders, K.: Reducibility, randomness, and intractability. In: Proc.
9th ACM Symp. Theory of Computing, pp. 151–163. ACM Press, New York (1977)

2. Agrawal, A., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the
complexity of reductions. Computational Complexity 10, 117–138 (2001)

3. Agrawal, M.: The first-order isomorphism theorem. In: Foundations of Software
Technology and Theoretical Computer Science, pp. 70–82 (2001)

4. Agrawal, M.: Towards uniform AC0-isomorphisms. In: Proceedings of 16th IEEE
Conference on Computational Complexity, pp. 13–20. IEEE Computer Society
Press, Los Alamitos (2001)

178 R.C. Harkins, J.M. Hitchcock, and A. Pavan

5. Agrawal, M.: Pseudo-random generators and structure of complete degrees. In:
17th Annual IEEE Conference on Computational Complexity, pp. 139–145. IEEE
Computer Society Press, Los Alamitos (2002)

6. Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: An isomor-
phism theorem and a gap theorem. Journal of Computer and System Sciences 57(2),
127–143 (1998)

7. Agrawal, M., Biswas, S.: Polynomial-time isomorphism of 1-L complete sets. In:
Proceedings of Structure in Complexity Theory, pp. 75–80 (1993)

8. Allender, E.: Isomorphisms and 1-L reductions. Journal of Computer and System
Sciences 36, 336–350 (1988)

9. Allender, E.: Some pointed questions concerning asymptotic lower bounds, and
new from the isomorphism front. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Current Trends in Theoretical Computer Science: Entering the 21st Century, pp.
25–41. Scientific Press (2001)

10. Allender, E., Balcazar, J., Immerman, N.: A first-order isomorphism theorem.
SIAM Journal on Computing 26, 557–567 (1997)

11. Ambos-Spies, K., Terwijn, S.A., Zheng, X.: Resource bounded randomness and
weakly complete problems. Theoretical Computer Science 172(1–2), 195–207 (1997)

12. Berman, L.: Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell
University (1977)

13. Berman, L., Hartmanis, H.: On isomorphisms and density of NP and other complete
sets. SIAM J. Comput. 6, 305–322 (1977)

14. Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: 9th IEEE An-
nual Conference on Structure in Complexity Theory, pp. 118–133. IEEE Computer
Society Press, Los Alamitos (1994)

15. Durrett, R.: Probability: Theory and Examples. Duxbury Press, third edition
(2004)

16. Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. Information
and Computation 205(5), 694–706 (2007)

17. Joseph, D., Young, P.: Some remarks on witness functions for nonpolynomial and
noncomplete sets in NP. Theoretical Computer Science 39, 225–237 (1985)

18. Juedes, D.W., Lutz, J.H.: Weak completeness in E and E2. Theoretical Computer
Science 143(1), 149–158 (1995)

19. Kurtz, S., Mahaney, S., Royer, J.: The structure of complete degrees. In: Selman, A.
(ed.) Complexity Theory Retrospective, pp. 108–146. Springer, Heidelberg (1990)

20. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences 44(2), 220–258 (1992)

21. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra,
L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254.
Springer, Heidelberg (1997)

22. Lutz, J.H., Mayordomo, E.: Twelve problems in resource-bounded measure. Bul-
letin of the European Association for Theoretical Computer Science, 68, 64–80,
1999. Also in Current Trends in Theoretical Computer Science: Entering the 21st
Century, pp. 83–101, World Scientific Publishing (2001)

23. Ville, J.: Étude Critique de la Notion de Collectif. Gauthier–Villars, Paris (1939)
24. Wang, Y.: The law of the iterated logarithm for p-random sequences. In: Proceed-

ings of the Eleventh Annual IEEE Conference on Computational Complexity, pp.
180–189. IEEE Computer Society Press, Los Alamitos (1996)

Probabilistic and Topological Semantics

for Timed Automata

Christel Baier1, Nathalie Bertrand1,�, Patricia Bouyer2,3,��,
Thomas Brihaye2, and Marcus Größer1

1 Technische Universität Dresden, Germany
2 LSV - CNRS & ENS Cachan, France

3 Oxford University, England

Abstract. Like most models used in model-checking, timed automata
are an idealized mathematical model used for representing systems with
strong timing requirements. In such mathematical models, properties can
be violated, due to unlikely (sequences of) events. We propose two new
semantics for the satisfaction of LTL formulas, one based on probabili-
ties, and the other one based on topology, to rule out these sequences.
We prove that the two semantics are equivalent and lead to a PSPACE-
Complete model-checking problem for LTL over finite executions.

1 Introduction

Timed automata, a model for verification. In the 90’s, Alur and Dill proposed
timed automata [3] as a model for verification purposes, which takes into ac-
count real-time constraints. With this model, one can express constraints on
(possibly relative) dates of events. One of the fundamental properties of this
model is configurations in the system, many verification problems can be solved
(e.g. reachability and safety properties, branching-time timed temporal proper-
ties). Since then, this model has been intensively studied, and several verification
tools have been developed.

Idealization of mathematical models. Timed automata are an idealized mathe-
matical model, in which several assumptions are implicitely made: it has infinite
precision, instantaneous events, etc. Several ideas have been explored to over-
come the fact that these hypotheses are in practice unrealistic. The model of
implementable controllers has been proposed, where constraints and precision of
clocks are somewhat relaxed [8]. In this framework, if the model satisfies a safety
property, then, on a simple model of processor, its implementation will also sat-
isfy this property. This implementation model has been considered in [15,7,4,6].
However, it induces a very strong notion of robustness, suitable for really critical
systems (like rockets or X-by-wire systems in cars), but maybe too strong for
less critical systems (like mobile phones or network applications).

� Partly supported by a Lavoisier fellowship.
�� Partly supported by a Marie Curie fellowship.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 179–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 C. Baier et al.

Another robustness model has been proposed at the end of the 90’s in [9]
with the notion of tube acceptance: a metric is put on the set of traces of the
timed automaton, and a trace is robustly accepted if and only if a tube around
that trace is classically accepted. This acceptance has been further studied for
language-based properties, for instance the universality problem [11]. However,
this language-focused notion of acceptance is not completely satisfactory for
implementability issues, because it does not take into account the structure of
the automaton, and hence is not related to the most-likely behaviours of the
automaton.

Using probabilities to alleviate the disadvantages of mathematical models. In their
recent paper [17], Varacca and Völzer propose a probabilistic framework for
finite-state systems to overcome side-effects of modelling. They use probabilities
to define the notion of being fairly correct as having probability zero to fail,
when every non-deterministic choice has been transformed into a ‘reasonable’
probabilistic choice. Moreover, in their framework, a system is fairly correct with
respect to some property if and only if the set of traces satisfying that property
in the system is topologically large, which somehow attests the relevance of this
notion of fair correctness.

Contribution. We address both motivations, ruling out unlikely sequences of
transitions (as in the approach of [17]) and ruling out unlikely events (from
a time point of view, as in the implementability paradigm discussed above).
In order to do so, we propose two alternative semantics for timed automata:
(i) a probabilistic semantics which assigns probabilities both on delays and on
discrete choices, and (ii) a topological semantics, following ideas of [9,11] but
rather based on the structure of the automaton than on its accepted language.
For both semantics, we can naturally address a model-checking problem for LTL:
almost-sure model-checking for the probabilistic case and large model-checking
for the topological case. Our results in these new frameworks are twofold. First
we prove, by means of Banach-Mazur games, that the two semantics coincide:
an LTL formula is almost-surely satisfied if and only if it is largely satisfied.
Second we show that the almost-sure model-checking problem (and hence the
large model-checking problem) for LTL specifications is PSPACE-Complete, i.e.,
no more expensive than the classical LTL model-checking problem.

About probabilistic timed systems. Probabilities are not new in the model-
checking community, and neither are timed systems. Several pieces of work even
combine both. We refer to [16] for a survey on probabilistic timed systems. How-
ever, all of them were designed for modelling and analysing stochastic hybrid
systems under quantitative aspects, whereas we aim at a probabilistic inter-
pretation of non-probabilistic systems, which rule out unlikely events and yield
a non-standard but still purely qualitative satisfaction relation for linear-time
properties. To the best of our knowledge, we present here the first attempt to
provide a probabilistic interpretation for non probabilistic timed systems in order
to establish linear-time properties assuming ‘fairness’ on actions and delays.

Detailed proofs and complements can be found in the research report [5].

Probabilistic and Topological Semantics for Timed Automata 181

2 Timed Automata and Region Automata

In this section, we recall the classical notions of timed automaton and its well-
known abstraction, the region automaton [3].

Timed Automata. Let X be a finite set of clocks. A clock valuation over X is
a mapping ν : X → R+, where R+ is the set of nonnegative reals. We write R

X
+

for the set of clock valuations over X . If ν ∈ R
X
+ and τ ∈ R+, ν + τ is the clock

valuation defined by (ν + τ)(x) = ν(x) + τ if x ∈ X . If Y ⊆ X , the valuation
[Y ← 0]ν is the valuation assigning 0 to x ∈ Y and ν(x) to x �∈ Y . A guard
over X is a finite conjunction of expressions of the form x ∼ c where x ∈ X ,
c ∈ N, and ∼ ∈ {<, ≤, =, ≥, >}. We denote by G(X) the set of guards over X .
The satisfaction relation for guards over clock valuations is defined in a natural
way, and we write ν |= g, if ν satisfies g. We denote AP a finite set of atomic
propositions.

Definition 1. A timed automaton is a tuple A = (L, X, E, I, L) such that: (i)
L is a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L×G(X)×
2X × L is a finite set of edges, (iv) I : L → G(X) assigns an invariant to each
location, and (v) L : L → 2AP is the labelling function.

The semantics of a timed automaton A is given by a labelled transition system
TA = (S, E∪R+, →) where the set S of states is {s = (�, ν) ∈ L×R

X
+ | ν |= I(�)},

and the transition relation → (⊆ S × (E ∪ R+) × S) is composed of:

– (delay transition) (�, ν) τ−→ (�, ν + τ) if τ ∈ R+ and for all 0 ≤ τ ′ ≤ τ ,
ν + τ ′ |= I(�),

– (discrete transition) (�, ν) e−→ (�′, ν′) if e = (�, g, Y, �′) ∈ E is such that
ν |= I(�) ∧ g, ν′ = [Y ← 0]ν, and ν′ |= I(�′).

A finite run � of A is a finite sequence of states obtained by alternating delay and
discrete transitions, i.e., � = s0

τ1−→ s′1
e1−→ s1

τ2−→ s′2
e2−→ s2 · · · sn−1

τn−→ s′n
en−→ sn

or more compactly s0
τ1,e1−−−→ s1

τ2,e2−−−→ s2 · · · sn−1
τn,en−−−→ sn. We write Runs(A, s0)

for the set of finite runs of A from state s0.
Given s ∈ S and e an edge, we denote by I(s, e) = {τ ∈ R+ | s

τ,e−−→ s′} and
I(s) =

�
e I(s, e). The timed automaton A is said non-blocking whenever for

every state s ∈ S, I(s) �= ∅.
If s is a state of A and (ei)1≤i≤n is a finite sequence of edges of A, if C is

a convex constraint over n real-valued variables (ti)1≤i≤n, the (symbolic) path
starting from s, determined by (ei)1≤i≤n, and constrained by C, is the following
set of runs:

πC(s, e1 . . . en)={�=s
τ1,e1−−−→ s1

τ2,e2−−−→ s2 · · · | �∈Runs(A, s) and (τi)1≤i≤n |= C 1}.

If C is equivalent to ‘true’, we write π(s, e1 . . . en), and say it is unconstrained.
Occasionally, we refer to symbolic path for unconstrained symbolic path.
1 We write (τi)1≤i≤n |= C whenever the system C[ti/τi], obtained by replacing each

variable ti in C by the value τi, is true.

182 C. Baier et al.

The Region Automaton Abstraction. The well-known region automaton
construction is a finite abstraction of timed automata which can be used for
verifying many properties, for instance regular untimed properties [3]. Roughly,
the region automaton of A is the quotient of TA by an equivalence relation over
clock valuations. For lack of space, we do not redefine the region equivalence
relation, and we write RA for the set of regions of automaton A. In this paper,
we will use a slight modification of the original construction, which is still a
timed automaton, but which satisfies very strong properties.

Definition 2. Let A = (L, X, E, I, L) be a timed automaton. The region au-
tomaton of A is the timed automaton R(A) = (Q, X, T, κ, λ) such that:

– Q = L × RA; – κ((�, r)) = I(�), and λ((�, r)) = L(�) for all (�, r) ∈ L × RA;

– T ⊆ (Q×cell(RA)×E×2X ×Q), and (�, r)
cell(r′′),e,Y−−−−−−−→ (�′, r′) is in T iff there

exists e = �
g,Y−−→ �′ in E s.t. there exist ν ∈ r, τ ∈ R+ with (�, ν)

τ,e−−→ (�′, ν′),
ν + τ ∈ r′′ and ν′ ∈ r′ (cell(r′′) is the smallest guard containing r′′).

We recover the usual region automaton of [3] by labelling the transitions ‘e’ in-
stead of ‘cell(r′′), e, Y ’, and by interpreting R(A) as a finite automaton. However,
the above timed interpretation satisfies strong timed bisimulation properties that
we do not detail here. To every finite path π((�, ν), e1 . . . en) in A corresponds
a finite set of paths π(((�, [ν]), ν), f1 . . . fn) in R(A), each one corresponding to
a choice in the regions that are crossed. If � is a run in A, we write ι(�) for its
(unique) image in R(A). Finally, note that if A is non-blocking, then so is R(A).

In the rest of the paper we assume timed automata are non-blocking, even
though general timed automata could also be handled (but at a technical extra
cost). In all examples, if a state has no outgoing transition, we implicitely add a
self-loop on that state with no constraints, so that the automaton is non-blocking.

3 A Probabilistic Semantics for Timed Automata

In the literature, several models gather probabilities and timed constraints
(see [16] for a survey). Here, we take the model of timed automata, and give
a probabilistic interpretation to delays, so that unlikely events will happen with
probability 0.

For the rest of this section, we fix a timed automaton A = (L, X, Σ, E, I, L),
which we assume is non-blocking. For every state s of A, we assume a probability
measure μs over R+ with the following requirements: (i) μs(I(s)) = μs(R+) = 1;2

(ii) Writing λ for the Lebesgue measure, if λ(I(s)) > 0, μs is equivalent3 to λ on
I(s); Otherwise, μs is equivalent on I(s) to the uniform distribution over points
of I(s). For every state s of A, we also assume a probability distribution ps over
edges, such that for every edge e, ps(e) > 0 iff e enabled in s (i.e., s

e−→ s′ for
some s′).
2 Note that this is possible, as we assume s is non-blocking, hence I(s) �= ∅.
3 Two measures ν and ν′ are equivalent whenever for each measurable set A, ν(A) =

0 ⇔ ν′(A) = 0.

Probabilistic and Topological Semantics for Timed Automata 183

Remark 3. The above constraints on probability measures are rather loose and
are for instance satisfied by: (i) the uniform discrete distribution over I(s) if
I(s) is a finite set of points, (ii) the Lebesgue measure over I(s), normalized to
have a probability measure, if I(s) is a finite set of bounded intervals, and (iii)
an exponential distribution if I(s) contains an unbounded interval.

3.1 Definition of a Probability Measure over Finite Paths

Definition 4. Let A be a timed automaton. We define inductively the probability
for an unconstrained symbolic path π(s, e1 . . . en) to be fired (or equivalently for
the sequence e1, . . . , en of transitions in A to be fired from s) as follows:

PA(π(s, e1 . . . en)) =
1
2

�
t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dμs(t)

where s
t−→ (s + t) e1−→ st. We initialize with PA(π(s)) = 1

2 .

Using Fubini’s theorem, by induction on the length of symbolic paths, we can
prove that PA is well-defined. When clear from the context, we omit subscript A.

The formula for PA can be read as follows: the probability of taking transition
e1 at time t coincides with the probability of waiting t time units and then choose
e1 among the enabled transitions, i.e., ps+t(e1)dμs(t). We need to sum up over
all t’s in I(s, e1) the probability of runs starting by such a move. Normalisation
factor 1

2 ensures that the probability of all finite runs be one.4

Let us illustrate the previous definition on an example.

Example 5. Consider the following timed automaton:

�0 �1 �2�3

�4

x≤1, e1x≤2 x≤2, e2

x≤5

We assume a uniform distribution over delays and enabled edges in every state.
Then we can compute that P(π((�0, 0), e1e2)) = 1

64

�
1−3 log

�
5
4

� �
as μ(�0,0) = λ

2

(resp. μ(�1,t) = λ
5−t) is the uniform distribution over [0, 2] (resp. [t, 5]).

Lemma 6. For every state s, PA is a probability measure over the set
Runs(A, s).

We establish that probabilities in A and in R(A) are closely related, provided
the measures we initially assign to A and R(A) are similar. Hence, if μA (resp.
μR(A)) is the measure in A (resp. R(A)), we assume that for every state s in A,
μAs = μ

R(A)
ι(s) .5 This is possible as one can easily be convinced that I(s) = I(ι(s)).

4 Without this factor, for all n, the measure of runs of length n is one. This factor
is not completely satisfactory as it has no ‘physical’ interpretation, but it is not a
problem as we are only interested in qualitative properties.

5 Note that we abuse notations and use ι(s) for ι(π(s)).

184 C. Baier et al.

Similarly, if pA (resp. pR(A)) is the distribution over edges in A (resp. R(A)), we
assume that for every state s in A, for every t ∈ R+ pAs+t = p

R(A)
ι(s)+t. Under those

assumptions, we have the following result.

Lemma 7. Let A be a non-blocking timed automaton. Assume measures in A
and in R(A) are related as described above. Let π be a symbolic path in A. Then,
ι(π)6 is a PR(A)-measurable set of runs in R(A), and PA(π) = PR(A)(ι(π)).

3.2 Probabilistic Semantics

We consider the logic LTL [14], defined inductively as:

LTL ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕUϕ

where p ∈ AP is an atomic proposition. We use classical shorthands like tt
def=

p ∨ ¬p, ff def= p ∧ ¬p, ϕ1 ⇒ ϕ2
def= ¬ϕ1 ∨ ϕ2, Fϕ

def= ttUϕ, and Gϕ
def= ¬F (¬ϕ).

We interpret LTL formulas over finite runs of a timed automaton. Given a
symbolic path π and an LTL formula ϕ, either all concretizations of π (i.e.,
concrete runs � ∈ π) satisfy ϕ, or they all do not satisfy ϕ. Hence, it is correct
to speak of the probability PA{� ∈ Runs(A, s0) | � |= ϕ}, which we simply write
PA(s0, ϕ).

Let ϕ be an LTL formula. We say that A almost-surely satisfies ϕ from s0

w.r.t. PA, and we then write A, s0 |≈P ϕ, if PA(s0, ϕ) = 1.

Remark 8. Our model of timed automata has no accepting locations. This is
restrictive as some formulas will be trivially wrong (for instance, eventualities).
However, we can deal with accepting locations as well. Let acc be a new atomic
proposition and ψ be an LTL formula characterising the accepting runs, i.e.,
ψ

def= FG acc. Instead of considering PA(s0, ϕ) we would rather evaluate the
conditional probability PA(s0, ϕ | ψ). Clearly enough, verifying that PA(s0, ϕ |
ψ) = 1 in the automaton without accepting locations corresponds to checking
PA(s0, ϕ) = 1 in the automaton where accepting locations are those labelled with
acc. Note that this only makes sense if PA(s0, ψ) �= 0, however timed automata
such that PA(s0, ψ) = 0 can be considered as degenerated.

Example 9. Consider the timed automaton A depicted below:

�0

x≤1

{p1}

�1

{p1}

�2

{p2}e1, x≤1

e2, x≥2
x:=0

e3, x=3
e4, x≥1

If s0 = (�0, 0) is the initial state, then A, s0 �|= G p1 but A, s0 |≈P G p1. Indeed,
in this example, the transition e3 will unlikely happen, because its guard x = 3
is much too ‘small’ compared with the guard x ≥ 2 of the transition e2.
6 Recall that, if � is a run in A, then ι(�) is the image of � in R(A) (see page 182).

Probabilistic and Topological Semantics for Timed Automata 185

Lemma 7 directly implies the following:

Corollary 10. Let A be a non-blocking timed automaton, s a state of A, and
ϕ an LTL formula. Then,

A, s |≈P ϕ ⇔ R(A), ι(s) |≈P ϕ .

4 A Topological Semantics for Timed Automata

In this section, we propose a large semantics for LTL over timed automata. This
large semantics, based on a natural topology on timed automata, asserts that an
LTL formula is largely satisfied if ‘most of the runs’ satisfy it. We use classical
topological tools (including the dimension) to characterise what we mean by
‘most of the runs’.

4.1 Some Topological Notions

We do not recall classical definitions in topology but refer to [12]. However,
some notions are less common, we thus recall them here. The density notion
is not appropriate to express a ‘most of the runs’ notion, because rather small
sets are dense, e.g. the set Q in R. As already pointed out in [17] the notion of
largeness, and its complement the meagerness are more appropriate. Let (A, T)
be a topological space. If B ⊆ A, we denote by B̊ (resp. B) the interior (resp.
closure) of B. A set B ⊆ A is nowhere dense if B̊ = ∅. A set is meager if it is a
countable union of nowhere dense sets. Finally, a set is large if its complement
is meager.

Although the notion of largeness is quite abstract, it admits a very nice char-
acterisation in terms of a two-player game, known as Banach-Mazur game. A
Banach-Mazur game is based on a topological space (A, T) equipped with a
family B of subsets of A such that: (1) ∀B ∈ B, B̊ �= ∅ and (2) ∀O ∈ T s.t. O �=
∅, ∃B ∈ B, B ⊆ O. Given C a subset of A, players alternate their moves choos-
ing decreasing elements in B, and build an infinite sequence B1 ⊇ B2 ⊇ B3 · · · .
Player 1 wins the play if

�∞
i=1 Bi ∩ C �= ∅, else Player 2 wins.

Banach-Mazur games are not always determined, even for simple topological
spaces (see [13, Remark 1]). Still a natural question is to know when the players
have winning strategies. The following result gives a partial answer:

Theorem 11 (Banach-Mazur [13]). Player 2 has a winning strategy in the
Banach-Mazur game with target set C if and only if C is meager.

4.2 The Dimension of a Symbolic Path

In R
n, open sets are among those sets of maximal dimension. Here, we are not

exactly in R
n, but each symbolic constrained path can be embedded in some R

m.

186 C. Baier et al.

A notion of dimension of a symbolic path then naturally arises. Before going to
the details, let us explain through an example the intuition behind this notion.

Example 12. Let A be the timed automaton depicted below, let s0 be the state
(�0, 0) and π be the (unconstrained) symbolic path π(s0, e1e2).

�0 �1 �2

�3

x≤2, e1 x≤5, e2

x=3, e3

One can naturally associate a polyhedron of (R+)2 with π:

Pol(π) = {(τ1, τ2) ∈ (R+)2 | � = s0
τ1,e1−−−→ s1

τ2,e2−−−→ s2 ∈ Runs(A, s0)}
= {(τ1, τ2) ∈ (R+)2 | (0 ≤ τ1 ≤ 2) ∧ (0 ≤ τ1 + τ2 ≤ 5)}

Pol(π) has dimension 2 in R
2. Since it is of maximal dimension, we say the

dimension of the symbolic path π is defined. Consider now the symbolic path
π′ = π(s0, e1e3). The polyhedron Pol(π′) associated with π′ has dimension 1, and
is embedded in a two-dimensional space. In that case, we say that its dimension
is undefined.

In general, we need to be careful with singular transitions, i.e., transitions which
do not increase the dimension but play an important role (in the previous ex-
ample, it would be the case if the edge e1 was labelled with the guard x = 2;
though this guard is very small, the role of edge e1 is essential in the behaviour
of the automaton).

Let πC = πC(s, e1 . . . en) be a constrained path of a timed automaton A. We
define its associated polyhedron as follows:

Pol(πC) = {(τi)1≤i≤n ∈ (R+)n | s
τ1,e1−−−→ s1 · · · τn,en−−−→ sn ∈ πC(s, e1 . . . en)} .

Definition 13. Let A be a timed automaton, and πC = πC(s, e1 . . . en) a con-
strained path. For each 0 ≤ i ≤ n, we write Ci for the projection of Pol(πC) over
the variables of the i first coordinates, with the convention that C0 is true. We
say that the dimension of πC is undefined, and we then write dimA(πC) = ⊥,
whenever there exists some index 1 ≤ i ≤ n such that

dim
�
Pol
�
πCi(s, e1 . . . ei)

��
< dim

��
e

Pol
�
πCi−1(s, e1 . . . ei−1e)

��
.

Otherwise we say that the dimension of πC is defined, and write dimA(πC) = �.

4.3 Definition of a Topology over Finite Paths

For A a timed automaton, and s a state of A, we define a basic open set as a
constrained symbolic path πC = πC(s, e1 . . . en) such that dimA(πC) is defined,
and Pol(πC) is open in Pol(π) for the topology of R

n induced on Pol(π), where
π stands for the (unconstrained) path π(s, e1 . . . en).

Probabilistic and Topological Semantics for Timed Automata 187

We write TA for the topology over Runs(A, s) induced by these basic open
sets and Runs(A, s). Note that the basic open sets πC together with Runs(A, s)
form a base for TA.

Example 14. Let A be the timed automaton of Example 9 and s0 = (�0, 0) be its
initial state. The basic (unconstrained) open sets of Runs(A, s0) are sets of the
form π(s0, (e1e2)∗) or of the form π(s0, e1(e2e1)∗). A (constrained) basic open
set is then for instance πC(s0, e1e2) with C = { 1

3 < t1 < 1
2 ; t1 + t2 > 5}. One can

be convinced that the set of paths of the form π(s0, (e1e2)∗e3e
∗
4) is meager.

Proposition 15. Let A be a timed automaton, and s a state of A. The topo-
logical space (Runs(A, s), TA) is a Baire space.7

Proof (Sketch). Let πC = πC(s, e1 . . . en) be a non-empty basic open set. We then
use Banach-Mazur games and Theorem 11 to prove that πC is not meager: we
prove that Player 2 has no winning strategy for the game playing with basic open
sets and with πC as an objective, by exhibiting a counter-strategy for Player 1.

Player 1 proceeds as follows: for the first round, she picks π1 = πC . For the
second round, Player 2 picks some π2 ⊆ π1. For the third round, Player 1 must be
careful and cannot take an arbitrary open path included in π2, because Player 1
could manage to choose the constraints so that the limit of the intersections
be empty (by analogy in R, the limit of (0, 1

2i) is the empty set). To avoid this,
Player 1 can first consider a ‘big’ compact set F2 within π2 (‘big’ here means with
a non-empty interior) — note that this is possible as the topology we consider,
restricted to π(s, e1 . . . en), can be embedded in some R

m through the application
Pol(·). Then, she can play with a basic open set π3 included in F2. The game
continues like this, and Player 1 only needs to use the above-described trick at
each of her rounds. The intersection of all paths that have been played then
corresponds to the intersection of a chain of compact sets, hence it is non-empty,
by Heine-Borel theorem. ��

We can now define a topological semantics for LTL based on the notion of large-
ness. Let ϕ be an LTL formula. We say that A largely satisfies ϕ from s, and we
write A, s |≈T ϕ, if the set {� ∈ Runs(A, s) | � |= ϕ} is topologically large. The
topologies in A and in R(A) are equivalent in the following sense.

Lemma 16. Let ι : Runs(A, s) → Runs(R(A), ι(s)) be the projection of finite
runs � in A onto the region automaton (see page 182). Then ι is continuous,

and for every non-empty open set O ∈ TA,
◦	ι(O) �= ∅.

Corollary 17. Let A be a timed automaton, s a state of A, and ϕ an LTL
formula. Then,

A, s |≈T ϕ ⇔ R(A), ι(s) |≈T ϕ .

7 In modern definitions, a topological space is a Baire space if each countable union
of closed sets with an empty interior has an empty interior. However, originally, a
topological space is a Baire space whenever every non-empty open set is not meager.
The two definitions coincide, see [12, p.295].

188 C. Baier et al.

5 Correspondence of the Two Semantics

In this section we prove our main theorem: probabilistic and topological seman-
tics coincide! We first relate dimension and probabilities in the region automaton.

Proposition 18. Let A be a non-blocking timed automaton, and π be an un-
constrained symbolic path in R(A). Then, PR(A)(π) > 0 iff dimR(A)(π) = �.8

The main result of this paper is the following theorem.

Theorem 19. Let A be a non-blocking timed automaton, s a state of A, and ϕ
an LTL formula. Then,

A, s |≈P ϕ ⇔ A, s |≈T ϕ .

Proof (Sketch). Thanks to Corollaries 10 and 17, it is equivalent to prove that
R(A), ι(s) |≈T ϕ iff R(A), ι(s) |≈P ϕ. Moreover, R(A), ι(s) |≈P ϕ iff PA(ι(s), ¬ϕ)
= 0, thus applying Proposition 18, R(A), ι(s) |≈P ϕ iff every symbolic path π in
R(A) starting in ι(s) and satisfying ¬ϕ has an undefined dimension. We finally
prove that this last property is equivalent to R(A), ι(s) |≈T ϕ, i.e., to the fact
that �¬ϕ� = {� ∈ Runs(R(A), ι(s)) | � �|= ϕ} is topologically meager.

For the first implication, we use Banach-Mazur games and Theorem 11 to
prove that Player 2 has a winning strategy for the objective �¬ϕ� (still playing
with the basic open sets of TR(A)). Let π1 be the path chosen by Player 1 at the
first round. This path has necesseraly defined dimension and thus, by hypothesis
and Proposition 18, it satisfies ϕ. Whatever is played afterwards, the intersection
with the objective will be empty. Hence Player 2 wins and �¬ϕ� is meager.

For the second implication, assume that �¬ϕ� is meager. As the topological

space (Runs(R(A), ι(s)), TR(A)) is a Baire space (see Proposition 15),
◦
�¬ϕ�= ∅.

Hence, there is no path in R(A) from ι(s) with defined dimension which does
not satisfy ϕ. ��

Remark 20. To handle accepting states in the previous theorem, it would be
sufficient to quantify only over paths in R(A) which are accepting.

6 Decidability Issues

Theorem 21. Over finite timed words, the almost-sure and the large LTL model-
checking problems over non-blocking timed automata are PSPACE-Complete.

Proof (Sketch). The two problems are equivalent, due to Theorem 19. The
PSPACE-Hardness follows from the PSPACE-Hardness of LTL model checking
over finite automata. To describe a PSPACE algorithm, we first color each edge of
R(A) as follows: if e is an edge in R(A), we color it in red whenever μs(I(s, e)) = 0
8 This is in particular independent of the choice of the probability distributions over

delays.

Probabilistic and Topological Semantics for Timed Automata 189

for some s ∈ q (note that this property is independent of the choice of s ∈ q,
and that it is equivalent to dim(I(s, e)) < dim(I(s)) thanks to the property of
the measure μs, see page 182), and we color it in blue otherwise.

Lemma 22. Let A be a timed automaton and π = π(s, e1 . . . en) a symbolic path
in R(A). Then, dimR(A)(π) = ⊥ iff at least one of the edges of π is red.

Now, applying Proposition 18, to decide whether A, s �|≈P ϕ, it is sufficient to
guess a path in R(A) which has defined dimension (i.e., does not contain any
red edge), and does not satisfy ϕ. There is such a path with length at most
exponential, it can thus be done in NPSPACE =PSPACE. ��

7 Related Work

In this section we briefly compare our two semantics with existing works. A
deeper related work section can be found in our research report [5].

The model of real-time probabilistic processes introduced in [1,2] seems similar
to timed automata interpreted with our probabilistic semantics, but it is indeed
not the case. First, such a system is composed of a number of independent pro-
cesses with a single clock, which implies in particular that clocks are completely
independent. Then, and this is even more important, the choice of the transition
to be taken is made before choosing probabilistically a delay. As a consequence,
even transitions with small firing intervals can have a high probability to be
taken, even though events with much larger firing intervals are possible. This is
why this model satisfies stronger properties than ours.

We now compare our topology with the one introduced in [9] and further
studied in [11]. First notice that their topology is defined on finite timed words
and we define our topology on the set of finite runs. In particular, as already
mentioned in the introduction, their topology only depends on the language and
not on the automaton, while ours does. This implies that the topologies are
‘incomparable’, more precisely we can find sets that are open for our topology
and not for their topology, and vice-versa.

8 Conclusion

In this paper, we have proposed two satisfaction relations for LTL formulas over
timed automata which rule out unlikely (sequences of) events. The first one is
based on a probabilistic semantics of timed automata, and to the best of our
knowledge, is the first attempt to provide a probabilistic interpretation for non
probabilistic timed systems in order to establish linear-time properties assuming
‘fairness’ on actions and delays. It naturally raises (qualitative) model-checking
questions, for instance whether the probability that an LTL property holds is 1
(almost-sure model-checking problem). The second one is based on the topolog-
ical concept of largeness, and yields a natural large semantics for LTL. We prove
that these two interpretations for LTL coincide. Moreover, we establish that LTL

190 C. Baier et al.

model checking under those non-standard semantics is not harder than ordinary
LTL model-checking (PSPACE-Complete).

The method we have developed here could straightforwardly extend in various
directions. All untimed properties over finite runs, whose truth is invariant by
regions, can be treated that way (for instance properties expressed in the logic
CTL� or in the μ-Calculus). It could also be applied to various classes of hybrid
systems with a finite bisimulation quotient [10].

We are currently extending this work to the framework of infinite timed words
which raises even more complex problems, and we plan to extend it further in
several directions, like for properties expressed in a timed logic, or to the quanti-
tative analysis of this model (for instance, computing the exact, or approximate,
probability of satisfying a given property, etc), or to control problems, etc.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time
systems. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) Automata,
Languages and Programming. LNCS, vol. 510, pp. 115–126. Springer, Heidelberg
(1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Verifying automata specifications of probabilis-
tic real-time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever,
W.-P. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 28–44. Springer,
Heidelberg (1992)

3. Alur, R., Dill, D.: A theory of timed automata. Theoretical Comp. Sci. 126(2),
183–235 (1994)

4. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg
(2005)

5. Baier, C., Bertrand, N., Bouyer, P., Brihaye, Th., Größer, M.: Probabilistic and
topological semantics for timed automata. Research Report LSV–07–26, LSV, ENS
de Cachan, France (2007)

6. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–
249. Springer, Heidelberg (2006)

7. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementabil-
ity of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)

8. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

9. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

10. Henzinger, Th.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic tran-
sition systems. ACM Transactions on Computational Logic 6(1), 1–32 (2005)

11. Henzinger, Th.A., Raskin, J.-F.: Robust undecidability of timed and hybrid sys-
tems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–
159. Springer, Heidelberg (2000)

12. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)

Probabilistic and Topological Semantics for Timed Automata 191

13. Oxtoby, J.C.: The Banach-Mazur game and Banach category theorem. Annals of
Mathematical Studies 39, 159–163 (1957)

14. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Ann. Symp. Founda-
tions of Computer Science (FOCS 1977), pp. 46–57. IEEE Comp. Soc. Press, Los
Alamitos (1977)

15. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)

16. Sproston, J.: Model checking for probabilistic timed systems. In: Baier, C.,
Haverkort, B., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochas-
tic Systems. LNCS, vol. 2925, pp. 189–229. Springer, Heidelberg (2004)

17. Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct
systems. In: Varacca, D. (ed.) Proc. 21st Ann. Symp. Logic in Computer Science
(LICS 2006), pp. 389–398. IEEE Comp. Soc. Press, Los Alamitos (2006)

A Theory for Game Theories

Michel Hirschowitz1, André Hirschowitz2, and Tom Hirschowitz3

1 CEA-LIST
michel.hirschowitz@cea.fr

2 UMR 6621 CNRS-Université de Nice-Sophia-Antipolis
ah@math.unice.fr

3 UMR 5668 CNRS-ENS Lyon-INRIA-UCBL
tom.hirschowitz@ens-lyon.fr

Abstract. Game semantics is a valuable source of fully abstract models
of programming languages or proof theories based on categories of so-
called games and strategies. However, there are many variants of this
technique, whose interrelationships largely remain to be elucidated. This
raises the question: what is a category of games and strategies?

Our central idea, taken from the first author’s PhD thesis [11], is
that positions and moves in a game should be morphisms in a base
category: playing move m in position f consists in factoring f through
m, the new position being the other factor. Accordingly, we provide a
general construction which, from a selection of legal moves in an almost
arbitrary category, produces a category of games and strategies, together
with subcategories of deterministic and winning strategies.

As our running example, we instantiate our construction to obtain the
standard category of Hyland-Ong games subject to the switching con-
dition. The extension of our framework to games without the switching
condition is handled in the first author’s PhD thesis [11].

Keywords: Game semantics, categories.

1 Introduction

1.1 The Flavor Problem

Game semantics appeared in the early 90’s [3,12] and provided convenient deno-
tational semantics to proof theories and programming languages, including their
non functional features [2,5,4,13,8,14]. However, game semantics has roughly as
many variants as it has authors. Each of these game theories starts from a no-
tion of “arrow” game (with corresponding positions and moves), yielding the
natural notion of strategy. The crucial construction is then the composition of
strategies, with the crucial feature that various meaningful classes of strategies
(deterministic, innocent, winning) are preserved by composition.

All these compositions clearly have a common flavor (sometimes called “com-
pose+hide”). In the present work, we propose an explanation for this common
flavor. To this effect, we define, through a single construction, a huge class
of game theories where the composition of strategies preserves good proper-
ties. This class contains those among existing game theories which respect the

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 192–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Theory for Game Theories 193

so-called switching condition [7]. This restriction is only due to the fact that
we have chosen to present the simplest version of the construction. Indeed, the
more general version [11] involves a serious amount of weak categorical mate-
rial. Nevertheless, future game models relying on our framework will avoid the
burden of re-proving the combinatorial lemmas leading to the category of games
and strategies. We now proceed to give a more detailed overview.

1.2 Playing in a One-Way Category

In our approach, a play may take place in any one-way category, which we define
to be a category where objects have a sign (1/0) and where morphisms cannot
go from a 1-object to a 0-one. Equivalently, a one-way category is a category C,
equipped with a functor λ : C → �, where � is the ordered set 0 ≤ 1.

The crucial part of our construction builds a wild game WC from a one-way
category C. This game is wild in the sense that the two players play without any
restriction (meaningful restrictions will be considered later). Let us sketch the
construction of WC . It is a directed graph, whose vertices are the morphisms of
C. Thus we have one kind (01) of odd vertices and two kinds (00, 11) of even
vertices. We think of these “states” as follows: at an odd vertex, Player has to
play and reach an even vertex; at a 11-vertex, Opponent has to play “on the
left-hand side” (and reach an odd vertex), while at a 00-vertex Opponent has
to play “on the right-hand side” (and reach an odd vertex). This yields the
following diagram of states

11 � ML

L
� 01

MR��
R

00.

In other words we have four kinds of edges (ML and MR for Player’s moves,
L and R for Opponent’s) which we now describe in more detail. The rule is that
only one end of the vertex (a morphism in C) changes, and the slogan says that
O composes while P decomposes, as pictured in Figure 1: an edge from f to g,
consists of an odd morphism m respectively satisfying the following rule:

0
f � 0

�
�
�

1

m ∈ ΣR

�

.............
g

�

1
f � 1

�
�
�

0

m ∈ ΣL

�
.............

g

�

0
f � 1

�
�
�

0

m ∈ ΣL

�
.............

g
�

0
f � 1

�
�
�

1

m ∈ ΣR

�

.............
g

�

Fig. 1. The four kinds of edges in WC, from f to g

194 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz

Kind of move R L MR ML
Rule g = m ◦ f g = f ◦ m f = m ◦ g f = g ◦ m.

Because each move changes the signs, all the m’s above and in Figure 1 have
sign 0 → 1.

The wild game we have constructed so far offers essentially the complete
picture which we want to show, in particular one may define strategies and
their composition. On the other hand, as far as meaning is concerned, the wild
game is trivial, in the sense that players can easily neutralize each other. Indeed,
for instance, assume Opponent moves from the current position f to, say, m ◦
f by composing with m. Then, Player may move back to f by decomposing
m ◦ f into m and f . Thus, in the wild game, all moves are undoable. More
meaningful and sufficiently general games are obtained as subgames of the wild
game simply by restricting the set of odd morphisms allowed in the process
of composition/decomposition. For this reason we define a game setting to be
a one-way category equipped with two sets of odd morphisms as explained in
Section 2.2. In the rest of the paper, we explain the basic theory of plays and
strategies in a game setting, and we show how the theory of HO games may be
recovered in terms of a game setting.

Related Work. Cockett and Seely [6] offer another categorical investigation into
game semantics. The relationship between their work and ours remains unclear
to us. Let us also mention a recent paper [10] which describes a categorical recon-
struction of “pointer” games and innocent strategies from “general” games and
strategies. In this sense, they reduce one sophisticated (but efficient) category of
games to a much simpler one. Thus they aim at a better understanding of one
(very important) category of games, and of the concept of innocence, while we
aim at a better understanding of what could be a category of games, and do not
consider the concept of innocence.

Organization of the Paper. In Section 2, we provide the categorical construc-
tion which, from a so-called game setting, constructs a double category of plays,
where vertical composition is sequential composition, while horizontal composi-
tion is reminiscent of the usual composition of strategies. We then instantiate our
framework in Section 3: after recalling the basics of (a standard variant of) HO
games, we exhibit a game setting hidden in it, for which our construction yields
the usual notion of plays and arrow arenas. In Section 4, we describe strategies
in our abstract framework, as well as their composition, and we show that the
obtained notion of HO strategies closely corresponds to the standard one.

2 The Abstract Framework: Building the Double
Category

2.1 Game Settings

In order to restrict moves in the game sketched above, we should a priori specify
four sets MOL, MOR, MPL, MPR of legal odd morphisms, one for each of the

A Theory for Game Theories 195

four kinds of moves in Figure 1. However, these restrictions will be compatible
with the composition of strategies only if we impose MOL = MPR and MOR =
MPL. This leads to our definition: a game setting G � (C, ΣR, ΣL) consists of
a one-way category C equipped with a pair of sets of odd morphisms: ΣR is the
set of forward moves (or f-moves ; those going downwards in Figure 1); ΣL is the
set of backward moves or b-moves. The wild game (on C) is obtained by taking
as ΣR and ΣL the whole set of odd morphisms.

In a game setting G, we view objects as positions in a two-player game,
actually a signed graph. Morphisms in ΣR and ΣL are Opponent and Player
moves, respectively. On 0-labeled objects, Opponent is to play, whilst on
1-labeled ones, it’s Player’s turn. As illustrated in Figure 2, from some 0-labeled
position p, Opponent plays by choosing an f-move m : p → q with domain p,
thereby reaching the 1-labeled position q. Conversely, from such a q, Player plays
by choosing a b-move m′ : r → q with codomain q, thereby reaching the posi-
tion r. This defines a graph whose vertices are the objects of C, which we call
the 0-dimensional game (0-game for short) of G and denote by G0(G). We call
the free category over this graph the category of 0-plays over G, and denote it
by C0(G).

Play: p
m � q � m′

r . . .

Signs: 0 1 0

course of the game �

Fig. 2. Example play in the 0-game

Each 0-play v has a predecessor Pred(v) obtained by deleting the last move
(if any).

2.2 The 1-Dimensional Game

As in standard game semantics, this yields a natural notion of arrow game, also a
graph, which we call the 1-dimensional game (1-game for short) of G and denote
by G1(G). We describe the positions of this game first, then its moves, and finally
we show how to equip it with signs, in a way that refines the above interpretation
of signs in the 0-game. Positions (or vertices) in G1(G) are morphisms in C. Given
the constraints on signs, there are just three kinds of positions: 00, 01, and 11.
Then, moves from f to g in the 1-game are defined to be commutative triangles
in C, of one of the four shapes in Figure 1.

The interpretation of signs in 1-games, illustrated in Figure 3, entirely follows
from the idea that in 0-games, Player lives on the left-hand side of the position,
whilst Opponent lives on its right-hand side. For a 1-position, there is thus one
agent M in the middle, and one agent on each side, which we call L and R in
the obvious way. M plays Opponent in the domain 0-game, and Player in the

196 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz

Domain 0-game Codomain 0-game

L M R

�....
.....

.....
.....

.....
.....

.....
.....

.....
..

Opp
on

en
t

...

P layer

� �....
.....

.....
.....

.....
.....

.....
.....

.....
..

Opp
on

en
t

..

P layer

�

� 1-position � �

Fig. 3. All agents (L, M, R) act as Player on their rhs and as Opponent on their lhs

codomain 0-game. L plays Player in the domain 0-game, whilst R plays Opponent
in the codomain 0-game. This yields the following rule for the 1-game:

Signs of the 1-position Who’s to play?
0 � 0 R
0 � 1 M
1 � 1 L .

We consider the free category over this graph G1(G): we call it the category
of 1-plays over G and denote it by C1(G). Again each 1-play v has a predecessor
Pred(v) obtained by deleting the last move (if any).

Finally, we define the (horizontal) source and target functors on 1-plays,
s, t : C1(G) → C0(G), by the obvious induction (or adjunction). We thus have a
pullback category C1(G) s×t C1(G)) of composable pairs of 1-plays.

2.3 The Double Category Associated to a Game Setting

In this section, we derive a double-categorical structure from our game setting G.
For this, we will define a notion of horizontal composition of 1-plays, yielding a
category whose objects are 0-plays, and whose morphisms are 1-plays. We start
by defining the graph G2(C) of primitive interactions as follows. As vertices, take
composable pairs of morphisms in C, and as edges from the pair

f� g� to

the pair
f ′
� g′

� , take all the commutative diagrams as in Figure 4. This

gives four kinds of vertices (000, 001, 011, 111) according to the signs of objects,
yielding the following state diagram:

111
L ��

M1L
011 � M2L

M1R
� 001

M2R ��
R

000.

For G2(C), the intuition is that there are two players M1 and M2, and two
opponents L and R, who interact respectively on the left-hand side with M1 and

A Theory for Game Theories 197

1
f � 1

g = g′
� 1

0

m
�
........ f

′

� 0
f � 1

g = g′
� 1

1

m
�

........ f
′

�

0
f � 0

g � 1

1

m
�

........ g
′

�

f ′ �

0
f � 1

g � 1

0

m
�
........ g

′

�

f ′ �

0
f = f ′

� 0
g � 1

0

m
�
........g ′ �

0
f = f ′

� 0
g � 0

1

m
�

........g ′ �

Fig. 4. The six kinds of edges in G2(C) (each edge top-down)

on the right-hand side with M2. Thanks to categorical composition, both players
act exactly as if they were facing two opponents. For instance, M1 interacts with
L on the left-hand side, and with M2 on the right-hand side. Because of sign
rules, at most one of M1 and M2 may play at a given time, which prevents any
conflict to arise.

Next, we let C2(G) denote the free category generated by G2(G), and we call
its morphisms interactions in G. Accordingly, the edges in G2(G) are primitive
interactions. Let us also deem the primitive interactions of the middle row in-
ternal, and the other ones external. Now a key observation is that the functor

C2(G)
〈π1, π2〉� C1(G) s×t C1(G)

which maps a path in G2(G) to its left and right borders is an isomorphism,
which says altogether that interactions are determined by their projections, and
that C1(G) s×t C1(G) is freely generated by the primitive interactions.

Thanks to this statement, it is enough to define our 1-horizontal composi-
tion Y • X on primitive interactions, which is straightforward: for an internal
interaction, the 1-horizontal composition is the empty 1-play. Otherwise it is the
obvious move from g ◦ f to g′ ◦ f ′, for each external interaction as in Figure 4.

To construct our horizontal category, we finally define identity morphisms,
by mimicking what is standardly called copycat in game semantics: let copycat
be the unique functor from G0(G) to G1(G) such that f-moves m : p → p′ and
b-moves m : p′ → p are respectively sent to plays

p
idp

� p p
idp

� p

p′
m �

idp′

� p′
m�m �

p′
m �

idp′

�
m

�

p′.

m�

198 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz

By the standard adjunction between categories and directed graphs, this defines
copycat uniquely: on arbitrary plays, copycat simply piles up sequences of such
elementary plays.

Proposition 1. The horizontal composition of 1-plays is associative and unital.

The proof of associativity relies on a freeness result concerning 3-interoctions,
completely analogous to our previous freeness result concerning 2-interactions.

This all gives the data for a double category. A short definition is as follows:
a double category is a category object in the category of categories. A more
explicit, elementary definition may be found, e.g., in Melliès [15]. We’ve already
checked all the required properties, except the interchange law, which makes •
into a functor from the pullback C1(G) s×t C1(G) to C1(G). Explicitly: (Y1 •X1)◦
(Y2 • X2) = (Y2 ◦ Y1) • (X2 ◦ X1). It happens to be satisfied, which entails:

Theorem 1. For any game setting G, the categories C0(G) and C1(G), the
domain and codomain functors s, t : C1(G) → C0(G), the horizontal composi-
tion functor • : C1(G) s×t C1(G) → C1(G), and the horizontal identity functor
I : C0(G) → C1(G) form a double category.

3 The One-Way Category Underlying Hyland-Ong
Games

3.1 A Brief Review of HO-Arenas and HO-Plays

We briefly recall some definitions of HO game theory, and refer the reader to
Harmer’s notes [9] for details.

An arena A is a triple (MA, λA, �A), where MA is a set of moves, λA gives
signs to moves, i.e., is a function from MA to {0, 1}, and �A represents altogether
a binary relation (justification) and a predicate (initiality) on MA, such that:

1. if �A m, then λA(m) = 0 and for all m′ ∈ MA, m′ 	 �Am,
2. if m �A m′, then λA(m) 	= λA(m′).

Moves m such that �A m are called initial. When m �A m′, we say that m
justifies m′.

A position in an arena A is a pair (s, ρ), where s = m1 . . . mn is a sequence of
moves of alternate signs in A, and ρ is a function from {1 . . . n} to {0 . . . n − 1}
such that for all i ∈ {1 . . . n}

1. (priority condition) ρ(i) < i,
2. if ρ(i) = 0, then mi is initial,
3. if ρ(i) = j 	= 0, then mj justifies mi.

We say that n is the length of the position. Our position p also has an initial
part Initp ⊂ [1, . . . , n] which is the set of indices i for which mi is initial. Since
positions carry their history, they also may be seen as plays, and we freely call
them either way. A position of length 0 is called initial, and a non initial position

A Theory for Game Theories 199

p of length n has a predecessor position Pred(p), of length n − 1, obtained by
deleting the last move. For simplicity, we define Pred(p) � p when p is initial. A
set of positions is prefix-closed when it is closed under application of Pred.

Given a sign function λ, we write λ for the opposite one. Given two arenas A
and B, one constructs the arrow arena A � B by taking MA +MB as the set of
moves, [λA, λB] as a sign function, the (injections of) initial moves of B as initial
moves, and for the binary �A�B, taking the union (up to injection) of �A and
�B, plus the pairs (m, m′) with m initial in B and m′ initial in A. Note that a
position p in an arrow arena A � B determines two projections pA and pB which
are in general not positions in A and B. Intuitively, this is because Opponent
may switch sides, and, when asked a question in A, ask a question in B.

Define a position p in A � B to be valid if its two projections are again
positions, respectively in A and B. Combinatorially, if nA and nB are the lengths
of these projections, p determines a shuffle pS = [1, . . . , nA+nB] → [1, . . . , nB]�
[1, . . . , nA]. We say that such a shuffle ps satisfies the switching condition, or is
even when

– if nA + nB > 0 then pS(1) is on the B-side,
– for i satisfying 1 < 2i < nA + nB, pS(2i) and pS(2i + 1) are on the same

side.

It turns out that p is valid exactly when pS is even. We note that p determines
a restricted justification map RJp : InitpA → InitpB . Conversely, given the
projections pA and pB, a position p is determined by an arbitrary map RJ :
InitpA → InitpB and an even shuffle compatible with RJ (with respect to the
priority condition).

Strategies from A to B are defined to be non-empty, prefix-closed sets of valid
positions in A � B. One then shows that strategies compose and have identities,
which yields a category of games and strategies StratHO.

3.2 The One-Way Category CHO

Let us now describe the one-way category CHO relevant for HO games. An object
(A, (s, ρ)) of CHO is merely a position (s, ρ) in a game arena A, while a morphism
from p = (A, (s, ρ)) to q = (B, (s′, ρ′)) is a (valid) position f = (A � B, (t, τ))
whose projections respectively give p and q. Thus our morphisms also have pre-
decessors. Note that f and Pred(f) share one end, but in general not both.

We are especially concerned with two kinds of morphisms. Firstly, for each
position p = (A, (s, ρ)), we have a copycat morphism copycatp : p → p, which is
defined by induction on the length of p: the empty play on A � A is the copycat
of the initial position on A, and for greater lengths, copycatp is determined by
the requirement that its second predecessor is the copycat of Pred(p): the last
two moves are determined by the given projections (p and p). Secondly, we are
interested in those morphisms whose predecessor is a copycat, which we call
subcopycat morphisms. Each subcopycat morphism is also the predecessor of a
unique copycat morphism. Thus, for a non initial position p, define Subp to be
the predecessor of copycatp. Then, each subcopycat morphism can be written

200 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz

Subp in a unique way. Furthermore, if p is even, then Subp goes from p to Pred(p)
while if p is odd, then Subp goes from Pred(p) to p.

Next, we define the composition of our morphisms. Consider two consecutive
arrows, i.e., valid positions f in some A � B and g in B � C with the same
projection pB on B. We denote by pA the projection of f on A, and by pC

the projection of g on C and by nA, nB, nC the corresponding lengths. We will
define h � g ◦ f by its restricted justification map RJh and its even shuffle hS .
For RJh, we take the composition RJg ◦ RJf . For hS , we observe that, thanks
to the switching condition, there is a unique shuffle s : [1, . . . , nA + nB + nC] →
[1, . . . , nC] � [1, . . . , nB] � [1, . . . , nA] compatible with fS and gS. We view this
shuffle as an order on [1, . . . , nC] � [1, . . . , nB] � [1, . . . , nA] and take for hS its
restriction to [1, . . . , nC] � [1, . . . , nA].

This composition is easily seen to be associative, and it is easily checked that
the identity on a position p is the copycat morphism copycatp.

This altogether gives a category CHO, whose objects may be given a sign as
follows: the sign of a position is 0 if Opponent is to play, or equivalently if its
length is even, and 1 otherwise. Thus, a priori, we have four kinds of morphisms,
0 → 0, 0 → 1, 1 → 0, 1 → 1. However, we easily check that there are no
morphisms of type 1 → 0. This is a consequence of the switching condition,
and the convention that plays always start with a move by Opponent, which
furthermore, in the case of arrow arenas, has to be on the right-hand side. Our
category may thus be seen as a one-way category.

Remark 1 (Relaxing the switching condition). If we relax the switching condi-
tion, and allow Opponent to switch sides in an arrow game, the main new feature
is that the horizontal composition of 1-plays is no more well-defined, because in-
teractions are no more determined by their projections. As a consequence, the
double category constructed above has to be replaced by some kind of weak dou-
ble category, to be defined accordingly. This approach has been pursued in the
first author’s PhD thesis [11], where one eventually recovers a proper category
when passing to strategies.

3.3 The Game Setting GHO

Now we explain how HO-moves may be seen as morphisms in CHO. Playing a
move in a position p in A is understood as extending p (with one move in A),
yielding a new position q. To this move, we attach the morphism Subq. Note
that Subq goes from p to q if p is even, and from q to p if p is odd. Hence in
our view, the set of HO-moves is precisely the set of subcopycat morphisms,
which we split into the set RHO of subcopycat morphisms where the length of
the codomain exceeds the length of the domain by one, and the set LHO of
subcopycat morphisms where the length of the domain exceeds the length of the
codomain by one. Thus, standard HO plays are 0-plays starting on an initial
position in the game setting GHO � (CHO, LHO, RHO). (In the game setting,
we also consider plays starting on non initial positions.)

Now let us see how our view fits with plays in an arrow game: consider a
valid position f in the game A � B and its extension to a new valid position

A Theory for Game Theories 201

g, through a HO-move m (in A or in B). We have four kinds of extensions
corresponding to who is playing and where. A careful inspection shows that
– if O plays in B, then we have g = m ◦ f (in CHO),
– if O plays in A, then we have g = f ◦ m,
– if P plays in B, then we have f = m ◦ g,
– if P plays in A, then we have f = g ◦ m;

which shows that, indeed, O composes the original position with her move, while
P decomposes the original position with her move. Thus, standard HO arrow
plays are precisely 1-plays in GHO starting on an initial position.

4 An Abstract View of Strategies

In this section, we show how some standard results on strategies may be under-
stood abstractly in a game setting G = (C, ΣR, ΣL). Recall that an object of C
is even when its sign is 0 and odd otherwise. We say that a 1-position f : p → q
is even when p and q have the same sign, and odd otherwise. We note that f is
odd exactly when the middle player M is to play, and even exactly when it’s L
or R’s turn. Let us now define strategies, writing · for concatenation.

Definition 1. A 0-strategy (or strategy) σ on a 0-position p is a non empty,
prefix-closed set of 0-plays of domain p such that, for any x in σ with even
codomain q, and for any move m : q → r in G0(G), x · m is also in σ.

A 1-strategy (or strategy) Σ on a 1-position f is a non empty prefix-closed
set of 1-plays of domain f , such that, for any X in Σ with even codomain g,
and for any move M : g → h in G1(G), X · M is also in Σ.

We use S to range over 0 or 1-strategies (or both), leaving the context to dis-
ambiguate. Given f : p → q and g : q → r, we define the horizontal composition
of strategies σ and σ′ (respectively on f and g) to be the set of all plays on g ◦ f
of the form Y • X for some (horizontally) composable X ∈ σ and Y ∈ σ′. We
easily prove that this definition is sensible:

Proposition 2. A composition of 1-strategies is again a 1-strategy.

Proposition 3. The composition of 1-strategies is associative.

The proof of the latter statement is an easy consequence of the associativity of
our horizontal composition of plays.

We define the copycat strategy on an identity 1-position p as the smallest
strategy containing the copycat 1-plays (as defined above) starting at p. These
copycat strategies are neutral for our composition. We thus have a category
Strat(G) whose objects are 0-positions, and morphisms are pairs of a 1-position
and a strategy for it.

In the case of our running example GHO , this new category fits with the
“classical” one, up to the fact that we also consider non empty plays as objects
in the new category.

Theorem 2. The map sending an arena to the corresponding initial play yields
a full embedding StratHO

� Strat(GHO).

202 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz

Next, we show that two crucial properties of strategies are stable under compo-
sition. A strategy is deterministic iff it does not contain two plays ending on an
even position and sharing all their proper prefixes.

Proposition 4. The composition of deterministic 1-strategies is again deter-
ministic.

A play is final in a strategy S when it has no extension in S. A strategy is
complete iff its final plays all end on an even position. In other words, a complete
strategy is one which never gets stuck. However, this definition is a bit loose
w.r.t. potential infinite plays. Indeed, a complete strategy may contain infinite
plays, and the composition of two complete strategies may not be complete.
Intuitively, it may get lost in infinite internal “chattering” between M1 and M2.
Thus, we refine the picture as follows. We deem a strategy noetherian iff it
contains only finite plays, and winning iff it is noetherian and complete. This
yields the following:

Proposition 5. The composition of two winning 1-strategies is again winning.

The previous notion of a winning strategy is not totally satisfactory. For instance,
we would like copycat strategies to be winning. This somehow forces to consider
some kind of non noetherian strategies. Anyway, we also wish to handle infinite
plays in the spirit of Abramsky [1], but this is beyond the scope of the present
work.

5 Conclusion

We have designed a notion of game theory. This is not one more category whose
objects are new kinds of arenas. Rather we have shown how to build such a
category from a very minimal set of data: a (one-way) category and two sets of
morphisms therein. We have sketched how our composition of strategies has the
desired stability properties (but we did not consider innocence). We hope that
our framework will help in the design of new, helpful game semantics. We believe
that it can be extended in various ways in order to encompass most of existing
game semantics, and plan to explore some of these extensions in the near future.

Acknowledgements. We thank Vincent Danos for having advised the first
author’s PhD thesis, Pierre-Louis Curien for his constant benevolence and
assistance, and Martin Hyland for encouraging us to write the present work.

References

1. Abramsky, S.: Semantics and Logics of Computation, chapter Semantics of inter-
action, pp. 1–31. Cambridge University Press (1997)

2. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for
general references. In: Proceedings of the thirteenth annual symposium on Logic
In Computer Science, pp. 334–344. IEEE Computer Society Press, Los Alamitos
(1998)

A Theory for Game Theories 203

3. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163(2), 409–470 (2000)

4. Abramsky, S., McCusker, G.: Full abstraction for Idealized Algol with passive ex-
pressions. Theoretical Computer Science 227, 3–42 (1999)

5. Abramsky, S., Melliés, P.-A.: Concurrent games and full completeness. In: Pro-
ceedings of the fourteenth annual symposium on Logic In Computer Science, pp.
431–442. IEEE Computer Society Press, Los Alamitos (1999)

6. Cockett, R., Seely, R.: Polarized category theory, modules, and game semantics.
Theory and Applications of Categories 18, 4–101 (2007)

7. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

8. Harmer, R.: Games and Full Abstraction for Nondeterministic Languages. Ph.D.
thesis, Imperial College and University of London (1999)

9. Harmer, R.: Innocent game semantics, Course notes (2005)
10. Harmer, R., Hyland, M., Melliès, P.-A.: Categorical combinatorics for innocent

strategies. Technical report, Paris 7 University (2007)
11. Hirschowitz, M.: Jeux abstraits et composition catégorique. Thèse de doctorat,

Université Paris VII (2004)
12. Hyland, M., Ong, L.: On full abstraction for PCF. Information and Computa-

tion 163(2), 285–408 (2000)
13. Laird, J.: Full abstraction for functional languages with control. In: Proceedings

of the twelfth annual symposium on Logic In Computer Science, pp. 58–67. IEEE
Computer Society Press, Los Alamitos (1997)

14. Laurent, O.: Sémantique des jeux. Course notes (Paris VII) (2004)
15. Melliés, P.-A.: Double categories: a modular model of multiplicative linear logic.

Mathematical Structures in Computer Science 12, 449–479 (2002)

An Incremental Bisimulation Algorithm

Diptikalyan Saha

Motorola India Research Lab, Bangalore, India
diptikalyan@motorola.com

Abstract. The notion of bisimulation has been used in various fields including
Modal Logic, Set theory, Formal Verification, and XML indexing. In this paper
we present the first algorithm for incremental maintenance of maximum bisim-
ulation relation of a graph with respect to changes in the graph. Given a graph,
its maximum bisimulation relation, and the changes in the graph, we determine
the maximum bisimulation relation with respect to the changed graph by com-
puting the changes in the given bisimulation relation. When the change in the
graph induces small changes in the maximum bisimulation relation, our incre-
mental algorithm is able to update the bisimulation relation on average an order
of magnitude faster than the fastest available non-incremental algorithm. Prelim-
inary experiments demonstrate the effectiveness of our algorithm. Our algorithm
finds extensive use in verification where the specification changes over time, and
XML indexing in database where the index structure, obtained by bisimulation
on XML graph structure, needs to be maintained with respect to changes in the
XML documents.

1 Introduction

The notion of bisimulation equivalence is important in many fields such as Modal Logic,
Concurrency Theory, Set Theory, Formal Verification, XML Indexing, and Game The-
ory. Informally, a pair of automata M , M ′ are said to be bisimilar if for every transition
in M there exists a corresponding transition in M ′ and vice versa. Milner and Park [15]
introduced this notion in Concurrency theory for testing observational equivalence in
CCS. Van Benthem [3] used it as an equivalence principal between Kripke Structures.
Bisimulation in its various forms like strong or weak has also been used for check-
ing equivalence between finite and infinite transition systems [9]. Verification systems
such as the Spin [11], Concurrency Workbench of the New Century (CWB-NC) [5] and
CADP [4] incorporate bisimulation checkers in their tool sets. In the area of formal
verification, the notion of bisimulation has been primarily used to minimize the state
space of the system’s description which serves as an important factor in compositional
and non-compositional model checking.

Many systems where bisimulation is used are dynamic in nature. For example, XML
documents are indexed by its minimum bisimilar equivalent graph. As XML documents
are updated in the database, their indices need to be updated too. In the area of verifi-
cation, software systems undergoing verification evolve as a result of bug fixes and re-
quirement changes. Similarly, specifications of security protocols and hardware designs
required for verification are also changed over time. However, most of the verification

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 204–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Incremental Bisimulation Algorithm 205

systems use their techniques as a whole on the changed input. They do not consider the
changes in the input, although in many cases the changes in the specification or soft-
ware have small effect to the output. In these cases, incremental algorithms are a way
to efficiently recompute the output with respect to the changes in the input.

In this paper, we present an incremental bisimulation algorithm which, given a graph
G, its maximum bisimulation relation P , and the changes (ΔG) in the graph, updates
the old bisimulation relation to compute the maximum bisimulation relation with re-
spect to graph (G∪ΔG). To the best of our knowledge, this is the first algorithm which
incrementally recomputes the maximum bisimulation relation.

Our algorithm is based on two algorithms for finding maximum bisimulation rela-
tion of a graph, viz. Paige Tarjan’s algorithm [16] (abbreviated as PTA) and its recent
improvement by Dovier et. al. [6] known as fast bisimulation algorithm or FBA. PTA
and FBA solve relational coarsest partition problem which is equivalent to finding max-
imum bisimulation relation of a graph. We assume that the initial bisimulation relation
(P) is computed by FBA. After the changes to the graph G, our algorithm tries to con-
fine the over-approximation that can occur while recomputing P .

The rest of the paper is organized as follows. We formally define the notion of bisim-
ulation and present an overview of PTA and FBA in Section 2. We present our incre-
mental bisimulation algorithm in Section 3. Section 4 demonstrates the effectiveness of
the incremental algorithms. We compare the various strategies used by our algorithm
with other incremental algorithms in Section 5. We conclude with some direction of
future work in Section 6.

2 Preliminaries

In this section we formally describe the notion of bisimulation equivalence and its rela-
tion to the relational coarsest partition problem (abbreviated as RCPP). We also discuss
an algorithm which is closest to our algorithm. Below we define the notion of bisimu-
lation using a graph theoretic view.

Definition 1. Given two graphs G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉, a bisimulation
between G1 and G2 is a relation b ⊆ N1 × N2 such that:

(1) u1 b u2 ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)
(2) u1 b u2 ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N2(v1 b v2 ∧ 〈u1, v1〉 ∈ E1)

Given a graph G there can be many bisimulation relations between G and G. However,
we are interested in the maximum bisimulation relation which is unique and always
exists. Also the problem of recognizing if two graphs are bisimilar and the problem of
determining the maximal bisimulation on a graph are equivalent.

The problem of our interest is that of finding minimum graph bisimilar to a given
graph G(N, E). This problem was studied by Kanellakis and Smolka [12] in connec-
tion with testing congruence of finite state processes in the calculus of communicat-
ing systems (CCS) [14]. They presented an algorithm requiring O(|E|.|N |) time and
O(|E| + |N |) space. In [16] Paige and Tarjan solved the relational coarsest partition
problem which is equivalent to the maximum bisimulation equivalence problem.

206 D. Saha

RCPP is described in terms of set theory. Let U be a finite set. A partition P of U is
a set of pairwise disjoint subsets of U whose union is all of U . The elements of P are
called its blocks. If P and Q are partitions of U , Q is a refinement of P if every block
of Q is contained in a block of P . The RCPP is defined as follows: given a partition P
of U and a binary relation E on U , find the coarsest partition refinement Q of P such
that for each pair of blocks B1, B2 of Q, either B1 ⊆ E−1B2 or B1 ∩ E−1B2 = φ (in
this case B1 is called stable with respect to B2).

Given a graph G = 〈N, E〉, if Q is a partition of its nodes N , we can obtain a
bisimulation relation b as u b v iff ∃B ∈ Q, {u, v} ⊆ B. Also given a bisimulation
relation (an equivalence relation) of G, the blocks of the stable partition Q are the
equivalence classes. Finding maximum bisimulation of a graph thus corresponds to
the finding coarsest partition of the set of nodes in the graph with respect to its edge
relation [13].

Our incremental bisimulation algorithm is based on Paige-Tarjan’s algorithm and its
subsequent improvement by Dovier et. al in [6]. Below we give a brief overview of the
algorithms presented in [16] and [6].

Paige Tarjan’s Algorithm (PTA). PTA is motivated from the algorithm presented by
Hopcroft [10] for solving the problem of minimization of the number of states in a given
finite automaton which is equivalent to that of determining the coarsest partition prob-
lem stable with respect to a set of functions. Hopcroft’s solution is based on negative
strategy where in each step the blocks of the partition are split if they are not stable. Fol-
lowing this negative strategy which is normal in greatest fixed-point computation, PTA
uses a primitive refinement operation called split which generalizes the split operation
used in Hopcroft’s algorithm. For any partition Q and subset S ⊆ U , the split(S, Q) is
refinement of Q obtained by replacing each block B ∈ Q such that B ∩E−1S �= φ and
B − E−1S �= φ by the two blocks B ∩ E−1S and B − E−1S.

However, a straightforward use of splitting strategy where in each step union of some
of the blocks of the current partition is used as splitter, yields an algorithm whose time
complexity is O(|E|.|N |). Thus the refined algorithm exploits the idea of Hopcroft’s
“process of smaller half” for better way to find splitters to attain worst-case time com-
plexity O(|E|log(|N |)).

Algorithm. Given an initial partition P of U , the algorithm finds a coarsest stable par-
tition Q of P . In addition to the current partition Q, another partition X is maintained
such that Q is a partition of X , and Q is stable with respect to every block of X . Initially
Q = P , and X is the partition containing U as its single block. The algorithm consists
of repeating the following steps until Q = X .

Step 1: Find a block S ∈ X that is not a block of Q.
Step 2: Find a block B ∈ Q such that B ⊆ S and |B| ≤ |S|/2. Replace S within X by
the two sets B and S − B; replace Q by split(S − B, split(B, Q)).

Fast Bisimulation Algorithm. In [6] Dovier et. al. showed improvement over PTA.
Their algorithm, known as FBA, reaches a linear worst case complexity for acyclic
graph. They also showed the effectiveness of the algorithm for model checking pack-
ages. In the paper the authors proposed a strategy which uses positive ([17]) and

An Incremental Bisimulation Algorithm 207

negative strategies ([16]) to obtain algorithmic solution to RCPP. The algorithm has
the same worst-case complexity as PTA. The initial partition is generated based on a
notion of rank where if two nodes are bisimilar, their ranks must be the same (converse
is not true). Thus using rank, the algorithm divides the graph to an over-approximate of
the desired coarsest partition.

In the general case when the graph is not well-founded the ranking is done by SCC
decomposition ([6]) of the graph using Kosaraju and Sharir’s SCC computation algo-
rithm [22]. To find SCCs in a graph G, the algorithm first traverses G−1, the transpose
of G, and gives post-order numbers to the vertices in G. Then it traverses G, starting
from the vertex with the highest post-order number; this traversal builds a spanning tree
for one SCC of G. Whenever the traversal ends, the algorithm begins a new traversal
from the unvisited vertex with the highest post-order number, thereby building a span-
ning tree for another SCC. This process continues until all vertices have been visited,
enumerating all SCCs of G.

For each node n, let c(n) denote the SCC containing node n. The idea is to separate
the graph into well-founded and non well-founded parts. The boolean flag WFlag(u)
denotes whether the node u is well-founded. The well-founded part (WF(G)) is defined
as the collection of nodes in G whose transitive closure is acyclic. The other nodes
in graph form the non-well-founded part of the graph. Then ranking of each node is
defined below.

Definition 2. Let G = (N, E) and its SCC decomposition graph is given by Gscc =
(Nscc, Escc). The rank for each node is defined as follows:

r(n) = 0 when n is a leaf in G [Case 1]
r(n) = −1 when c(n) is a leaf in Gscc and n is not a leaf of G [Case 2]
r(n) = max({1 + r(m) : 〈c(n), c(m)〉 ∈ Escc, m ∈ WF (G) [Case 3.1]}

∪{r(m) : 〈c(n), c(m)〉 ∈ Escc, m /∈ WF(G) [Case 3.2]})

At each stratum defined by the ranking strategy, the algorithm uses PTA or Paige-
Tarjan-Bonic algorithm ([17]) to refine the stratum. Then it uses the blocks of this
stratum to refine the blocks of higher ranked strata using split operation.

We now present an existing work in incremental bisimulation where an incremental
algorithm for maintaining XML structural indices is presented ([25]). The initial index
graph is computed using PTA applied to the data graph (XML structure). When addi-
tion/deletion of edges are done in the data graph an incremental algorithm which consist
of a Split phase followed by a Merge phase is applied to update the index graph. Our in-
cremental algorithm has similar Split and Merge phases. However, one of disadvantage
of their incremental algorithm is that it does not compute the coarsest partition when the
data graph is cyclic. Thus in a general sense the algorithm is not an incremental bisim-
ulation algorithm as it does not maintain maximum bisimulation. Instead it maintains a
partition called maximal bisimulation which coincides with the maximum bisimulation
when the data graph is acyclic. The authors have mentioned that in case of maintain-
ing XML structural indices, where most XML structures are acyclic, their algorithm
produces the minimum index. Another drawback of their algorithm is that they do not
take advantage of FBA when the graph is acyclic which is almost the case for XML
data graph.

208 D. Saha

3 Incremental Bisimulation Algorithm

In this section we present our Split-Merge-Split (SMS) algorithms for incremental
maintenance of relational coarsest partition. A non-incremental strategy can incorpo-
rate any changes in the graph by recomputing its coarsest partition again using the FBA
[6] (from-scratch algorithm). However, such re-computation is often wasteful as small
changes to the graph can potentially result into small changes to its coarsest partition.
As a result, the entire coarsest partition need not be recomputed. The aim of our incre-
mental algorithms is to identify the parts of the existing coarsest partition that need to
be changed, and recompute them.

As the name suggests, the SMS algorithms have three phases, although in some
cases the last split phase is not required. Let G be the initial input graph and G′ be the
new graph after the changes and their corresponding relational coarsest partitions are
given as X and X ′. Also after Split, Merge, and Split phases of the SMS algorithm, the
corresponding partitions obtained be X1, X2, and X3. We use small letters to denote
nodes and capital letters to denote blocks, block(u) to denote the block which has the
node u, → to denote the edge relation among nodes, and ⇒ is the edge relation among
blocks where an U ⇒ V iff ∃u → v, block(u) = U , and block(v) = V . We use the
notation ¬U ⇒ V to denote that no block edge exists from U to V .

Our single edge addition algorithm SMS-ADD is shown in Figure 1(e). Initially
the algorithm checks whether there already exists a block edge between block(u) and
block(v) in which case the addition of u → v has no effect. The first Split phase of our
algorithm is realized using the function RankedSplit (Lines 6, 66-74). The algo-
rithm is same as the iterative split strategy of PTA, the only difference being the blocks
for splits are chosen in increasing order of ranks. The partition X1 obtained after the
split phase is characterized using the following Lemma.

Lemma 1. If two nodes are not bisimilar in G′ i.e. they belong to different blocks in
X ′, then they belong to the different blocks of X1.

The Merge phase performs two operations. Firstly, it incrementally recomputes the
ranks and well-founded flags of the nodes. Secondly, it merges the blocks of partition
X1 to obtain the partition X2 which is characterized using the following Lemma.

Lemma 2. If two nodes are bisimilar in G′ i.e. they belong to same block in X ′, then
they are in the same block of X2.

The r′(u) and WFlag′(u) represent the new values of the rank and well-founded flag
of node u, respectively. When an edge is added between a non well-founded node
and a well-founded node (Lines 9-11), the new rank of u is given by the expression
in Line 9. Any changes in the rank of the non well-founded node is propagated to
the non well-founded parts of the graph by the function propagate nwf(u) which
uses Sharir’s SCC decomposition algorithm starting from node u. In contrast, the func-
tion propagate wf(u) propagates the change in rank of a well-founded node u to
the well-founded parts of the graph in a bottom-up fashion (using topological order of
non-updated ranks) and if necessary propagates any changes to the ranks of non-well
founded nodes by calling function propagate nwf. The details of these two func-
tions are not provided in this paper.

An Incremental Bisimulation Algorithm 209

1 SMS−ADD(node u , node v)
2 i f (block(u)⇒ block(v))
3 re turn ;
4 Add the edge u→ v to G
5

6 RankedSplit (block(v))
7

8 i f ¬WFlag(u) and WFlag(v)

9 r′(u) = max {r(u), r(v) + 1}
10 i f r′(u) �= r(u)
11 propagate nwf (u)
12 MergePhase (block(u) ,block(v))
13 e l s e
14 i f r(u) > r(v)
15 MergePhase (block(u) ,block(v))
16 e l s e
17 Bu = block(u) , Bv = block(v)
18 V i s i t b locks s t a r t i n g from u in
19 G−1 between blocks of ranks
20 r(u) and r(v) . Mark each block
21 B as visited(B) . Note whether
22 i t r eaches Bv to form a c y c l e .
23 i f c y c l e formed
24 WFlag′(u) = false
25 r′(u) = re− compute rank
26 propagate nwf (u)
27 MergeAndSplitPhase ()
28 e l s e
29 i f WFlag(u) = true
30 i f WFlag(v) = true

31 r′(u) = r(v) + 1
32 propagate wf (u)
33 e l s e
34 r′(u) = max{r(u), r(v)}
35 propagate nwf (u)
36 e l s e
37 r′(u) = r(v)

38 i f r′(u) �= r(u)
39 propagate nwf (u)
40 MergePhase (Bu ,Bv)
41

42 propagate wf (u)
43 Recompute ranks of s u c c e s s o r
44 of u based on p r i o r i t y o f t h e i r
45 o ld ranks [in bottom−up order]
46 and propagate r e c u r s i v e l y

48 MergePhase (block U , block V)
49 ∀U1, U1 ⇒ V
50 i f MergeCond (U1 ,U)
51 rec merge (U1 ,U)
52

53 rec merge (B1 , B2)
54 merge the blocks B1 and B2
55 ∀C1, C1⇒ B1 , ∀C2, C2⇒ B2
56 i f (MergeCond (C1 ,C2))
57 rec merge (C1 ,C2)
58

59 MergeCond (B1 ,B2)
60 B1 and B2 are not mergeable
61 i f label(B1) �= label(B2)
62 ∨ B1 = B2
63 ∨ r(B1) �= r(B2)
64 ∨ ∃ a caus a l−s p l i t t e r o f B1 and B2
65

66 RankedSplit (block B)
67 X=P , Q=P
68 % P i s t h e c u r r e n t p a r t i t i o n
69 s p l i t (B ,Q) ;
70 U n t i l Q=X
71 Perform two s t e p s of PTA
72 with Step 1 : choos ing S
73 with minimum rank from X t h a t
74 i s not a block of Q
75

76 MergeAndSplitPhase ()
77 % Merge phase
78 Perform DFS on G in order of
79 d e c r e a s i n g f i n i s h i n g t imes of
80 the l a s t DFS .
81 During the DFS Merge the blocks
82 v i s i t e d us ing the non−merging
83 c o n d i t i o n as MergeCond and
84 r e c u r s i v e l y propagate merge as
85 shown in f u n c t i o n rec merge
86 A l l the blocks in t r a v e r s e d
87 are put in one X p a r t i t i o n
88 % S p l i t Phase
89 Perform PTA in X p a r t i t i o n
90 and propagate any s p l i t us ing
91 RankedSplit
92

93 propagate nwf (u)
94 Perform SCC f i n d i n g a lgor i thm from
95 node u to re−compute non
96 Well−Founded ranks

(e)

Fig. 1. Example 1 (a, b, c, d); (e) Incremental Addition Algorithm

210 D. Saha

Note that, the case in Lines 11-13 is the only case where only well-founded flags
determine that a new SCC creation is not possible due to addition of the edge, which is
also true when r(u) > r(v) (Line 15). In all other cases, the algorithm performs a DFS
traversal (Lines 17-22) on G−1 to know whether an SCC is formed due to addition of
the edge. If the SCC is formed, the algorithm recomputes the rank of the node u based
on well-founded flags and ranks of its predecessors using Definition 2. Otherwise, the
ranks of the nodes are updated as shown in Lines 29-40. For example, if u and v are
both well-founded and r(u) ≤ r(v), then u → v addition increases the r(u) to r(v) +
1 (follows from Case 3.1 of Definition 2). The change is propagated using function
propagate wf(u). The other two cases follow from the Case 3.2 of Definition 2.

The aim of finding new SCC is based on two important reasons, (i) two different
merge algorithms are needed based on whether a new SCC is created, and (ii) the last
split phase is not required when no new SCC is formed.

When no new SCC is formed, the Merge phase (Function MergePhase) of the
algorithm considers each of the predecessor blocks of block(v) to merge with block(u).
The intuition of this merge is as follows: due to the absence of u → v, a predecessor
block of block(v), say U1, which contained u got split into V 1 = U1∩E−1{block(v)}
and block(u) using block(v) as splitter. Thus after addition of u → v, the algorithm
needs to reform U1 by merging V 1 and block(u). Due to this merge, their predecessor
blocks may also get merged. However, it is not always possible to merge two blocks B
and B′ as the blocks need to have the same labels and ranks (in the updated graph). Also
if there exists a block C which has a predecessor block same as exactly one of blocks B
and B′ then blocks B and B′ should not be merged (see Function MergeCond). The
block C is called causal-splitter of the blocks B and B′, and is formally defined below.

Definition 3 (Candidates for causal-splitter). A block C is called a causal-splitter of
block B and B′, if

– B ⇒ C and ¬B′ ⇒ C, or B′ ⇒ C and ¬B ⇒ C.
– C is a block in the partition X ′.

When no new SCC is created due to the addition of the edge, the second condition of the
causal-splitter trivially holds as the blocks are merged from lower ranked strata to higher
ranked strata, and causal splitters are chosen from already stabled lower ranked strata.
However, in general, the causal-splitter block may get affected due to the transitive
effect of merging blocks B and B′. If due to the propagation of merging of B and B′,
C gets merged with C′, then the condition of having predecessor block edge to exactly
one B and B′ may no longer hold. This is only possible when addition of edge creates
a new SCC in the updated graph, in which case judicious selection of causal-splitters is
required, a case explained in more detail with the following example.

Consider the graph in Figure 1(a) with labeling set {{n0}, {n1, n3, n5}, {n2, n4}},
initial partition in Figure 1(b), and addition of a new edge n4 → n3. As the rank of n4

is 1 and that of n3 is 4, an SCC can be potentially formed because of the addition.
In the first split phase, as block B4 only contains a single node, it is not split.

The split phase ends here as no further splits are possible. The first DFS traversal
of blocks from block(u) in G−1 till the ranked stratum containing block(v) (in this
case blocks B1, B2, B3, B4) confirms creation of a new SCC. Next, the ranks of the
nodes n1, n2, n3, n4 are updated to 1. Then the function MergeAndSplitPhase

An Incremental Bisimulation Algorithm 211

determines the new SCC in the second DFS on G. At the finish time of second DFS of
each block, it is tried to merge it with other visited blocks of the SCC. For each label
a list of blocks with that label is maintained where the blocks cannot be merged with
each other. Firstly, B1 is put to label-1 list. Then, B2 is put to the label-2 list. Next, B3

is considered for merging with B1 as it has the same label as B1. Note that, B1 ⇒ B2

and ¬B3 ⇒ B2, and B1 ⇒ B4 and ¬B3 ⇒ B4. But as B2 and B4 are marked during
the first DFS visit, each of them can be potentially merged to some other visited blocks
and thus can be potentially changed. For example, blocks B2 and B4 can be potentially
merged and in that case none of them should be used as a causal-splitter. Thus B3 and
B1 are merged to obtain a block B6. However, as there exist blocks that can be potential
causal-splitters, we are introducing over-approximation in the merge phase.

The above discussion hints at a strategy for selecting a causal splitter which preserves
the second condition of causal-splitter. A block is selected as causal-splitter if it is not
visited in the first DFS as it is not going to be affected because of the addition. This
is the case when the next block B4 is considered for merging. Although it has same
label as B2, due to the existence of the causal-splitter B5 it is not merged with B2. The
resultant partition is shown in Figure 1(c). Although not shown in this example, the
effect of merging two blocks may lead to merging of their predecessors blocks in
the unvisited region of first DFS.

It can be proved that in case where an addition of an edge to a graph does not create
a cycle, we do not require the last split phase of SMS algorithm. The reason is that the
merging done in merge phase is not an over-approximation. In general, the merge phase
can causeover-approximation ofmergingwhich is rectified in the last splitphase.ThePTA
is run on those visited blocks and propagate the splits strata-by-strata. The final partition
is shown in Figure 1(d). The below theorem expresses the correctness of the algorithm.

Theorem 1. The partitions X3 and X ′ are equal.

Single Edge Deletion: The single edge deletion algorithm (SMS-DEL) has the similar
Split, Merge, Split phases like the SMS-ADD algorithm. They differ only in the rank re-
computation part and in the merging phase where after recomputing ranks if a block’s
rank is changed to 0, it is merged with the other block of rank 0.

Consider deletion of the edge n4 → n5 after addition of edge n4 → n3 in example
in Figure 1(a). The first split phase is ineffective. In the merge phase, Sharir’s SCC
computation algorithm is performed to update any rank, and merge all the blocks in the
same rank as u and reachable to u. Note that unlike in the case of addition, the blocks
of nodes n1 and n3, n2 and n4 are merged as the connection to the causal-splitter block
is deleted. This also serves as an example where the resultant partition of the merging
phase is the final partition.

Our SMS algorithm can be adapted to multiple edge addition and deletion, subgraph
addition and deletion, and update. These algorithms have the same three phases and
DFS traversal where each phase and DFS traversal need to be done for all changes
before starting processing of other phases. The main difference lies in the computation
of ranks. Due to want of space we do not discuss these algorithms here.

Complexity. The complexity of the first split phase, rank re-computation, merge phase,
last split phase are O(|E1|log(|N1|), O(|ΔWF |log(|ΔWF |)+(|Enwf |+ |Nnwf |)), and

212 D. Saha

O(|E′||N ′|), and O(|E′|log(|N ′|)) respectively. In the above expressions ΔWF is the
set of well-founded nodes whose ranks got changed, (N1, E1) and (N ′, E′) are the sub-
graph of the initial graph G = (N, E) whose blocks got split and merged respectively,
and (Nnwf , Enwf) is the non-well founded subgraph of G.

4 Experimental Results

We measured the performance of our algorithms by implementing those on top of the
source code available from one of the author’s website of [6]. The data structures used
in their implementation was not changed. We ran our algorithms on benchmarks men-
tioned in various works for measuring effectiveness of bisimulation problems. Perfor-
mance measurements were taken on a PC with 1.4Ghz Intel Core Duo processor with
512MB of physical memory running Windows XP.

We present the performance result of our insertion and deletion algorithm on the
synthetic benchmarks described below. Each benchmark has different characteristics
which have different effects on our algorithm. In these two benchmarks, we noted the
average (over all edges) incremental deletion and insertion time as percentage of from-
scratch time to be 10%. The results below will highlight the range of these timing results
and reason for such distribution. We used an extra priority queue data structure apart
from the data structure of FBA implementation, but it uses the memory of FBA. So our
algorithm does not incur any extra memory overhead compared to FBA.

Benchmark 1. Simple Binary Tree. This benchmark (Benchmark 2 of [6]) consists of a
binary tree with 262143 nodes and has two different labels for left and right subtree as
shown in Figure 2(a) with node numbers and initial blocks. The initial FBA time is 0.3s.
The height of each node gives the ranks. We added one edge and took the incremental
time, and compared it with the time taken by FBA for the changed graph. We also
show the time for SMS-DEL to delete the added edge. Thus SMS-DEL was not tried
on Benchmark 1 but on a graph that results after an added edge to the benchmark. We
provide the edges which showed the minimum and maximum time taken by SMS-ADD
for three different cases based on relation of ranks and whether the added edge produces

131070

0

98303

32767 49150

65535

49151

98302

131071 180003

3 4 5 6

21

65534

(a)

Edge r(u)>r(v) r(u)≤r(v)[no cycle] r(u)≤r(v)[cycle]
Addition Min Max Min Max Min Max
u→ v 0.01 7.87 0.01 8.22 1.00 20.13

(u,v) (1,5) (98302,196607) (1,2) (196606, 98303) (4,1) (196606,1)
Deletion 1.52 7.10 1.48 2.96 1.44 4.69

(b)

Edge r(u) > r(v) r(u) ≤ r(v)[no cycle] r(u) ≤ r(v)[cycle]
Addition Min Max Min Max Min Max
u→ v 0.54 0.54 0.25 12.66 1.00 20.00

(u,v) Any Any (4,2) (32767, 2) (6,2) (65534,2)
Deletion 0.54 0.54 16.00 1.07 27.00 28.00

(c)

Fig. 2. (a) Benchmark 1. Tree; (b) & (c) Incremental times as % or From-scratch times for Bench-
mark 1 and 2 respectively

An Incremental Bisimulation Algorithm 213

a new cycle or not. The result is shown in Figure 2(b). As expected SMS-ADD takes
maximum time in case the addition of edge creates cycles. Most of time in this case is
attributed to the Merge phase. Note that localized addition yields lesser time than the
non-local changes.

Benchmark 2. This benchmark is a downward closed tree (Test 2 of [7]) of 65535 nodes
obtained by closing downward a binary tree using the rule: if 〈m, n〉 and 〈n, p〉 are edges
then add a new edge 〈n, p〉 and two different labels are put to the alternate nodes in each
ranked strata of the tree. The initial FBA time is 0.5s. The result for this benchmark is
shown in the Figure 2(c). Note that addition of edge 〈65534 → 2〉 takes 20% of from-
scratch time and this time is spent on MergeCond function which checks for causal
splitter which in turn is due to large number of out-degree of each node. When deletion
occurs for the same edge, it takes 28% times of the from-scratch time. Deletion of
edge (65534,2) will first merge the block of node 65534 with the blocks which consists
of rest of even numbered nodes in rank 0. To propagate the effect of this merging the
rec merge function checks all nodes which are predecessors of the nodes in the block
of rank 0. As there are large number of such edges to be considered the Merge phase
takes large amount of time. This high overhead of Merge phase is attributed to the data
structure selection in our implementation. If we keep block edges in our implementation
then merge time is reduced; however, in that case Split phase time is increased. We use
memoization technique to reduce some overhead for not having the block edges.

The above benchmark in-fact serves as an extreme case of overhead of the merge
phase for single change. In most of VLTS benchmarks ([4]) the in-degree and out-
degree of nodes are comparably less than this benchmark. On average the SMS algo-
rithm took 3.94% of from-scratch time for VLTS benchmark vasy 386 1171 on 400
random deletion of edges. For 400 random insertion of edges (for each case one edge
was not loaded initially and has been incrementally added), the SMS algorithm took
6.93% of from-scratch time for the same benchmark.

We note that for multiple changes in the graph which affect independent parts of the
initial partition, the overhead of the merge phase can accumulate to exceed the from-
scratch time. Thus it is not possible for our incremental algorithms to perform always
better than the from-scratch algorithm when multiple changes are present.

5 Related Work

An important characteristic of incremental bisimulation problem is that adding or delet-
ing an edge in the input graph can potentially result in splitting and merging of blocks
in the partition. Thus incremental bisimulation problem is non-monotonic in nature.
This is in contrast to the incremental algorithms in many works in view maintenance
([8]), logic programming ([18]), model checking ([23]), where the effect of addition and
deletion is monotonic in nature. The problem is also different in nature to incremental
functional programming ([1]) where changes can be propagated using in-place updates.
Also incremental bisimulation problem cannot be reduced to incremental evaluation of
logic programs with stratified negation as the nature of non-monotonism in incremental
bisimulation resembles to non-stratified negation in logic programming. The only work
we are aware of incremental evaluation of logic programs with non-stratified negation

214 D. Saha

is in [20]. The logic program encoding ([2]) of bisimulation involves a builtin findall
and with our earlier experience showed that the incremental algorithms do not produce
great efficiency when builtins exist.

The idea of having different phases to overapproximate or underapproximate fixpoint
before converging to the new fixpoint is not new. Generally in incremental least fix-
point (positive strategy) computation, the first phase is a deletion phase (or negative
strategy) which is used to bring the incrementally computed fix-point equal or below
the final fixpoint, and second phase is used to converge to the final fixpoint ([8,18,23]).
For incremental greatest fixpoint computation (negative strategy) the first phase uses the
positive phase which is used to bring the current fixpoint above the final fixpoint point
([24]) in the fix-point lattice. In our case, as the from-scratch algorithm (FBA) uses split
which is a negative strategy; a positive (merge) followed by a negative strategy (split)
will suffice. However, we have incorporated a split phase before the merge-split phase
to reduce the size of the blocks that are merged as merge operation is expensive.

We have used several strategies like labels, ranks, and causal splitter to reduce the
overapproximation done in the merge phase. The ranks define regions such that blocks
can only be merged within each region. The idea of regions is used in other incremental
algorithms ([21]) where it is typically used to nullify effect of additions and deletions in
each region before propagating the effect to other regions. The idea of finding causal-
splitter which is not cyclically dependent on the blocks to be merged to restrict merge
propagation is similar to the idea of primary and acyclic support used for restricting
deletion propagation in incremental pointer analysis ([19]).

6 Conclusion

In this paper we presented an incremental algorithm to recompute maximum bisimula-
tion relation. We demonstrated the effectiveness of the algorithm on several graph ex-
amples. In future we will incorporate our implementation to model checkers and XML
database management system. The SMS algorithm presented here globally recomputes
bisimulation relation. We plan to extend our solution to local bisimulation computation,
and to infinite and symbolic graph structure.

Acknowledgment

We thank anonymous reviewers, Prof. Ranjit Jhala, Anu Singh, and C. Manjari for
their comments to improve the quality of this paper. We are also grateful to Prof. C. R.
Ramakrishnan and Dr. Subir Saha for encouraging this work.

References

1. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. In: ACM POPL,
New York, NY, USA, vol. 37, pp. 247–259. ACM Press, New York (2002)

2. Basu, S., Mukund, M., Ramakrishnan, C.R., Ramakrishnan, I.V., Verma, R.M.: Local and
symbolic bisimulation using tabled constraint logic programming. In: Codognet, P. (ed.)
ICLP 2001. LNCS, vol. 2237, pp. 166–180. Springer, Heidelberg (2001)

An Incremental Bisimulation Algorithm 215

3. Benthem, J.V.: Modal Correspondence Theory. PhD thesis, University van Amsterdam
(1976)

4. CADP. Caesar/aldebran developement package c1.112, Available at (2001), http://
www.inrialpes.fr/vasy/cadp.html

5. CWB-NC. The concurrency workbench of new century v1.1.1, Available at (2001),
http://www.cs.sunysb.edu/∼cwb

6. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimulation equiv-
alence. Theor. Comput. Sci. 311(1-3), 221–256 (2004)

7. Dovier, A., Piazza, C., Policriti, A., Ugel, N.: A fast bisimulation algorithm: Test, http://
www.dimi.uniud.it/∼piazza/bisim/web.ps

8. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: ACM
SIGMOD, pp. 157–166 (1993)

9. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)
10. Hopcroft, J.E.: An nlogn algorithm for minimizing states in a finite automaton. In: Theory

of Machines and Computations, pp. 189–196. Academic Press, London (1971)
11. Hudson, S.E.: Incremental attribute evaluation: a flexible algorithm for lazy update. ACM

Transaction of Programming Languages and Systems 13(3), 315–341 (1991)
12. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems

of equivalence. In: PODS, pp. 228–240. ACM Press, New York (1983)
13. Kanellakis, P.C., Smolka, S.A.: CCS expressions finite state processes, and three problems

of equivalence. Inf. Comput. 86(1), 43–68 (1990)
14. Milner, R.: A Calculus of Communicating Systems, Secaucus, NJ, USA. Springer, Heidel-

berg (1982)
15. Milner, R.: Operational and algebraic semantics of concurrent processes, 1201–1242 (1990)
16. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–

989 (1987)
17. Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function coarsest par-

tition problem. Theor. Comput. Sci. 40, 67–84 (1985)
18. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled logic programs. In:

Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 389–406. Springer, Heidelberg (2003)
19. Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analysis using logic

programming. In: ACM Conference on Principles and Practice of Declarative Programming,
ACM Press, New York (2005)

20. Saha, D., Ramakrishnan, C.R.: Incremental evaluation of tabled prolog: Beyond pure logic
programs. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 215–229. Springer,
Heidelberg (2005)

21. Saha, D., Ramakrishnan, C.R.: A local algorithm for incremental evaluation of logic pro-
grams. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 56–71.
Springer, Heidelberg (2006)

22. Sharir, M.: A strong connectivity algorithm and its application in data flow analysis. Com-
puter and Mathematics with Applications 7(1), 67–72 (1981)

23. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-calculus. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 351–363. Springer, Heidelberg (1994)

24. Swamy, G.: Incremental Methods for Formal Verification and Logic Synthesis. PhD thesis,
University of California at Berkeley (1996)

25. Yi, K., He, H., Stanoi, I., Yang, J.: Incremental maintenance of XML structural indexes. In:
SIGMOD, pp. 491–502. ACM Press, New York (2004)

http://www.inrialpes.fr/vasy/cadp.html
http://www.inrialpes.fr/vasy/cadp.html
http://www.cs.sunysb.edu/~cwb
http://www.dimi.uniud.it/~piazza/bisim/web.ps
http://www.dimi.uniud.it/~piazza/bisim/web.ps

Logspace Algorithms for Computing Shortest

and Longest Paths in Series-Parallel Graphs

Andreas Jakoby� and Till Tantau

Inst. für Theoretische Informatik, Universität zu Lübeck, Germany
{jakoby,tantau}@tcs.uni-luebeck.de

Abstract. For many types of graphs, including directed acyclic graphs,
undirected graphs, tournament graphs, and graphs with bounded inde-
pendence number, the shortest path problem is NL-complete. The longest
path problem is even NP-complete for many types of graphs, including
undirected K5-minor-free graphs and planar graphs. In the present pa-
per we present logspace algorithms for computing shortest and longest
paths in series-parallel graphs where the edges can be directed arbitrar-
ily. The class of series-parallel graphs that we study can be characterized
alternatively as the class of K4-minor-free graphs and also as the class of
graphs of tree-width 2. It is well-known that for graphs of bounded tree-
width many intractable problems can be solved efficiently, but previous
work was focused on finding algorithms with low parallel or sequential
time complexity. In contrast, our results concern the space complexity of
shortest and longest path problems. In particular, our results imply that
for directed graphs of tree-width 2 these problems are L-complete.

Keywords: Series-parallel graphs, logspace algorithms, distance prob-
lem, longest path problem, bounded tree-width, K4-minor-free graphs.

1 Introduction

Series-parallel graphs form an extensively-studied class of graphs that has appli-
cations both in theory and in practice. Different types of series-parallel graphs
have been studied in the literature; in the present paper we study their most gen-
eral form, namely series-parallel graphs with an arbitrary number of terminals
and with edges having arbitrary directions. There are two well-known alternative
characterization, see for instance [5,13], of this class of graphs: First, it is also
the class of directed graphs of tree-width at most 2. Second, it is also the class
of directed graphs whose underlying undirected graph is K4-minor-free.

For this class of graphs we study the longest and the shortest path problems.
We are given an element G of the class as input together with two nodes s and t
and we are asked to output a path (which may consist only of distinct nodes)
of minimal or maximal length from s to t in G. For general graphs, the shortest
path problem is well-known to be NL-complete, while the longest path problem is
� Part of this work was done while visiting the University of Frankfurt and the

University of Freiburg, Germany.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 216–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Logspace Algorithms for Computing Shortest and Longest Paths 217

Table 1. The complexity of path problems for different graph classes. In this present
paper we investigate series-parallel graphs, which are the same as directed graphs of
tree-width 2, and prove the results shown in bold. By “open” we mean that no nontrivial
upper bounds are known.

Graph class Reachability Distance Longest Number
path of paths

Digraphs of tree-width 1 L-compl. L-compl. L-compl. L-compl.
Digraphs of tree-width 2 L-compl. L-compl. L-compl. L-compl.
Digraphs of tree-width k, k ≥ 3 open open ∈ AC1 ∈ AC2

Planar digraphs ∈ UL open NP-compl. #P-compl.
Tournament graphs ∈ AC0 NL-compl. open open
Undirected graphs L-compl. NL-compl. NP-compl. #P-compl.
Acyclic digraphs NL-compl. NL-compl. NL-compl. #L-compl.
Digraphs NL-compl. NL-compl. NP-compl. #P-compl.

NP-complete even for planar graphs. The different characterizations of the class
of series-parallel graphs yields different insights into the complexity of the longest
and shortest path problems for this particular class. Results from the theory of
bounded tree-width tell us that the shortest path problem lies in the class NL

and that the longest path problem lies in AC1. Unfortunately, since it is only
known that NC1 ⊆ L ⊆ NL ⊆ AC1, this does not tell us whether these problems
can be solved in deterministic logspace. Results from the theory of series-parallel
graphs tell us that conceptually simpler problems, like the reachability problem
for directed two-terminal series-parallel graphs, lie in L.

The main result of the present paper, Theorem 5, lowers the upper bound
on the complexity of shortest and longest path problems in directed graphs of
tree-width 2 to L. At the same time, this result extends the previous complex-
ity bounds on the reachability problem in directed two-terminal series-parallel
graphs to the shortest and longest path problems in general multiple-terminal
series-parallel graphs. Table 1 shows how these results relate to the complexity
of shortest and longest path problems in other kinds of graphs. As can be seen
in the table, for many types of graphs the distance problem is still NL-complete,
including undirected graphs [7,23], directed acyclic graphs, tournament graphs
[21], and graphs with bounded independence number [21].

Recently, it has been shown that the reachability problem is in L even for
single source multiple sink planar DAGs [1]. If we restrict ourselves to planar
digraphs, it is only known that the reachability problem lies in unambiguous
logspace (i.e. UL∩ co-UL) [8].

Our formulation of the main result does not treat shortest and longest paths
separately. Rather, we allow input graphs to be equipped with integer edge
weights coded in unary (negative weights are indicated by a flag). We present
a deterministic logspace algorithm with the following properties: On input of
a directed graph with integer weights coded in unary and two nodes s and t,
it either determines that the graph is not a multiple-terminal series-parallel
graph or it determines that there is no path from s to t or it outputs a path

218 A. Jakoby and T. Tantau

from s to t of maximum total edge weight. Setting all edge weights to 1 makes a
maximum-weight path a longest path and setting all edge weights to −1 makes
a maximum-weight path a shortest path.

Graphs of tree-width 2. The tree-width of a graph is a measure of how close
the graph is to being a tree and graphs of tree-width 1 are, indeed, trees. For
a graph G of tree-width k there must exist a tree T whose nodes are labeled
with so-called bags, which are just sets of up to k + 1 nodes of the graph G. For
each edge of the graph at least one of the bags must contain both endpoints of
the edge, and the set of all bags containing any given graph node must form a
connected subtree of T .

Certain intractable graph problems become tractable if we restrict ourselves
to graphs with small tree-width, see for instance [4,25], and the problem of con-
structing tree decompositions of small tree-width is a well-studied topic, see
[3,6,20]. For graphs of bounded tree-width one can construct a tree decomposi-
tions of constant width in AC1, as shown in [6], and using such a decomposition
one can determine the distance and the longest path length between two nodes
efficiently in parallel [10,11,17]: In detail, Chaudhuri and Zaroliagis [10,11] have
presented sequential linear-time algorithms and an erew-pram algorithm work-
ing in time O(T (t, n) + log n) for finding a shortest path, where T (t, n) denotes
the time for computing a tree-decomposition of digraphs of n nodes of tree-
width t. In [6] Bodlaender and Hagerup presented an erew-pram algorithm
using O(log2 n) time that generates a tree decomposition of constant width.
They also show that all graph properties of a finite index can be decided by an
O(log n log∗ n) time erew-pram. While many problems, including Hamiltonic-
ity and the reachability problem, are of finite index, distance and longest path
problems are not. For example, the problem of deciding whether the distance
between two given nodes is at most n/2 in a graph of size n does not have a
finite index.

It is well known that parallel time complexity and space complexity are re-
lated: NC1 ⊆ L and all languages in L can be decided by an erew-pram in time
O(log n) with a polynomial number of processors. If we replace L by NL, we must
replace erew-pram by crcw-pram. It is also known that NL ⊆ LOGCFL =
SAC1. However, it is not known whether O(log n)-time-bounded erew-prams
can be simulated by O(log n)-space-bounded DTM.

K4-minor-free graphs. Directed graphs of tree-width 2 can also be character-
ized as graphs whose underlying undirected graph does not contain the K4 as a
minor. This means we cannot obtain K4 by forgetting the direction of the edges
and then repeatedly contracting and deleting edges and deleting isolated nodes.

Defining classes of graphs by forbidden minors is a powerful tool in graph the-
ory. For example, the undirected K3-minor-free graphs are exactly the forests
(every cycle in a graph can be contracted down to a K3). Planar graphs can be
characterized as the graphs that are both K5- and K3,3-minor-free. We prove
results for graphs that are K4-minor-free. A next major algorithmic step for-
ward would be a logspace algorithm for the distance problem in graphs whose

Logspace Algorithms for Computing Shortest and Longest Paths 219

underlying undirected graph is K5-minor-free. Such an algorithm would settle
the challenging question of whether there is a logspace algorithm for the distance
problem in planar graphs.

Series-parallel graphs. The third characterization of the graphs studied in
this paper is the class of mixed multiple-terminal series-parallel graphs. More re-
stricted versions are studied in the literature and we make use of these restricted
versions in our proofs: In the proof of the main result we establish the existence
of logspace algorithms for computing maximum-weight paths in more and more
general forms of series-parallel graphs.

The simplest form are directed two-terminal series-parallel graphs. They are
defined inductively, starting with the graph that consists of a single directed
edge whose endpoints are called source terminal and sink terminal. Graphs can
be composed in two ways: A serial composition fuses the sink of one graph with
the source of another, a parallel composition fuses the two sources and also
the two sinks of two graphs. Multiple-terminal series-parallel graphs are formed
by taking a set of two-terminal series-parallel graphs and repeatedly fusing a
terminal node with some node in one of the graphs.

For series-parallel graphs we can consider different possibilities for the direc-
tion of edges. For directed series-parallel graphs, once we choose a source and a
sink terminal, the direction of all edges is also implied. Our algorithms do not
only work for directed series-parallel graphs and for undirected series-parallel
graphs, but also for the graphs obtained by arbitrarily redirecting the edges of
a series-parallel graph. To distinguish the resulting type of graphs from directed
series-parallel graphs, we will call them mixed series-parallel graphs.

The space complexity of problems related to series-parallel graphs has been
analyzed in [19], where logspace algorithms for the recognition problem and
for the reachability problem for directed two-terminal series-parallel graphs are
presented. Furthermore, in the paper the problem of decomposing series-parallel
graphs is studied. In [18], Jakoby and Lískiewicz focus on the recognition, the
reachability, and the decomposition problem for undirected series-parallel graphs
and show that these problems can be solved in deterministic logspace using an
SL oracle for reachability, which shows that decompositions can be computed in
logspace. However, since reachability in directed graphs is NL-complete rather
than SL-complete, the techniques presented in [18,19] fail for the mixed multiple-
terminal series-parallel graphs that we consider in the present paper.

The time complexity of the recognition problem for series-parallel graphs has
also been investigated in detail. An optimal linear-time sequential algorithm
for this problem has been developed by Valdes, Tarjan, and Lawler [24] and fast
parallel algorithms have been published. He and Yesha have presented an erew-

pram algorithm working in time O(log2 n) while using n + m processors [15].
Eppstein has reduced the time bound by constructing an algorithm that takes
only O(log n) steps on the stronger crcw-pram model and requires C(m, n)
processors [14], where C(m, n) denotes the number of processors necessary to
compute the connected components of a graph in logarithmic time. Finally, the

220 A. Jakoby and T. Tantau

erew-pram algorithm by Bodlaender and Antwerpen-de Fluiter [5] mentioned
earlier also solves this problem in time O(log n log∗ n) using O(n+m) operations.

2 Basic Definitions

A graph is a pair G = (V, E) consisting of a node set V and an edge set E. A
graph G is called a directed graph (or digraph for short) if E ⊆ V × V is a set of
directed edges, G is called an undirected graph if E ⊆ {{u, v} | u, v ∈ V, u �= v} is
a set of undirected edges, and G is called a mixed graph if E ⊆ V × V ∪

{
{u, v} |

u, v ∈ V, u �= v
}

is a set of edges, such that we do not have both (u, v) ∈ E
and {u, v} ∈ E for any pair u, v ∈ V . A weighted mixed graph is a mixed graph
(V, E) together with an edge weight function w : E → Z.

Given two nodes u, v ∈ V of a mixed graph G, we write u →G v if either
(u, v) ∈ E or {u, v} ∈ E. Given a mixed graph G = (V, E), its undirected
underlying graph uug(G) is obtained by replacing every directed edge by an
undirected edge, that is, uug(G) =

(
V, {{u, v} | u →G v, u �= v}

)
.

A path in a graph G is a sequence (v0, . . . , v�) of distinct nodes such that
v0 →G v1 →G · · · →G v�. The number � is the length of the path. We write
v0 →∗G v� to indicate that there exists a path from v0 to v� in G. Given a weighted
mixed graph G and a path, the weight of the path is the sum of the weights of
the edges along this path. Given two nodes u, v ∈ V we write mG(u, v) for the
maximum weight of any path from u to v or −∞ if there is no path between
them. Note that if all weights are 1, then mG(u, v) is the length of a longest
path from u to v; and if all weights are −1 then mG(u, v) is the negated distance
from u to v. An undirected graph is 1-connected if there is a path between any
two nodes. An undirected graph is k-connected if we must remove at least k
nodes (along with all pending edges) so that the resulting graph is no longer
1-connected.

We use the notation 〈X〉 to denote a standard binary encoding of the object X .
For example, for a graph G let 〈G〉 denote the binary encoding of the adjacency
matrix of G. When we code weighted mixed graphs, the weights are always coded
in unary.

An arithmetic tree is a tree whose leaves are labeled with integers and whose
inner nodes have two children and are labeled with functions that maps pairs
of integers to integers, like addition, maximization, or multiplication. We will
call such functions binary operators. For a set O of operators, an O-tree is an
arithmetic tree in which only operators from O are used. For example, a {+, ×}-
tree is, in essence, an arithmetic formula. Given an O-tree, we recursively assign
integers to the inner nodes by applying the operator of a node to the values of the
children. We call the integer assigned to an inner node its value and the integers
assigned to the root is the value of the tree. Given a set O of operators, the tree
value problem for O-trees is the problem of computing the value of O-trees. The
integers at the leaves are coded in binary or in unary; we always indicate the
coding explicitly.

Logspace Algorithms for Computing Shortest and Longest Paths 221

2.1 Definition of Series-Parallel Graphs

We now define different types of series-parallel graphs, abbreviated s-p-graphs
in the rest of the paper. We start with two-terminal s-p-graphs.

Definition 1. We define directed two-terminal s-p-graphs inductively. Syntac-
tically, they are triples (G, a, b) consisting of a directed graph G = (V, E), a
source terminal a ∈ V , and a sink terminal b ∈ V . The following graphs are
directed two-terminal s-p-graphs:

1. (G, a, b) where G is a single directed edge from a to b, that is, V = {a, b}
and E = {(a, b)}, is a directed two-terminal s-p-graph.

2. Given two directed two-terminal s-p-graphs (G1, a, c) and (G2, c, b), their se-
rial composition is a directed two-terminal s-p-graph with the terminals a
and b. It is obtained by taking the disjoint union of G1 and G2 and identi-
fying the two copies of the node c.

3. Given two directed two-terminal s-p-graphs (G1, a, b) and (G2, a, b), their
parallel composition is a directed two-terminal s-p-graph, again with the ter-
minals a and b. It is obtained by taking the disjoint union of G1 and G2 and
identifying the two copies of a and also the two copies of b.

Definition 2. An undirected two-terminal s-p-graph is a triple (G, a, b) such
that there exists a directed two-terminal s-p-graph (G′, a, b) with G = uug(G′).

Definition 3. A mixed two-terminal s-p-graph is a triple (G, a, b), where G is
a mixed graph, for which

(
uug(G), a, b

)
is an undirected two-terminal s-p-graph.

The last definition can be rephrased as follows: Mixed two-terminal s-p-graphs
are obtained from directed two-terminal s-p-graphs by arbitrarily redirecting
some or all of the edges.

Definition 4. We define undirected multiple-terminal s-p-graphs inductively.
Syntactically, they are pairs (G, ω) where ω ⊆ V is the set of terminals. The
following graphs are undirected multiple-terminal s-p-graphs:

1. For every undirected two-terminal s-p-graph (G, a, b), the pair (G, {a, b}) is
an undirected multiple-terminal s-p-graph.

2. Given two undirected multiple-terminal s-p-graphs (G1, ω1) and (G2, ω2),
their tree composition is also an undirected multiple-terminal s-p-graph. It
is obtained by taking the disjoint union of G1 and G2 and identifying one
terminal f ∈ ω2 with an arbitrary node of G1. The terminal set of the tree
composition is ω1 ∪ (ω2 − {f}) and we call f a fusion node.

Definition 5. A mixed multiple-terminal s-p-graph is a pair (G, ω), where G
is a mixed graph and

(
uug(G), ω

)
is an undirected multiple-terminal s-p-graph.

2.2 Decomposition Trees

Decomposition trees reflect the building process of series-parallel graphs. A par-
allel composition results in a “parallel node” in the tree, a serial composition

222 A. Jakoby and T. Tantau

yields a “serial node,” and single edges correspond to leaves. Note that the de-
composition tree of an s-p-graph is typically not unique.

Definition 6. A decomposition tree of a mixed two-terminal s-p-graph (G, a, b)
is defined as follows. Syntactically, it consists of a directed binary tree T (“bi-
nary” meaning that inner nodes have exactly two children, a left and a right
one), whose node set is the disjoint union of the three type sets Tl, Ts, and Tp,
a terminal-pair information function terminals : Tl ∪ Ts ∪ Tp → V × V , and an
edge information function edge: Tl → E. The set Tl contains exactly the leaves
of T . The elements of Ts are called serial nodes, the elements of Tp are called
parallel nodes.

Having fixed the syntax of decomposition trees, we next inductively describe
which trees are decomposition trees. In all cases, terminals(r) = (a, b) must hold
for the root r of the tree.

1. If G consists of a single edge e between the two nodes a and b, then T consists
of a single node r ∈ Tl and edge(r) = e. Note that the edge e may point from
b to a for arbitrary mixed two-terminal s-p-graphs, but will always point from
a to b if (G, a, b) is a directed two-terminal s-p-graph.

2. If G is the parallel composition of two mixed two-terminal s-p-graphs (G1, a, b)
and (G2, a, b) and if T1 and T2 are their tree decompositions, respectively,
then T consists of a root node r whose children are the roots of T1 and T2

and r ∈ Tp.
3. If G is a serial composition of two mixed two-terminal s-p-graphs (G1, a, c)

and (G2, c, b), we do exactly the same as in the parallel case, only r ∈ Ts.

We now extend the definition of decomposition trees to encompass multiple-
terminal s-p-graphs. We then have a fourth type of nodes: “tree nodes”, corre-
sponding to tree compositions.

Definition 7. Let (G, ω) be a mixed multiple-terminal s-p-graph. Its decompo-
sition tree T is defined similarly to the decomposition tree in Definition 6, but
with the following addition: There is a fourth type set Tt, together with the fu-
sion information function fusion: Tt → V . If Tt is not empty, its elements must
form a connected component of T and it must contain the root. The tree T is de-
fined recursively according to the same rules as in Definition 6 with the following
addition:

4. If G is the tree composition of two mixed multiple-terminal s-p-graphs (G1, ω1)
and (G2, ω2) and if T1 and T2 are their decomposition trees, respectively, then
T consists of a root node r whose children are the roots of T1 and T2. We
have r ∈ Tt and fusion(r) is the fusion node of the tree composition.

2.3 Facts from the Literature Used in Our Proofs

We now list facts from the literature on s-p-graphs that will be used in our
proofs.

Logspace Algorithms for Computing Shortest and Longest Paths 223

Fact 1 ([19]). There exists a logspace machine that on input of a directed
graph G decides whether G is a directed two-terminal s-p-graph and, if this is
the case, outputs a decomposition tree for it.

Fact 2 ([19]). There exists a logspace machine that on input of a directed two-
terminal s-p-graph G and two nodes s and t decides whether there is a path from
s to t.

The following fact follows from the results in [18] and the fact that L = SL,
see [22].

Fact 3 ([18]). There exists a logspace machine that on input of an undirected
graph G decides whether there is a terminal set ω such that (G, ω) is an undi-
rected multiple-terminal s-p-graph and, if this is the case, outputs a decomposi-
tion tree T for it. Furthermore, every node n of T that is not an element of Tt,
but whose parent is an element of Tt, has the following property: The undirected
two-terminal s-p-graph described by the subtree of T rooted at n is 2-connected.

The following fact is a conclusion of Lemma 8 and Theorem 6 from [18].

Fact 4. There exists a logspace machine that on the input of an undirected 2-
connected two-terminal s-p-graph (G, a, b) and a node a′ ∈ V computes a node
b′ ∈ V such that (G, a′, b′) is an undirected two-terminal s-p-graph.

Essentially, this fact states that we can “choose” the source terminal arbitrarily.
But we cannot also choose the sink terminal arbitrarily at the same time.

3 Computing Maximum-Weight Paths in Logspace

In the present section we prove the central result of the paper, Theorem 5 below.
Recall that weights are given in unary.

Theorem 5. There is a logspace algorithm whose inputs are codes of weighted
mixed graphs G = (V, E) together with two nodes s, t ∈ V and whose output is
one of the following:

1. The algorithm determines that G is not a mixed multiple-terminal s-p-graph.
2. The algorithm determines that there is no path from s to t in G.
3. The algorithm outputs a path from s to t of maximal weight.

The first step in the proof is an algorithm for computing a maximum-weight path
in a weighted directed two-terminal s-p-graph from the source to a given node.
Instead of writing down an explicit algorithm, we establish a series of reductions
that ends with a problem that is known to be solvable in logspace.

The second step is an algorithm for computing maximum-weight paths be-
tween the terminals in weighted mixed two-terminal s-p-graphs. The main idea
is to obtain a directed version of the mixed graph and to put a heavy penalty
on all edges that “point in the wrong direction.” We can then use the algorithm
for weighted directed two-terminal s-p-graphs.

224 A. Jakoby and T. Tantau

The third step is an algorithm for computing a maximum-weight path from
the source a to an arbitrary node t in weighted mixed two-terminal s-p-graphs. A
recursive algorithm is used to compute the maximum weight of a path from s to
t by keeping track of smaller and smaller “intervals” (which are just subgraphs)
that contain t and, at the same time, keeping track of the maximum weight of
paths from a to the two “endpoints” of the intervals.

The fourth and last step is to consider weighted mixed multiple-terminal
s-p-graphs G.

3.1 Terminal-to-Node Paths in Directed Two-Terminal S-P-Graphs

Theorem 6. There exists a logspace machine that on input of any weighted
directed two-terminal s-p-graph (G, a, b, w) and a node t outputs a maximum-
weight path from a to t.

Recall once more that weights are coded in unary. The algorithm internally uses
an oracle Mat and the main task is to prove that Mat lies in the class L. The
oracle is the decision version of the path construction problem:

Mat = {〈G, a, b, w, t, d〉 | (G, a, b, w) is a weighted directed two-terminal
s-p-graph in which there is a path from a to t
of weight at least d}

To prove Mat ∈ L, we establish a line of reductions. Note that the difficulty
lies in computing the maximum weight of paths, not in checking whether the
input graph is, indeed, a directed two-terminal s-p-graph, see Fact 1. The first
reduction reduces Mat to Mab, which is the restricted version of Mat where
only inputs with t = b are allowed. If we consider only the subset of nodes
V ′ = {v | v →∗G t} of the input graph G, we can show that:

Lemma 1. Mat reduces to Mab via a logspace many-one reduction.

We next reduce Mab to M+
ab, which is the same problem, only all weights must

be positive.

Lemma 2. Mab reduces to M+
ab via a logspace many-one reduction.

Lemma 3. M+
ab reduces to the tree value problem for {+, max}-trees whose

leaves are labeled with positive integers coded in unary via a single-query logspace
reduction.

The last step is to reduce the tree value problem for {+, max}-trees whose leaves
are labeled with positive integers coded in unary to the tree value problem for
{+, ×}-trees, which is known to lie in logspace [9,2,12,16].

Lemma 4. The tree value problem for {+, max}-trees whose leaves are labeled
with positive integers coded in unary reduces to the tree value problem for {+, ×}-
trees whose leaves are labeled with integers coded in binary via a single-query
logspace reduction.

Using Mat as an oracle, we can construct a maximum-weight path node by node.
This proves Theorem 6.

Logspace Algorithms for Computing Shortest and Longest Paths 225

3.2 Terminal-to-Terminal in Mixed Two-Terminal S-P-Graphs

Theorem 7. There exists a logspace machine that on input of any weighted
mixed two-terminal s-p-graph (G, a, b, w) outputs a maximum-weight path from
a to b or determines that no path exists.

To prove the theorem, we introduce the notion of green edges, which are edges
that “point in the right direction.”

Definition 8. Let (G, a, b) be a mixed two-terminal graph and let T be a de-
composition tree for it. We color the edges of G according to the following rules:
Let e be an edge of G and let n be the leaf node of T with edge(n) = e. Then,
if e = (x, y) ∈ V × V but terminals(n) = (y, x), we color the edge red; other-
wise, namely when e = (x, y) and terminals(n) = (x, y) or when e = {x, y} is
undirected, we color it green.

Let (G, a, b) be a mixed two-terminal s-p-graph and let T be a decomposition
tree for G. Then every path from a to b uses only green edges. The key idea
in proving Theorem 7 is to turn mixed s-p-graphs into directed s-p-graphs by
redirecting all red edges while assigning large negative weights to them. We can
then apply the algorithm from Theorem 6 to the resulting graph.

3.3 Terminal-to-Node Paths in Mixed Two-Terminal S-P-Graphs

Theorem 8. There exists a logspace machine that on input of any weighted
mixed two-terminal s-p-graph (G, a, b, w) and a node t outputs a maximum-weight
path from a to t or determines that no such path exists.

For the proof we introduce the notion of “intervals,” which contain t and which
get smaller and smaller. We will keep track of the maximum weights of paths
from the source to the two endpoints of the intervals.

Definition 9. Let (G, a, b) be a mixed two-terminal s-p-graph and let T be a
decomposition tree. Given a node n of T , let (Gn, an, bn) denote the mixed two-
terminal s-p-graph that is described by the subtree of T rooted at n. We call
(Gn, an, bn) the interval described by n.

For a node n of T we write G−Gn for the graph obtained from G by deleting all
edges of the graph Gn and the resulting isolated nodes. The weight record for n is
the tuple

(
m¬via bn

a→an
, mvia bn

a→an
, m¬via an

a→bn
, mvia an

a→bn

)
where m¬via bn

a→an
is the maximum

weight of a path in G − Gn from a to an that does not contain bn, while mvia bn
a→an

is the maximum weight of a path in G − Gn from a to an that does contain bn.
Similarly, m¬via an

a→bn
is the maximum weight of a path in G−Gn from a to bn that

does not contain an, while mvia an

a→bn
is the maximum weight of a path in G − Gn

from a to bn that does contain an.

Lemma 5. There exists a logspace machine that on input of any weighted mixed
two-terminal s-p-graph (G, a, b, w) and a node t outputs mG(a, t).

226 A. Jakoby and T. Tantau

Proof (Sketch of proof). To compute mG(a, t), we generate the decomposition
tree T of (G, a, b). Let r be the root of T and let n1, . . . , nk be the path in T
that leads from n1 = r to a leaf nk where one endpoint of edge(nk) is t. We
compute for successive i = 1, . . . , k the weight records for each ni, using only
the weight record of the previous ni−1 as a guide. ��

To construct an path of maximum length we repeatedly apply the algorithm
from Lemma 5 as a “guide” that tells us how we must extend the path as we
descend. This proves Theorem 8.

3.4 Node-to-Node Paths in Mixed Multiple-Terminal S-P-Graphs

We first compute the tree decomposition of G. The tree decomposition allows
us to identify components of G, each of which is a two-terminal s-p-graph, such
that every path from s to t must go through a unique sequence of these com-
ponents. Inside each component we can compute maximum-weight paths using
the algorithms we obtained in the previous steps. Stringing together the paths
yields the overall path. This proves Theorem 5.

4 Conclusion

In this paper we presented a logspace algorithm for computing paths of maximum
weight in mixed multiple-terminal s-p-graphs. As mentioned in the introduction,
little is known in comparison about the space complexity of the shortest and
longest path problems for graphs with higher, but still constant tree-width. It
is neither known whether one can solve the reachability problem for directed
graphs of tree-width 3 in logspace nor whether the reachability problem for
directed graphs of tree-width k is hard for the class NL for some constant k ≥ 3.

On the positive side, a closer analysis of our approach shows that one can
use the algorithm to count the number of self-avoiding paths in mixed multiple-
terminal s-p-graphs using a logspace algorithm. Also, the existence of an efficient
algorithm for computing longest paths implies further results like an efficient
algorithm for computing topological sortings. Another application is the com-
putation of s-t-enumerations.

References

1. Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Grid graph
reachability problems. In: 21th Annual IEEE Conference on Computational Com-
plexity (CCC), pp. 299–313 (2006)

2. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of
registers. SIAM J. Comput. 21, 54–58 (1992)

3. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: 14th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pp. 1–10.

Logspace Algorithms for Computing Shortest and Longest Paths 227

4. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: 32nd International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG), pp. 1–14.

5. Bodlaender, H.L., de Fluiter, B.A.: Parallel algorithms for series parallel graphs
and graphs with treewidth two. Algorithmica 29(4), 534–559 (2001)

6. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27, 1725–1746 (1998)

7. Borodin, A., Cook, S.A., Dymond, P.W., Ruzzo, W.L., Tompa, M.: Two applica-
tions of inductive counting for complementation problems. SIAM J. on Comput-
ing 18(3), 559–578 (1989)

8. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in
unambiguous log-space. In: 22th Annual IEEE Conference on Computational Com-
plexity (CCC), pp. 217–221 (2007)

9. Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm
for formula evaluation. SIAM J. Comput. 21, 755–780 (1992)

10. Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth. Part
II: Optimal parallel algorithms. Theoretical Comput. Sci. 203, 205–223 (1998)

11. Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth. Part
I: Sequential algorithms. Algorithmica 27(3), 212–226 (2000)

12. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC1. Theoretical
Informatics and Applications 35, 259–275 (2001)

13. Duffin, R.: Topology of series-parallel networks. J. Math. Analysis and Applica-
tions 10, 303–318 (1965)

14. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. and Comp. 98, 41–
55 (1992)

15. He, X., Yesha, Y.: Parallel recognition and decomposition of two terminal series
parallel graphs. Inf. and Comp. 75, 15–38 (1987)

16. Hesse, W.: Division is in uniform TC0. In: 28th International Colloquium on Au-
tomata, Languages and Programming (ICALP), pp. 104–114

17. Hohberg, W., Reischuk, R.: A framework to design algorithms for optimization
problems on graphs. Technical Report ITI, Technical University Darmstadt (1990)

18. Jakoby, A., Lískiewicz, M.: Paths problems in symmetric logarithmic space. In: 29th
International Colloquium on Automata, Languages and Programming (ICALP),
pp. 269–280.

19. Jakoby, A., Lískiewicz, M., Reischuk, R.: Space efficient algorithms for series-
parallel graphs. J. of Algorithms 60, 85–114 (2006)

20. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J. of
Algorithms 20, 20–44 (1996)

21. Nickelsen, A., Tantau, T.: The complexity of finding paths in graphs with bounded
independence number. SIAM J. Comput. 34(5), 1176–1195 (2005)

22. Reingold, O.: Undirected s-t-connectivity in log-space. In: 37th ACM Symposium
on Theory of Computing (STOC), pp. 376–385 (2005)

23. Toda, S.: Counting problems computationally equivalent to computing the deter-
minant. Technical Report CSIM 91-07, Dept. Comp. Sci. and Inform. Math., Univ.
Elect.-Comm., Chofu-shi, Tokyo 182, Japan (1991)

24. Valdes, J., Tarjan, R., Lawlers, E.: The recognition of series parallel digraphs.
SIAM J. Comput. 11, 298–313 (1982)

25. Wanke, E.: Bounded tree-width and LOGCFL. J. of Algorithms 16, 470–491 (1994)

Communication Lower Bounds Via the

Chromatic Number�

Ravi Kumar1 and D. Sivakumar2

1 Yahoo! Research
ravikumar@yahoo-inc.com

2 Google, Inc.
siva@google.com

Abstract. We present a new method for obtaining lower bounds on
communication complexity. Our method is based on associating with a
binary function f a graph Gf such that log χ(Gf) captures N0(f) +
N1(f). Here χ(G) denotes the chromatic number of G, and N0(f) and
N1(f) denote, respectively, the nondeterministic communication com-
plexity of f and f . Thus log χ(Gf) is a lower bound on the deterministic
as well as zero-error randomized communication complexity of f . Our
characterization opens the possibility of using various relaxations of the
chromatic number as lower bound techniques for communication com-
plexity. In particular, we show how various (known) lower bounds can
be derived by employing the clique number, the Lovász ϑ-function, and
graph entropy lower bounds on the chromatic number.

1 Introduction

Consider two computationally unbounded players Alice and Bob who wish to
jointly evaluate a binary function f(x, y), where Alice holds the input x and Bob
holds y. The central question in communication complexity [1] is the number
of bits Alice and Bob need to exchange to compute f(x, y). Besides being a
natural concrete computational model to study, lower bounds in communication
complexity have deep connections to time-space tradeoffs, decision trees, circuit
lower bounds, and pseudorandomness. For an excellent account, see the book by
Kushilevitz and Nisan [2].

We develop a new and general method for proving communication complex-
ity lower bounds for Boolean functions. Our method is based on associating a
natural graph Gf for every Boolean function f such that the chromatic num-
ber of Gf precisely captures the sum (or max) of the nondeterministic and
co-nondeterministic communication complexity of f . Thus, it implies a lower
bound on the usual, deterministic, communication complexity of f . While lower
bounding χ(Gf) could be hard in general, the fact that it is a well-studied graph-
theoretic quantity opens up a whole new set of tools in the study of communi-
cation complexity; these tools include well-known relaxations of the chromatic

� This work was performed while the authors were at IBM Almaden.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 228–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Communication Lower Bounds Via the Chromatic Number 229

number such as the Lovász theta function, graph entropy, linear programming
relaxations, etc.

We illustrate our method via simple examples. One of our examples shows the
use of Lovász theta function — which satisfies χ(Gf) ≥ ϑ(Gf) — to lower bound
χ(Gf). This connection, together with the rich properties of the Lovász theta
function (such as multiplicativity), yields lower bounds in a uniform, modular
way. Another of our examples illustrates the use of graph entropy to lower bound
χ(Gf), and sheds new light on the information-theoretic techniques of [3,4].

En route, we also show that our method is strictly more powerful than the
classical fooling set method [1,5] for communication lower bounds. In fact, we
point out that any fooling set argument naturally yields a zero-error random-
ized communication complexity lower bounds as well. We do not know how the
chromatic number method compares with another classical method in commu-
nication complexity, the rank method [6], whose relation to nondeterministic
communication complexity remains open.

Related work. There are two general methods to prove deterministic communica-
tion complexity lower bounds. Both these methods crucially exploit the so-called
“rectangular property” of communication protocols, that is, any correct deter-
ministic communication protocol covers the function matrix Mf with monochro-
matic rectangles. The fooling set method [1,5] is a combinatorial method where
the main idea is to exhibit a large set of input pairs such that no two of them
can be in a single monochromatic rectangle; this implies that the number of
monochromatic rectangles in Mf is large. The rank method [6] uses algebraic
properties Mf ; in particular, it shows that the deterministic communication
complexity is lower bounded by the log of the rank (in any field) of Mf . It is
also known that the rank method is strictly more powerful than the fooling set
method. However, it is still a well-known open problem if the rank of Mf is a
polynomial characterization of deterministic communication complexity.

For randomized communication complexity, the discrepancy method is a gen-
eral method to show lower bounds. This method argues that every “large” rect-
angle has lots of 0s and 1s of the function. Hence, any protocol with low error
has to use only “small” rectangles, and hence a lot of them. See [2] for a variety
of applications. Recently, information-theoretic methods have been developed to
show randomized lower bounds for several problems. The basic idea is to ana-
lyze the mutual information between the transcript of communication protocols
and inputs, where the inputs are picked according to a suitable distribution. For
applications of information-theoretic methods in communication complexity, see
[7,8,9,10,4,3,11,12,13,14].

To the best of our knowledge, chromatic number has not been used in showing
communication complexity lower bounds. The only exception we are aware of is
in an altered model of communication complexity, where the inputs to Alice and
Bob are restricted to be from some subset S ⊆ X ×Y and the goal is for Bob to
learn x. In this setting, the deterministic complexity for one-round protocol is
exactly �log χ(GS)�, where GS is a hypergraph on vertices of X with hyperedges
of the form {x | (x, y) ∈ S}. For more details, see [2, Section 4.7].

230 R. Kumar and D. Sivakumar

2 Communication Complexity

Let f : X × Y → {0, 1} be a binary function whose communication complexity
we wish to study. Suppose Alice and Bob are two computationally unbounded
players where Alice holds input x ∈ X and Bob holds input y ∈ Y, and they wish
to jointly evaluate f(x, y) by exchanging messages on a shared blackboard (that
also preserves history). A protocol Π is a set of rules that precisely describes
the interactions between Alice and Bob on every possible input. (For a formal
description of a communication protocol as a labeled binary tree, see, e.g., [2].)
At the end of their message exchanges, a deterministic referee R = R(Π) (who
does not see x or y) examines the contents of the blackboard and announces a
verdict from the set {0, 1}. The protocol Π is said to be nondeterministic if Alice
and Bob are allowed to make nondeterministic moves. The protocol Π is said to
be randomized if Alice and Bob have their private sources of unbiased coin-tosses
that they may employ during their execution of the protocol. (Again, we omit
formal definitions.) When it is clear from context, we will denote by Π(x, y) the
transcript , or the contents of the shared blackboard when Alice and Bob execute
protocol Π ; if Π is randomized, then the transcript Π(x, y) is a random variable.

A protocol Π is said to compute a function f if for all x and y, R(Π(x, y)) =
f(x, y). A nondeterministic protocol Π is said to compute a function f if for all
x, y, such that f(x, y) = 1, there is at least one transcript τ such that Π(x, y) = τ
and R(τ) = 1, and furthermore, for all x, y such that f(x, y) = 0, there is no
transcript τ such that Π(x, y) = τ and R(τ) = 1. For δ ≥ 0, we say that Π is a
δ-error protocol for f (or that Π computes f with error δ) if for all x ∈ X and
y ∈ Y, we have Pr[R(Π(x, y)) = f(x, y)] ≥ 1 − δ. We say that Π is a zero-error
protocol for f if for all x, y, Pr[R(Π(x, y)) = f(x, y)] = 1. In both cases, the
probability is over the coin tosses of Alice and Bob.

It is sometimes convenient to assume that every execution of a protocol Π
(regardless of the inputs and of the internal coin tosses of Alice and Bob) pro-
duces transcripts of the same length. If we are given a protocol Π with error δ
that has expected transcript length c, for any ε > 0, we may obtain from it a
protocol Π ′ with referee function R′ that always produces transcripts of length
c/ε, while increasing the error to at most δ + ε. For zero-error protocols Π , by
relaxing the referee function to output a value in {0, 1, ‘?’}, we may obtain a
new protocol Π ′ with referee function R′ that always produces transcripts of
length c/ε, and also satisfies, for all x, y, Pr[R′(Π ′(x, y)) ∈ {0, 1}] ≥ 1 − ε and
Pr[R′(Π ′(x, y)) = f(x, y) | R′(Π ′(x, y)) ∈ {0, 1}] = 1.

Throughout the rest of this paper, we will assume this normal form, that is, all
executions of a protocol produce transcripts of the same length. Furthermore,
for randomized protocols, we assume that the error is a small constant (e.g.,
0.01); for zero-error protocols, we assume that the probability of ‘?’ is also a
small constant.

The deterministic communication complexity of f , denoted by cc(f), is the
minimum, over all deterministic protocols Π that compute f , of the length of
transcripts produced by Π . The nondeterministic communication complexity of
f , denoted by N1(f), is the minimum, over all nondeterministic protocols Π that

Communication Lower Bounds Via the Chromatic Number 231

compute f , of the length of transcripts produced by Π . The co-nondeterministic
communication complexity of f , denoted by N0(f), is the minimum, over all
nondeterministic protocols Π that compute f (the complement of f), of the
length of transcripts produced by Π . The zero-error communication complexity
of f , denoted by zcc(f), is the minimum, over all zero-error protocols Π that
compute f , of the length of transcripts produced by Π . The δ-error communi-
cation complexity of f , denoted by rccδ(f), is the minimum, over all protocols
Π that compute f with error at most δ, of the length of transcripts produced
by Π .

Two natural combinatorial quantities of interest that arise in the study of
communication complexity are rectangle cover complexity and rectangle partition
complexity, which we explain next.

Let f : X × Y → {0, 1}. A rectangle in X × Y is a subset Z ⊆ X × Y
such that Z = X ′ × Y ′ for some X ′ ⊆ X and Y ′ ⊆ Y. A rectangle Z is said
to be monochromatic if there exists b ∈ {0, 1} such that for every x, y such
that (x, y) ∈ Z, f(x, y) = b; accordingly Z is referred to as a b-monochromatic
rectangle. The 0-rectangle cover complexity of f , denoted by C0(f), is the min-
imum number of 0-monochromatic rectangles whose union contains every x, y
such that f(x, y) = 0; the notion of 1-rectangle cover complexity is defined anal-
ogously. It is not hard to show (see, e.g., [2]) that N0(f) = �log(C0(f))� and
N1(f) = �log(C1(f))�. We will denote by C(f) the sum of C0(f) and C1(f),
and by N(f) the maximum of N0(f) and N1(f). Up to tiny additive constants,
we may think of N(f) as equivalent to log(C(f)). In the definition of C0(f)
and C1(f), we (implicitly) allowed several monochromatic rectangles to contain
a particular input (x, y). When this is disallowed, we obtain the notion of rect-
angle partition complexity. Namely, P (f) will denote the minimum number of
disjoint monochromatic (0- and 1-) rectangles whose union cover X × Y. While
it is clear that cc(f) ≥ log(P (f)), unlike the case of nondeterministic communi-
cation complexity, it is not known if log(P (f)) captures cc(f) to within constant
factors [2, open problem 2.10, page 20].

Next we recall some basic facts about communication complexity; for proofs,
see [2] or [4].

Lemma 1 (Fundamental Lemma of Communication Complexity). If Π
is a deterministic communication protocol for f : X × Y → {0, 1}, then for any
x, x′ ∈ X and y, y′ ∈ Y and any transcript τ , if Π(x, y) = Π(x′, y′) = τ , then
also Π(x, y′) = Π(x′, y) = τ .

Lemma 2 (Rectangular Property of Randomized Communication
Complexity). Let Π be a randomized communication protocol for f : X ×
Y → {0, 1}, and let T denote the set of transcripts of Π. There are mappings
π1 : T × X → R, π2 : T × Y → R such that for every x ∈ X , y ∈ Y, and for
every τ ∈ T , Pr[Π(x, y) = τ] = π1(τ ; x) · π2(τ ; y).

We now state two lemmas that will be important in defining a graph from a
function f to study its communication complexity. Note that they are stated for
zero-error protocols; in particular, they apply to deterministic protocols.

232 R. Kumar and D. Sivakumar

Lemma 3 (X-Lemma). Let Π be a randomized zero-error communication pro-
tocol for f : X × Y → {0, 1}, let T denote the set of transcripts of Π, and let
R denote the referee function for Π. Let inputs (x, y) and (x′, y′) be such that
f(x, y) �= f(x′, y′). Then there is no transcript τ ∈ T such that R(τ) �= ‘?’,
Pr[Π(x, y′) = τ] > 0 and Pr[Π(x′, y) = τ] > 0.

Note that the X-Lemma states that even if f(x, y′) = f(x′, y), a zero-error
protocol Π cannot place positive probability mass on the same transcript for
these two inputs.

Lemma 4 (Z-Lemma). Let Π be a randomized zero-error communication pro-
tocol for f : X × Y → {0, 1}, let T denote the set of transcripts of Π, and let
R denote the referee function for Π. Let inputs (x, y) and (x′, y′) be such that
f(x, y) �= f(x, y′) = f(x′, y) �= f(x′, y′). Then there is no transcript τ ∈ T such
that R(τ) �= ‘?’, Pr[Π(x, y′) = τ] > 0 and Pr[Π(x′, y) = τ] > 0.

By symmetry, the Z-Lemma also asserts that there is no transcript τ such that
R(τ) �= ‘?’, Pr[Π(x, y) = τ] > 0 and Pr[Π(x′, y′) = τ] > 0. The proof of the
Z-Lemma is similar to that of the X-Lemma and is omitted.

3 A Graph-Theoretic Approach

Motivated by the X-Lemma and the Z-Lemma, we are now ready to define,
for a function f : X × Y → {0, 1}, a graph Gf whose chromatic number will
characterize N(f).

The vertex set V of Gf will be X × Y, and the set E of the edges of Gf will
be defined by the following rules:

(1) (Base edges) if f(x, y) �= f(x′, y′), then ((x, y), (x′, y′)) ∈ E;
(2) (X-Rule) if f(x, y) �= f(x′, y′), then ((x, y′), (x′, y)) ∈ E;
(3) (Z-Rule) if f(x, y) �= f(x, y′) = f(x′, y) �= f(x′, y′), then ((x, y), (x′, y′)) ∈

E and ((x, y′), (x′, y)) ∈ E.

The next fact is obvious — we state it as a lemma for future use. The main
consequence of this lemma is that repeated applications of the X- and Z-Rules
will not add more edges to the graph.

Lemma 5 (4-point Lemma). For any (x, y), (x′, y′), whether the edge ((x, y),
(x′, y′)) is present in Gf depends on the value of f at at most four points —
(x, y), (x′, y′), (x, y′), (x′, y).

A specific consequence of the 4-point lemma is that if Z ⊆ X ×Y is a monochro-
matic rectangle, then there is no edge between any two inputs in Z. With this
fact in hand, we now arrive at the following theorem.

Theorem 6. For any Boolean function f : X × Y → {0, 1}, χ(Gf) = C(f).

Corollary 7. For every f : X×Y → {0, 1}, we have N(f)= max{N0(f), N1(f)}
≥ log χ(Gf) − 1.

For zero-error communication, a direct argument implies zcc(f) ≥ log χ(Gf),
saving on the additive constant 1 in Corollary 7.

Communication Lower Bounds Via the Chromatic Number 233

4 Lower Bounds Via χ(Gf)

In this section, we examine the problem of proving lower bounds on the commu-
nication complexity by lower bounding the chromatic number of Gf . A natural
technique in lower bounding χ(Gf) is via the clique number ω(Gf); other tech-
niques include the Lovász ϑ-function applied to Gf . We explore these ideas now.

4.1 Fooling Sets and the Clique Number

The fooling set method is a basic technique to prove lower bounds on deter-
ministic communication complexity. Here we note that this method also yields
a lower bound on nondeterministic communication complexity.

Definition 8 (Fooling Set). Let f : X × Y → {0, 1}. Let S ⊆ X × Y be a
collection of input pairs with the following properties: (1) all input pairs have
the same value of f , that is, that exists b ∈ {0, 1} such that for all (x, y) ∈ S,
f(x, y) = b; and (2) for (x, y) �= (x′, y′) ∈ S, either f(x, y′) �= b or f(x′, y) �= b.

The following proposition is standard; see [2].

Proposition 9 (Fooling Set Bound). If f has a fooling set of size s, then
cc(f) ≥ log s.

We note that if a function f has a fooling set of size s, then ω(Gf) ≥ s; the
proof of the next proposition is easy.

Proposition 10. If S is a fooling set for f , then for every (x, y) �= (x′, y′) ∈
S, the edge ((x, y), (x′, y′)) is present in Gf ; hence ω(Gf) ≥ |S| and N(f) ≥
log |S| − 1. Also, zcc(f) ≥ log |S|.

It is known (see [2, page 48, Example 4.16]) that the lower bound obtained us-
ing the fooling set method could be exponentially poorer than the true com-
munication complexity. A candidate function f for which this gap exists is
the GF (2) inner product function. Later we will show that for this function,
log χ(Gf) = Ω(n), which is the correct bound. Thus, not surprisingly, the chro-
matic number method is strictly more powerful than the fooling set method.

4.2 The Lovász Theta Function

For a graph H , an orthonormal labeling u is an assignment of unit vectors ui,
i ∈ V (H), in some Euclidean space such that for all (i, j) �∈ E(H), ui and uj

are orthogonal. An orthonormal labeling of H with handle c is an orthonormal
labeling u of H , together with an auxiliary unit vector c in the same Euclidean
space as u. Given a graph H , the Lovász theta function of H , denoted ϑ(H),
is defined by ϑ(H) = min(u,c) maxi∈H

1
〈ui,c〉2 , where the minimization is over all

orthonormal labelings u with handle c [15].
The Lovász theta function is a remarkable functional on graphs with several

useful properties:

234 R. Kumar and D. Sivakumar

— it is polynomial-time computable;
— it is sandwiched between two (NP-hard) graph quantities, that is, α(H) ≤

ϑ(H) ≤ χ(H), where α denotes the independence number and χ denotes the
chromatic number;

— it satisfies the multiplicative property ϑ(H1 · H2) = ϑ(H1) · ϑ(H2), where
· stands for the strong (or co-normal or conjunctive) graph product defined as
follows. The vertex set of H1 · H2 is V (H1) × V (H2), and for (i1, i2) �= (j1, j2),
((i1, i2), (j1, j2)) ∈ E(H1 · H2) if and only if for each t ∈ {1, 2}, either (it = jt)
or (it, jt) ∈ E(Ht). We denote H · H by H2, and (using the associativity of ·),
we denote by Hk the k-fold strong product of H with itself.

The fact that χ(Gf) ≥ ϑ(Gf) yields a natural lower bound technique for the
communication complexity of f .

Corollary 11. 1 + N(f) ≥ log χ(Gf) ≥ log ϑ(Gf) ≥ log α(Gf) = log ω(Gf).

We illustrate the ϑ-function method for the set intersection problem, defined
formally below.

Definition 12 (The Set Intersection Problem). In the set intersection
problem, Alice is given a subset x of the n-element universe [n] and Bob is
given a subset y of [n]. (Equivalently, x and y may be thought of as strings in
{0, 1}n, representing the characteristic vectors, respectively, of x and y.) The
set intersection problem, inter(x, y), is defined by inter(x, y) = 1 if and only if
x ∩ y �= ∅.

It is known that the randomized bounded-error communication complexity of
set intersection is Ω(n). We present below a lower bound for N(f), based on the
chromatic number approach. The fact that set intersection has a fooling set of size
Ω(2n) (the set {(x, [n]\x) | x ⊆ [n]}) implies, via Proposition 10, that N(inter) =
Ω(n). The proof below is included only to illustrate the use of the Lovász ϑ-
function and its multiplicativity property in establishing communication lower
bounds. We begin with the following easy fact about the ϑ function.

Proposition 13. For graphs H ′ and H, if V (H ′) ⊆ V (H) and for every pair of
vertices i, j ∈ V (H ′), (i, j) �∈ E(H ′) only if (i, j) �∈ E(H), then ϑ(H ′) ≤ ϑ(H).
In particular, if H ′ is an induced subgraph of H, then ϑ(H ′) ≤ ϑ(H).

Proof. Let u = {ui | i ∈ V (H)} be an orthonormal labeling of H that, to-
gether with handle c, achieves ϑ(H) = maxi∈V (H)

1
〈ui,c〉2 . Since non-adjacency

in H ′ implies non-adjacency in H , every orthonormal labeling of H is also an
orthonormal labeling of H ′; thus

ϑ(H ′) ≤ max
i∈V (H′)

1
〈ui, c〉2

≤ max
i∈V (H)

1
〈ui, c〉2

= ϑ(H). ��

The idea of the zcc lower bound for f = inter is to pick a subgraph H of
Gf such that ϑ(H), which is a lower bound on ϑ(Gf), is easier to analyze.
Specifically, we will pick H that can be expressed as the strong product of a

Communication Lower Bounds Via the Chromatic Number 235

small graph with itself, that is, we will pick H = hn for some graph h. This will
enable us to employ the multiplicativity of the ϑ function, and it will follow that
ϑ(Gf) ≥ ϑ(H) = ϑ(hn) = (ϑ(h))n. Finally, it will be trivial to prove a lower
bound larger than 1 for ϑ(h), simply by exhibiting an independent set of size at
least 2.

Recall that for f = inter , X = {0, 1}n, Y = {0, 1}n, and hence the vertex set
V of Gf is {0, 1}n × {0, 1}n. For convenience, we will think of V as ({0, 1}2)n =
{00, 01, 10, 11}n, where each “coordinate” will contain one of Alice’s input bits
and one of Bob’s input bits. Formally, if Alice’s input is x and Bob’s input is y,
we will identify the vertex (x, y) with the n-tuple (x1y1, x2y2, . . . , xnyn).

Let h denote the 3-vertex graph on the set {00, 01, 10} consisting of the edges
(00, 01) and (00, 10). Define H = hn, the strong n-fold product of h with itself.
Precisely, for (x, y) �= (x′, y′) ∈ V ,

((x1y1, x2y2, . . . , xnyn), (x′1y
′
1, x
′
2y
′
2, . . . , x

′
ny′n)) ∈ E(H)

⇔
n∧

i=1

[xiyi = x′iy
′
i ∨ (xiyi, x

′
iy
′
i) ∈ E(h)]

⇔
n∧

i=1

[xiyi = x′iy
′
i ∨ {xiyi, x

′
iy
′
i} = {00, 01} ∨ {xiyi, x

′
iy
′
i} = {00, 10}] .(1)

The next lemma establishes that the graph H = hn occurs as an induced
subgraph of Gf for f = inter .

Lemma 14. The graph H = hn occurs as an induced subgraph of Gf for f =
inter.

Before we prove Lemma 14, note that it implies an Ω(n) lower bound on the
zero-error communication complexity of inter . This follows since for f = inter ,

ϑ(Gf) ≥ ϑ(H) = ϑ(hn) = (ϑ(h))n ≥ (α(h))n = 2n,

where the last inequality follows from the fact that the set {01, 10} is the largest
independent set in h.

Proof (of Lemma 14). Let f = inter . Let V ′ = V (H) = {00, 01, 10}n denote the
vertices of H ; clearly V ′ ⊆ V = V (Gf).

First we will show that every edge in H occurs in Gf . Suppose ((x, y), (x′, y′))
∈ E(H). We have (x, y) �= (x′, y′) and furthermore, from Equation (1),

xiyi = x′iy
′
i ∨ {xiyi, x

′
iy
′
i} = {00, 01} ∨ {xiyi, x

′
iy
′
i} = {00, 10}, for i = 1, . . . , n.

Specifically, for each i, we know that (xi ∧ yi) = 0 and also that (x′i ∧ y′i) = 0,
whence it follows that inter(x, y) = inter(x′, y′) = 0. Also, for each i, we have

{xiy
′
i, x
′
iyi} ⊆ {01, 00} or {xiy

′
i, x
′
iyi} ⊆ {10, 00},

and hence (xi ∧ y′i) = 0 and (x′i ∧ yi) = 0, whence it follows that inter(x, y′) =
inter(x′, y) = 0. By Lemma 5, whether the edge ((x, y), (x′, y′)) ∈ E(Gf) de-
pends only the value of f at the four points (x, y), (x′, y′), (x, y′), and (x′, y), all
of which are 0. Thus none of these edges is present in Gf , as required.

236 R. Kumar and D. Sivakumar

Next we will show that every non-edge in H is also a non-edge in Gf , that is, if
for some (x, y) �= (x′, y′), ((x, y), (x′, y′)) �∈ E(H), then ((x, y), (x′, y′)) ∈ E(Gf).
Since ((x, y), (x′, y′)) �∈ E(H), it must be the case that for some i,

xiyi �= x′iy
′
i ∧ {xiyi, x

′
iy
′
i} �= {00, 01} ∧ {xiyi, x

′
iy
′
i} �= {00, 10}.

In other words, we have {xiyi, x
′
iy
′
i} = {01, 10}. Wlog. let xiyi = 01 and

x′iy
′
i = 10; then x′iyi = 11 and hence inter(x′, y) = 1. We already know that

inter(x, y) = inter(x′, y′) = 0; if inter(x, y′) = 0, then by the X-Rule, ((x, y),
(x′, y′)) ∈ E(Gf), and if inter(x, y′) = 1, then by the Z-Rule, ((x, y), (x′, y′)) ∈
E(Gf). In either case, we have shown that ((x, y), (x′, y′)) ∈ E(Gf). ��

4.3 Graph Entropy

In this section, we show how one can apply ideas related to graph entropy to lower
bound the chromatic number of graphs arising from communication complexity
problems. Specifically, we consider the communication complexity of the inner
product function, defined below.

Definition 15 (The Inner Product Problem). In the inner product prob-
lem, Alice is given a subset x of the n-element universe [n] and Bob is given a
subset y of [n]. The inner product problem, ip(x, y), is defined by ip(x, y) = 1
if and only if |x ∩ y| is odd. (Equivalently, x and y are strings in Zn

2 , and
ip(x, y) = 〈x, y〉2, where 〈·, ·〉2 denotes inner product in Z2.)

Theorem 16. For f = ip, log χ(f) = Ω(n).

The importance of the inner product function for our purposes is the fact, men-
tioned earlier, that the fooling set method is provably inadequate to prove an
Ω(n) lower bound for this function [2]. We show that the chromatic number
method achieves this lower bound, that is, for f = ip, log χ(Gf) = Ω(n). It
is an intriguing open question whether log ϑ(Gf) = Ω(n) for f = ip, and we
conjecture that it is.

The notion of graph entropy was first defined by Körner [16] in connection
with a coding problem in information theory. Since then it has found numer-
ous applications in combinatorics as well as in theoretical computer science
[17,18,19,20,21]; see [22,23,24] for excellent survey of graph entropy and related
topics.

Definition 17. Let G = (V, E) be a graph, and let Q denote a probability dis-
tribution on the vertices of G. The entropy of G with respect to Q, denoted
H(G, Q), is defined by H(G, Q) = min I(U : S), where the minimization is over
pairs of random variables (U, S) that have the following properties: the variable
U takes its values in V (G), S takes its values in the set of independent sets of
G, their joint distribution is such that U ∈ S occurs with probability one, and
the marginal distribution of U on V (G) is identical to Q.

Surprisingly, Körner, in the same paper, also showed that this definition of graph
entropy coincides with another definition. For a graph G and Z ⊆ V (G), we

Communication Lower Bounds Via the Chromatic Number 237

denote by G(Z) the subgraph of G induced by Z. Also, we define the weak
(or normal or disjunctive) graph product of two graphs H1 and H2 as fol-
lows. The vertex set of H1 × H2 is V (H1) × V (H2), and for (i1, i2) �= (j1, j2),
((i1, i2), (j1, j2)) ∈ E(H1 ×H2) if and only if (it, jt) ∈ E(Ht) for some t ∈ {1, 2}.
We denote H ×H by H(2), and (using the associativity of ×), we denote by H(k)

the k-fold weak product of H with itself.

Definition 18. For any 0 ≤ ε < 1,

H(G, Q) = limt→∞ minU⊆V t,Qt(U)>1−ε
1
t log χ(G(t)(U)).

It is an easy consequence of the definitions that for any distribution Q, H(G, Q)
≤ log χ(G), and hence H(G, Q) yields a lower bound on χ(G). By Definition 17,
we need to lower bound I((X, Y) : γ), where γ is an arbitrary distribution on
the independent sets of Gf (for f = ip) such that (X, Y) ∈ γ.

Proof (sketch of Theorem 16). Following [4], we will pick (X, Y) according to the
following distribution on the vertices of Gf . Let S = {00, 01} and T = {00, 10}.
For i = 1, . . . , n, let Ri denote a random variable that is S or T with equal
probability. Finally, define the r.v. (X, Y) as follows: (X, Y) = (x, y), where for
each i, xiyi is chosen uniformly from the two possibilities in Ri. It is easy to see
that every value (x, y) that (X, Y) takes on satisfies ip(x, y) = 0. Let R denote
R1, . . . , Rn.

By an application of the data processing inequality similar to [4], it can be
shown that I(X, Y : γ) ≥ I(X, Y : γ | R), and it suffices to lower bound the
latter quantity.

For simplicity of exposition, we directly prove the following (slightly more re-
stricted version) that applies directly to color classes of Gf rather than arbitrary
distributions on independent sets.

Lemma 19. Let γ denote a legal coloring of Gf using χ(Gf) colors. For any
r.v. (X, Y) with values in V (Gf) and any other random variable A, we have
log χ(Gf) ≥ I((X, Y) : γ(X, Y) | A).

The rest of the proof is analogous to a proof of [4] on the randomized communi-
cation complexity of set disjointness. We highlight the main steps.

Lemma 20. Let γ denote a legal coloring of Gf . Then I((X, Y) : γ(X, Y) |
R) ≥

∑n
i=1 I(XiYi : γ(X, Y) | R).

The proof is identical to that of a similar lemma in [4], and is omitted.
Note that for each i, the quantity I(XiYi : γ(X, Y) | R) is the expectation over

all values r of R−i
.= R1, . . . , Ri−1, Ri+1, . . . , Rn, of I(XiYi : γ(X, Y) | R−i =

r, Ri). Let us denote this quantity by ιipi,r,γ . We will show that for every i and r,
ιipi,r,γ is Ω(1). Again, this is similar to an analogous statement in [4]. We will show
that one can embed the graph Gand corresponding to the 1-bit and function into
Gf in various ways (corresponding to various choices of XjYj consistent with r),
and every one of them yields a legal coloring η of Gand by projecting the colors

238 R. Kumar and D. Sivakumar

of the corresponding vertices of Gf . The graph Gand consists of four vertices
{00, 01, 10, 11} and the edges {(00, 11), (01, 11), (10, 11), (10, 01)}; the first three
are base edges and the fourth one is obtained by applying the X-Rule. Consider
the following distribution on the vertices of Gand : let ρ be a random variable
with uniform distribution over {S, T }, and pick random variables U and V (as
a pair) from the set ρ. Under this distribution on the vertices of Gand , for any
random variable η with distribution over legal colorings of Gand , let ιand

η denote
I(UV : η(U, V) | ρ). It is easy to see that ιand

η = Ω(1). The crucial remaining
step is to argue that ιipi,r,γ = ιand ; this is based on the following reduction, whose
analysis is similar to that in [4], and hence omitted. To color the vertices of Gand ,
we proceed as follows. Fix a vertex, wlog., say 00; let C00 denote the sequence
of colors specified by γ for all vertices of the form (X i←0

−i , Y i←0
−i) where X−iY−i

range over all values consistent with R−i = r, and X i←0
−i denotes the input with

a 0 in the i-th position and agreeing with X−i elsewhere. Since ip(x, y) = 1
precisely for the setting xiyi = 11 and ip(x, y) = 0 for the other three settings,
the X-Lemma implies that the induced graph on any four vertices with any
particular choice of X−iY−i consistent with R−i = r is precisely a copy of Gand ,
and hence any legal coloring of this sequence of vertices yields a legal coloring of
Gand , and in particular, the sequence of colors is a coloring of Gand as well. ��

We now present an example of a function where the chromatic number of Gf

gives only a weak lower bound on the deterministic communication complex-
ity. The andor function is a generalization of the inter function: andor (X1,
. . . , Xk, Y1, . . . , Yk) = ∧k

i=1inter(Xi, Yi). If k =
√

n and each of Xi and Yi are
of length

√
n, then it can be shown that N0(andor) = N1(andor) = Θ(

√
n).

However, it was shown in [13] that the randomized bounded-error (hence, deter-
ministic) communication complexity of andor is Ω(n). Thus, one cannot hope to
show an Ω(n) lower bound on the deterministic complexity of andor by study-
ing χ(Gandor). However it is possible to modify the arguments in Section 4.3,
together with the methods in [13], to obtain an Ω(n) lower bound for andor ,
by a generalization of coloring with additional local constraints. We defer the
details to the full version.

5 Conclusions and Open Problems

We have presented a novel viewpoint for communication complexity; we believe
that the definition of Gf distills into a well-studied combinatorial question the
complexity of computing f by a two-player communication protocol. We antici-
pate that the rich set of tools applicable for studying the chromatic number of
graphs will be useful in proving new communication bounds. Our work raises an
exciting collection of open problems, some of which we briefly mention below.

Regarding the inequality χ(Gf) ≥ ϑ(Gf), it is known [25,26] that for general
graphs. that the gap between these quantities could be quite large. Specifically,
there are n-vertex graphs G for which χ(G) is polynomially large in n but ϑ(G)
is a constant. However, for the graphs Gf corresponding to Boolean functions f ,

Communication Lower Bounds Via the Chromatic Number 239

it is not clear if such a large gap exists. The next open question is whether the
chromatic number method leads to lower bounds for randomized communication
complexity with error; some preliminary results are in the full version.

References

1. Yao, A.C.C.: Some complexity questions related to distributive computing. In: 11th
STOC, pp. 209–213 (1979)

2. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

3. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.C.: Informational complexity and
the direct sum problem for simultaneous message complexity. In: 42nd FOCS, pp.
270–278 (2001)

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to communication complexity and data streams. JCSS 68(4), 702–732
(2004)

5. Lipton, R., Sedgewick, R.: Lower bounds for VLSI. In: 13th STOC, pp. 300–307
(1981)

6. Mehlhorn, K., Schmidt, E.: Las-Vegas is better than determinism in VLSI and
distributed computing. In: 14th STOC, pp. 330–337 (1982)

7. Bar-Yehuda, R., Chor, B., Kushilevitz, E., Orlitsky, A.: Privacy, additional infor-
mation, and communication. IEEE TOIT 39(6), 1930–1943 (1993)

8. Ablayev, F.: Lower bounds for one-way probabilistic communication complexity
and their application to space complexity. TCS 157(2), 139–159 (1996)

9. Babai, L., Gál, A., Kimmel, P., Lokam, S.V.: Simultaneous messages vs. commu-
nication. Technical Report TR-96-23, University of Chicago (1996)

10. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory meth-
ods in communication complexity. In: 17th CCC, pp. 93–102 (2002)

11. Saks, M., Sun, X.: Space lower bounds for distance approximation in the data
stream model. In: 34th STOC, pp. 360–369 (2002)

12. Sen, P.: Lower bounds for predecessor searching in the cell probe model. In: 18th
CCC, pp. 73–83 (2003)

13. Jayram, T., Kumar, R., Sivakumar, D.: Two applications of information complex-
ity. In: 35th STOC, pp. 673–682 (2003)

14. Jain, R., Radhakrishnan, J., Sen, P.: A direct sum theorem in communication
complexity via message compression. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 300–315. Springer,
Heidelberg (2003)

15. Lovász, L.: On the Shannon capacity of a graph. IEEE TOIT 25(1), 1–7 (1979)
16. Körner, J.: Coding of an information source having ambiguous alphabet and the

entropy of graphs. In: 6th Prague Conf. on Information Theory, pp. 411–425 (1973)
17. Fredman, M.L., Komlós, J.: New bounds for perfect hashing via information theory.

SIDMA 7(4), 560–570 (1984)
18. Boppana, R.: Optimal separations between concurrent-write parallel machines. In:

21st STOC, pp. 320–326 (1989)
19. Newman, I., Wigderson, A.: Lower bounds on formula size of boolean functions

using hypergraph-entropy. SIDMA 8(4), 536–542 (1995)
20. Radhakrishnan, J.: Better bounds for threshold formulas. In: 32nd FOCS, pp. 314–

323 (1991)

240 R. Kumar and D. Sivakumar

21. Kahn, J., Kim, J.H.: Entropy and sorting. JCSS 51, 390–399 (1995)
22. Simonyi, G.: Graph entropy. In: Cook, L.L.W., Seymour, P. (eds.) Combinatorial

Optimization. DIMACS Series on Discrete Math and Computer Science, vol. 20,
pp. 391–441. DIMACS Press (1995)

23. Radhakrishnan, J.: Entropy and counting. In: Misra, J.C. (ed.) Computational
Mathematics, Modeling, and Algorithms, Narosa Publishers, New Delhi (2003)

24. Simonyi, G.: Perfect graphs and graph entropy. an updated survey. In: Ramirez-
Alfonsin, J., Reed, B. (eds.) Perfect Graphs, pp. 293–328. John Wiley and Sons,
Chichester (2001)

25. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. JACM 45(2), 246–265 (1998)

26. Szegedy, M.: A note on the Theta number of Lovász and the generalized Delsarte
bound. In: 35th FOCS, pp. 36–39 (1994)

The Deduction Theorem for

Strong Propositional Proof Systems

(Extended Abstract)

Olaf Beyersdorff�

Institut für Informatik, Humboldt-Universität zu Berlin, Germany
beyersdo@informatik.hu-berlin.de

Abstract. This paper focuses on the deduction theorem for proposi-
tional logic. We define and investigate different deduction properties and
show that the presence of these deduction properties for strong proof
systems is powerful enough to characterize the existence of optimal and
even polynomially bounded proof systems. We also exhibit a similar,
but apparently weaker condition that implies the existence of complete
disjoint NP-pairs. In particular, this yields a sufficient condition for the
completeness of the canonical pair of Frege systems and provides a gen-
eral framework for the search for complete NP-pairs.

1 Introduction

The classical deduction theorem for propositional logic explains how a proof of
a formula ψ from an extra hypothesis ϕ is transformed to a proof of ϕ → ψ.
While this property has been analysed in detail and is known to hold for Frege
systems [3,4], deduction has not been considered for stronger systems such as
extensions of Frege systems, the apparent reason being that neither the extended
Frege system EF nor the substitution Frege system SF satisfy the classical
deduction theorem, as neither the extension nor the substitution rule is sound
(in the sense that every satisfying assignment for the premises also satisfies the
conclusion of these rules). We therefore relax the condition by requiring the extra
hypothesis ϕ to be tautological. In this way we arrive at two weaker versions of
the deduction property, for which we ask whether they are valid for strong proof
systems with natural properties. It turns out that even these weaker versions of
deduction are very powerful properties for strong proof systems as they allow
the characterization of the existence of optimal and even polynomially bounded
proof systems.

These characterizations are interesting as they relate two important concepts
from different areas. The problem of the existence of polynomially bounded proof
systems is known to be equivalent to the NP versus coNP question [7], while
the question of the existence of optimal proof systems, asking for a strongest
propositional proof system, is a famous and well-studied problem in proof com-
plexity, posed by Kraj́ıček and Pudlák [17], and with implications for a number
� Supported by DFG grant KO 1053/5-1.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 241–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 O. Beyersdorff

of promise complexity classes (cf. [15,20]). In particular, Sadowski [20] obtained
different characterizations for the existence of optimal proof systems in terms of
optimal acceptors and enumerability conditions for easy subsets of TAUT. Ear-
lier, Kraj́ıček and Pudlák [17] established NE = coNE as a sufficient condition for
the existence of optimal proof systems, while Köbler, Messner, and Torán [15]
showed that optimal proof systems imply complete sets for a number of other
complexity classes like NP ∩ coNP and BPP.

On the other hand, we show that weak deduction combined with suitable
closure properties of the underlying proof system implies the existence of com-
plete disjoint NP-pairs. Although disjoint NP-pairs were already introduced into
complexity theory in the 80’s by Grollmann and Selman [13], it was only during
recent years that disjoint NP-pairs have fully come into the focus of complexity-
theoretic research [18,9,10,11,12,1,2]. This interest mainly stems from the appli-
cations of disjoint NP-pairs to such different areas as cryptography [13,14] and
propositional proof complexity [19,18,2].

Similarly as for other promise classes it is not known whether the class of
all disjoint NP-pairs contains pairs that are complete under the appropriate re-
ductions. This question, posed by Razborov [19], is one of the most prominent
open problems in the field. On the positive side, it is known that the existence of
optimal proof systems suffices to guarantee the existence of complete pairs [19].
More towards the negative, a body of sophisticated relativization results under-
lines the difficulty of the problem. Glaßer, Selman, and Sengupta [9] provided an
oracle under which complete disjoint NP-pairs do not exist. On the other hand,
in [10] they also constructed an oracle relative to which there exist complete
pairs, but optimal proof systems do not exist.

Further information on the problem is provided by a number of different char-
acterizations. Glaßer, Selman, and Sengupta [9] obtained a condition in terms of
uniform enumerations of machines and also proved that the question of the ex-
istence of complete pairs receives the same answer under reductions of different
strength. Additionally, the problem was characterized by provability conditions
in propositional proof systems and shown to be robust under an increase of the
number of components from two to arbitrary constants [1].

In this paper we exhibit several sufficient conditions for the existence of com-
plete disjoint NP-pairs which involve properties of concrete proof systems such as
Frege systems and their extensions. These results fall under a general paradigm
for the search for complete NP-pairs, that asks for the existence of proof systems
satisfying a weak version of the deduction theorem and moderate closure con-
ditions. In particular, we provide two conditions that imply the completeness
of the canonical pair of Frege systems and demonstrate that the existence of
complete NP-pairs is tightly connected with the question whether EF is indeed
more powerful than ordinary Frege systems.

The paper is organized as follows. In Sect. 2 we provide some background
information on propositional proof systems and disjoint NP-pairs. In Sect. 3 we
discuss various extensions of Frege systems that we investigate in Sect. 4 with
respect to different versions of the deduction property. Section 5 contains the

The Deduction Theorem for Strong Propositional Proof Systems 243

results connecting the deduction property for strong systems with the existence
of complete NP-pairs. Finally, in Sect. 6 we conclude with some open problems.

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow [7] as polynomial-time functions P
which have as their range the set of all tautologies. A string π with P (π) = ϕ
is called a P -proof of the tautology ϕ. By P �≤m ϕ we indicate that there is a
P -proof of ϕ of size ≤ m. We write P �∗ ϕn if ϕn is a sequence of tautologies
with polynomial-size P -proofs. A propositional proof system P is polynomially
bounded if all tautologies have polynomial size P -proofs.

Proof systems are compared according to their strength by simulations intro-
duced in [7] and [17]. A proof system S simulates a proof system P (denoted
by P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and
P -proofs π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof
π′ can even be computed from π in polynomial time we say that S p-simulates
P and denote this by P ≤p S. If the systems P and S mutually (p-)simulate
each other, they are called (p-)equivalent, denoted by P ≡(p) S. A proof system
is called optimal if it simulates all proof systems.

In the following sections simple closure properties of propositional proof sys-
tems will play an important role. We say that a proof system P is closed under
modus ponens if there exists a constant c such that P �≤m ϕ and P �≤n ϕ → ψ
imply P �≤m+n+|ψ|+c ψ for all formulas ϕ and ψ. Similarly, we say that P
is closed under substitutions of variables with respect to the polynomial q if
P �≤m ϕ(x̄) implies P �≤q(m) ϕ(ȳ) for all formulas ϕ(x̄) and propositional
variables ȳ that are distinct from x̄. Not specifying the polynomial explicitly, we
say that P is closed under substitutions of variables if there exists a polynomial
q with this property. Likewise, P is closed under substitutions by constants if
there exists a polynomial q such that P �≤m ϕ(x̄, ȳ) implies P �≤q(m) ϕ(ā, ȳ)
for all formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|.

Disjoint NP-Pairs. A pair (A, B) is called a disjoint NP-pair if A, B ∈ NP
and A ∩ B = ∅. Grollmann and Selman [13] defined the following reduction
between disjoint NP-pairs (A, B) and (C, D): (A, B) ≤p (C, D) if there exists a
polynomial-time computable function f such that f(A) ⊆ C and f(B) ⊆ D. A
disjoint NP-pair is complete if every disjoint NP-pair reduces to it.

The connection between disjoint NP-pairs and propositional proof systems
was established by Razborov [19], who associated a canonical disjoint NP-pair
(Ref(P), SAT∗) with a proof system P , where the first component Ref(P) =
{(ϕ, 1m) | P �≤m ϕ} contains information about proof lengths in P and the
second component SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT} is a padded version of SAT.
This canonical pair is linked to the automatizablility and the reflection property
of the proof system [18]. More information on the connection between disjoint
NP-pairs and propositional proof systems can be found in [18,2,11].

244 O. Beyersdorff

3 Extensions of Frege Systems

A prominent example of a class of proof systems is provided by Frege systems
which are usual textbook proof systems based on axioms and rules. In the context
of propositional proof complexity these systems were first studied by Cook and
Reckhow [7] and it was proven there that all Frege systems, i.e., systems using
different axiomatizations and rules, are p-equivalent.

In addition to Frege systems the extended Frege proof system EF can abbrevi-
ate complex formulas by propositional variables by the following extension rule:
if q is a new propositional variable, neither occurring in the previous proof steps
nor in the proven formula, then q ≡ ϕ is an admissible proof step for arbitrary
formulas ϕ not containing q. The variable q is an extension variable, which from
now on abbreviates the formula ϕ. Note that q ≡ ϕ is in general not tautological,
and therefore q may not appear in the proven formula. This extension rule might
further reduce the proof size, but it is not known whether EF is really stronger
than ordinary Frege systems. Both Frege and the extended Frege system are
very strong systems for which no non-trivial lower bounds to the proof size are
currently known (cf. [5]).

Another way to enhance the power of Frege systems is to allow substitutions
not only for axioms but also for all formulas that have been derived in Frege
proofs. Augmenting Frege systems by this substitution rule leads to the substitu-
tion Frege system SF . The extensions EF and SF were introduced by Cook and
Reckhow [7]. While it was already proven there that EF is simulated by SF , the
converse simulation is considerably more involved and was shown independently
by Dowd [8] and Kraj́ıček and Pudlák [17]. For more detailed information on
Frege systems and their extensions we refer to the monograph [16].

Under the notion of Hilbert-style proof systems we subsume all proof systems
that have as proofs sequences of formulas, and formulas in such a sequence
are derived from earlier formulas in the sequence by the rules available in the
proof system. In particular, Frege systems and its extensions are Hilbert-style
systems. Hilbert-style proof systems P can be enhanced by additional axioms in
two different ways. Namely, we can form a proof system P +Φ augmenting P by
a polynomial-time computable set Φ of tautologies as new axiom schemes. This
means that formulas from Φ as well as substitution instances of these formulas
can be freely introduced as new lines in P +Φ -proofs. In contrast to this we use
the notation P ∪Φ for the proof system that extends P only by formulas from Φ
but not by their substitution instances as new axioms. In our applications the set
Φ will mostly be printable, meaning that Φ can both be decided and generated
in polynomial time.

For EF there are two canonical ways how to define the extensions EF ∪Φ and
EF + Φ, where these two possibilities differ in the use of the extension axioms.
In the first method we will allow the introduction of extension axioms p ≡ ϕ
only for extension variables p not occurring in Φ, whereas in the second method
we can freely use extension axioms that also involve variables from Φ. For the
first weaker notion we will use the notation EF−∪Φ and EF−+Φ, or only EF−

when we augment EF in this manner by different sets of tautologies Φ, whereas

The Deduction Theorem for Strong Propositional Proof Systems 245

the stronger second way is indicated by the usual notation EF ∪ Φ, EF + Φ, or
simply EF . We will use the same notation (EF +Ψ)− when we use an extension
EF + Ψ as the base system and augment this with further axioms Φ to systems
(EF + Ψ)− ∪ Φ.

In principle, this gives four possible types of extensions of EF , but it is easily
seen that the distinction between EF and EF− becomes irrelevant when we
augment these systems by axiom schemes Φ:

Proposition 1. Let Φ be a polynomial-time decidable set of tautologies. Then
the proof systems EF + Φ and EF− + Φ are p-equivalent.

These extensions of EF are particularly important as every proof system P is
simulated by a proof system of the form EF + Φ where the axioms Φ provide
a propositional description of the reflection principle of P , expressing a strong
form of the consistency of P (cf. [16] for details).

In addition, also the systems EF∪Φ and EF+Φ appear to be very close to each
other, as also EF ∪Φ can use substitution instances of Φ in its proofs. Namely, if
ϕ(p1, . . . , pn) is a formula from Φ and θ1(q̄), . . . , θn(q̄) are propositional formulas
in the variables q̄ that are disjoint from p̄, then we can deduce ϕ(θ1, . . . , θn) in
EF ∪Φ as follows: we start with the extension axioms p1 ≡ θ1(q̄), . . . , pn ≡ θn(q̄)
and use these formulas to show the equivalence ϕ(p1, . . . , pn) ≡ ϕ(θ1, . . . , θn)
by induction on the formula ϕ. Using the original axiom ϕ(p1, . . . , pn) from
Φ we arrive with modus ponens at the substitution instance ϕ(θ1, . . . , θn). We
leave it open, whether this idea can be extended to a full simulation of EF +
Φ by EF ∪ Φ, but the argument shows that also the system EF ∪ Φ is quite
natural, as it is equivalent to the proof system P = EF + Φ where formulas
from Φ use pairwise distinct variables and each P -proof may contain at most
one substitution instance of each formula from Φ.

For SF the situation becomes even simpler, as there is only one sensible
way to define extensions of SF . Namely, because SF can immediately generate
substitution instances, we have SF ∪Φ ≡p SF +Φ. In total the following picture
of possible extension of Frege systems emerges:

Proof system Extensions by polynomial-time decidable axioms Φ

F F ∪ Φ ≤p F + Φ

EF EF− ∪ Φ ≤p EF ∪ Φ ≤p EF− + Φ ≡p EF + Φ

SF SF ∪ Φ ≡p SF + Φ

In the above table all shown simulation relations are probably strict in each
line (except for EF ∪ Φ ≤p EF + Φ as mentioned above), because the converse
simulations (even for ≤) have unlikely consequences, as we will show in the
sequel of this paper, or easily follows from known results. The next table gives
an overview of these consequences, ranging in strength from the existence of
complete disjoint NP-pairs to the existence of optimal proof systems.

246 O. Beyersdorff

Assumption Consequence

F ≡ F− ∪ Φ *) EF is optimal (cf. [16], Theorem 14.2.2)
F ∪ Φ ≡ F + Φ *) Complete disjoint NP-pairs exist (Corollary 14)
EF ≡ EF− ∪ Φ *) EF is optimal (cf. [16])
EF− ∪ Φ ≡ EF ∪ Φ *) EF is optimal (Theorem 7)
SF ≡ SF ∪ Φ *) SF is optimal (cf. [16])

*) for all polynomial-time decidable sets of tautologies Φ
In contrast, we do not seem to have such indication for separating the systems

in the vertical columns of the first table, as even the relation between F and
EF ≡p SF is not settled.

4 Deduction Properties for Frege Systems

The deduction theorem of propositional logic states that in a Frege system F a
formula ψ is provable from a formula ϕ if and only if ϕ → ψ is provable in F .
Because proof complexity is focusing on the length of proofs it is interesting to
analyse how the proof length is changing in the deduction theorem. An F -proof
of ϕ → ψ together with the axiom ϕ immediately yields the formula ψ with
one application of modus ponens. Therefore it is only interesting to ask for the
increase in proof length when constructing a proof of ϕ → ψ from an F -proof of
ψ with the extra axiom ϕ. This was analysed in detail in [3,4].

The main application of the deduction property is to simplify proofs of com-
plex formulas. Namely, to prove an implication ϕ → ψ it suffices to construct a
proof of ψ from ϕ. In particular, ϕ can be any formula and is not necessarily a
tautology. It is clear that such a deduction property is doomed to fail for strong
systems like EF or SF that can immediately produce substitution instances from
ϕ. For instance, by one application of the substitution rule we get SF ∪ {p} � q,
whereas p → q is not even a tautology. Similarly, we get EF ∪ {p} � q by in-
troducing the extension axiom p ≡ q with extension variable p as the first line
of the proof, and then derive q by modus ponens. This example, however, does
not work for EF− as we have used the variable p from the extra assumption as
an extension variable. In fact, such an example cannot be found as the classical
deduction theorem is valid for EF− (Theorem 3).

Aiming in particular at strong proof systems like EF we therefore restrict ϕ
to tautologies and make the following general definition.

Definition 2 (Efficient/classical deduction property). A Hilbert-style
proof system P allows efficient deduction if there exists a polynomial p such
that for all finite sets Φ of tautologies,

P ∪ Φ �≤m ψ implies P �≤p(m+m′) (
∧

ϕ∈Φ

ϕ) → ψ

where m′ = |
∧

ϕ∈Φ ϕ|.

The Deduction Theorem for Strong Propositional Proof Systems 247

If this even holds for all finite sets Φ of propositional formulas, then we say
that P has the classical deduction property.

This classical deduction property is known to hold for Frege systems (cf. [4]), but
actually almost the same proof also holds for the presumably stronger system
EF−.

Theorem 3 (Deduction theorem for Frege systems). Let Ψ be a
polynomial-time decidable set of tautologies. Then every Frege system F +Ψ and
every extended Frege system of the form (EF + Ψ)− has the classical deduction
property.

Proof (Sketch). Let ϕ1, . . . , ϕn be tautologies and let (θ1, . . . , θk) be a proof of
ψ in the system P ∪{ϕ1, . . . , ϕn}, where P is F +Ψ or (EF +Ψ)−. By induction
on j we construct P -proofs of the implications (

∧n
i=1 ϕi) → θj . This is done

by distinguishing three cases on how the formula θj was derived: θj might be
an axiom from {ϕ1, . . . , ϕn} or Ψ (this case is easy), θj might be derived by an
F -rule, or θj might be an application of the extension rule (if P = (EF + Ψ)−).

We just make some remarks on this last case. Let θj be q ≡ θ with the
extension variable q. Then we can also use the extension rule to get q ≡ θ,
and derive (

∧n
i=1 ϕi) → (q ≡ θ) in a proof of size O(|θ| +

∑n
i=1 |ϕi|). Here it

is important that by the definition of (EF + Ψ)− the extension variable q does
not occur in the formulas ϕi, as otherwise we would not be able to use q as an
extension variable in an EF + Ψ -proof of (

∧n
i=1 ϕi) → θk. ��

A still weaker form of the deduction property is given in the next definition.

Definition 4 (Weak deduction property). A Hilbert-style proof system P
allows weak deduction if the following condition holds. For all printable sets
Φ ⊆ TAUT there exists a polynomial p such that for all finite subsets Φ0 ⊆ Φ
we can infer from P ∪ Φ0 �≤m ψ that P �≤p(m+m′) (

∧
ϕ∈Φ0

ϕ) → ψ where
m′ = |

∧
ϕ∈Φ0

ϕ|.
In Definition 2 we allowed a fixed polynomial increase for the proof size in the
transformation of a proof from ψ to the implication (

∧
ϕ∈Φ0

ϕ) → ψ, whereas in
the weak deduction property this polynomial might depend on the choice of the
extra axioms Φ. This weakening of the deduction property allows us to show the
following proposition.

Proposition 5. Optimal Hilbert-style proof systems have the weak deduction
property. Similarly, polynomially bounded Hilbert-style proof systems have the
efficient deduction property.

Proof (Idea). Let Φ be a printable set of tautologies and let π be a P ∪ Φ-proof
of ψ. If P is optimal (or even polynomially bounded), then we can first devise
polynomial-size P -proofs of the extra assumptions Φ0 in π and thus construct a
P -proof of (

∧
ϕ∈Φ0

ϕ) → ψ. ��

The following theorem provides a form of a converse to the last proposition. This
shows that the efficient and even the weak deduction property are very strong
assumptions for natural proof systems.

248 O. Beyersdorff

Theorem 6. Let P ≥ EF be a Hilbert-style proof system that fulfills the follow-
ing two conditions:

1. P is closed under modus ponens and substitutions by constants.
2. For all printable sets of tautologies Φ the proof system P ∪ Φ is closed under

substitutions of variables.

Then the following implications hold. If P has the weak deduction property, then
P is an optimal proof system. If P even has the efficient deduction property and 2
holds for some fixed polynomial p, not depending on Φ, then P is a polynomially
bounded proof system.

Proof. Let us argue for the first implication. To obtain the optimality of a proof
system P ≥ EF that is closed under modus ponens, it suffices to show P �∗
ϕn for all printable sequences of tautologies ϕn (cf. [16], Theorem 14.2.2). Let
ϕn(p̄) be a printable sequence in the variables p̄, and let q̄ be a sequence of
propositional variables that is disjoint from p̄. We consider the proof system
P ′ = P ∪ {ϕn(q̄) | n ≥ 0}, where the variables p̄ from ϕn(p̄) are substituted
by q̄. By assumption P ′ is closed under substitutions of variables and hence
we have P ′ �∗ ϕn(p̄). By the weak deduction property for P we get P �∗∧

i∈I ϕi(q̄) → ϕn(p̄) for some finite set I. Using closure under substitutions by
constants we derive P �∗

∧
i∈I ϕi(1, . . . , 1) → ϕn(p̄), where we have substituted

all variables q̄ in ϕi(q̄) by constants 1. Because all ϕi are tautologies, the formulas
ϕi(1, . . . , 1) are true formulas without variables and therefore admit polynomial-
size P -proofs, as P ≥ EF . Using modus ponens for P we arrive at polynomial-size
P -proofs of ϕn(p̄), as desired.

For the second implication we use the following characterization: a proof sys-
tem P is polynomially bounded if and only if P �≤p(n) ϕn for all printable
sequences of tautologies ϕn and a fixed polynomial p. In the definition of the ef-
ficient deduction property and the other closure properties we have also bounded
the increase in the proof length by fixed polynomials. Hence an easy modification
of the above argument yields the second implication. ��

Examining the situation for extensions of EF we obtain the following result.

Theorem 7. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the weak deduction property.
2. EF + Ψ is an optimal proof system.
3. For all polynomial-time decidable sets Φ ⊂ TAUT the systems (EF +Ψ)−∪Φ

and (EF + Ψ) ∪ Φ are equivalent.
4. For all polynomial-time decidable sets Φ ⊂ TAUT the proof system (EF +

Ψ)− ∪ Φ is closed under substitutions of variables.

In particular, the last theorem yields two seemingly unrelated characterizations
for the optimality of EF , namely weak deduction for EF and closure of EF−∪Φ
under substitutions of variables for arbitrary tautologies Φ.

Similarly, we obtain the following characterizations for the efficient deduction
property of extensions of EF .

The Deduction Theorem for Strong Propositional Proof Systems 249

Theorem 8. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the efficient deduction property.
2. EF + Ψ is polynomially bounded.
3. There exists a polynomial p such that for all polynomial-time decidable sets

Φ ⊂ TAUT the proof system (EF + Ψ)− ∪ Φ is closed under substitutions
with respect to p.

While one might have objections on the naturality of the above systems (EF +
Ψ) ∪ Φ, the same results are also valid for substitution Frege systems. In partic-
ular, we obtain from Theorem 6 the following characterizations.

Corollary 9. Let Ψ be a polynomial-time decidable set of tautologies. Then the
proof system SF + Ψ is optimal if and only if SF + Ψ has the weak deduction
property. Further, the system SF + Ψ is polynomially bounded if and only if
SF + Ψ has the efficient deduction property.

As we know that every proof system P is simulated by a proof system of the form
EF + Ψ with printable Ψ ⊂ TAUT (for instance we can take Ψ as translations
of the reflection principle of P), we can deduce the following characterization of
the existence of optimal proof systems.

Corollary 10. There exists an optimal proof system if and only if there exists
a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has the weak
deduction property.

Similarly, we can characterize the existence of polynomially bounded proof sys-
tems by the efficient deduction property.

Corollary 11. There exists a polynomially bounded proof system if and only if
there exists a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has
the efficient deduction property.

5 Deduction Properties and Complete NP-Pairs

In this section we link the deduction property to the problem of the existence
of complete disjoint NP-pairs. In this analysis properties of proof systems are
transferred to properties of the corresponding canonical pairs of the systems.

Augmenting Hilbert-style proof systems P by additional axioms Φ will usually
enhance the power of the proof system. The following lemma shows, however,
that if P has the weak deduction property, then the canonical pair of P ∪ Φ
will not be more difficult than the canonical P -pair. In particular, combined
with Theorem 3 the next lemma shows that the canonical pairs of F and its
extensions F ∪ Φ are equivalent for printable sets Φ ⊆ TAUT.

Lemma 12. Let Φ be a printable set of tautologies and let P be a proof system
with the weak deduction property. Then (Ref(P ∪Φ), SAT∗) ≤p (Ref(P), SAT∗).

250 O. Beyersdorff

Proof (Idea). The reduction is performed by the mapping

(ψ, 1m) �→ ((
∧

ϕ∈Φm

ϕ) → ψ, 1p(mq(m)+m))

where Φm = Φ ∩ Σ≤m contains ≤ q(m) tautologies for some polynomial q, and
p is the polynomial from the weak deduction property of P . ��

In the next theorem we formulate a sufficient condition for the existence of com-
plete NP-pairs. The hypotheses in this theorem are very similar to the hypotheses
in Theorem 6, which gave a sufficient condition for the existence of optimal proof
systems. The decisive difference between the two theorems is that in Theorem 6
we needed closure of P ∪ Φ under substitutions of variables, whereas in the
following theorem closure under substitutions by constants suffices.

Theorem 13. Let P be a Hilbert-style proof system that simulates the truth-
table system and fulfills the following three conditions:

1. P is closed under modus ponens.
2. For all printable sets of tautologies Φ the proof system P ∪ Φ is closed under

substitutions by constants.
3. P has the weak deduction property.

Then the canonical pair of P is a complete disjoint NP-pair.

Proof (Sketch). The idea of the proof is to construct suitable propositional rep-
resentations of disjoint NP-pairs (A, B). Such representations for A and B can
be obtained similarly as in Cook’s proof of the NP-completeness of SAT [6]. We
then form a proof system P ′ = P ∪ Φ extending P , where Φ are new axioms
expressing the disjointness of (A, B) with respect to the above representations.
This allows to reduce (A, B) to the canonical pair of P ′. As P has weak deduc-
tion, we can use Lemma 12 to reduce the canonical pair of P ′ to the canonical
pair of P , and hence (A, B) is ≤p-reducible to (Ref(P), SAT∗). ��

The decisive hypotheses in Theorem 13 are assumptions 2 and 3. For Frege
systems property 3 of Theorem 13 is fulfilled, but property 2 is not clear. For
EF and SF , however, we have property 2, but whether property 3 holds is open.
To find out whether some strong proof system fulfills both conditions 2 and 3
remains as a challenging task.

Instantiating Theorem 13 for Frege systems leads to the following corollary
which asks, in principle, whether the systems F ∪ Φ and F + Φ are equivalent.

Corollary 14. Assume that for all printable sets of tautologies Φ the system
F ∪ Φ is closed under substitutions by constants. Then the canonical F -pair is a
complete disjoint NP-pair.

By Theorem 3 and Lemma 12 the same corollary also holds for the proof system
EF−.

Our last result shows that the existence of complete NP-pairs is tightly con-
nected with the question whether F and EF are indeed proof systems of different
strength.

The Deduction Theorem for Strong Propositional Proof Systems 251

Table 1. Deduction properties for different types of proof systems

Proof system P Frege/EF− EF/SF
classical deduction yes no

no,efficient deduction yes
unless P is optimal
no, unless P isweak deduction yes
pol. bounded

weakest known condition closure of P ∪ Φ under
for the completeness of substitutions by constants optimality of P
the canonical pair of P for all printable Φ

Corollary 15. Assume that for all printable sequences Φ of tautologies the proof
systems F ∪ Φ and EF ∪ Φ are equivalent. Then the canonical pair of the Frege
proof system is complete for the class of all disjoint NP-pairs.

In Table 1 we have summarized the different deduction properties and their
implications for the existence of complete NP-pairs for Frege systems and their
extensions.

6 Conclusion

In this paper we have brought attention to the question whether strong proof sys-
tems such as extensions of Frege systems have some kind of deduction property.
On the one hand, we have shown that optimal proof systems can be characterized
by the weak deduction property. On the other hand, weak deduction combined
with a moderate amount of closure properties yields complete disjoint NP-pairs.
It therefore seems to be interesting to investigate the following problem:

Problem 16. Are there natural strong proof systems besides Frege systems that
satisfy the weak deduction property?

Given the implications above, we expect, however, that neither proving nor dis-
proving this question will be an easy task.

It would also be interesting to know whether the condition in Corollary 14
also characterizes the completeness of the canonical Frege pair, similarly as in
Corollaries 10 and 11. A more general program is to determine which conse-
quences of the completeness of the canonical pair of some proof system P are to
expect for the system P itself.

Acknowledgements. I am indebted to Emil Jeřábek, Johannes Köbler, and
Pavel Pudlák for helpful suggestions on this work. I also wish to thank the
anonymous referees for detailed comments on how to improve the paper.

252 O. Beyersdorff

References

1. Beyersdorff, O.: Tuples of disjoint NP-sets. Theory of Computing Systems (to
appear)

2. Beyersdorff, O.: Classes of representable disjoint NP-pairs. Theoretical Computer
Science 377, 93–109 (2007)

3. Bonet, M.L.: Number of symbols in Frege proofs with and without the deduction
rule. In: Clote, P., Kraj́ıček, J. (eds.) Arithmetic, Proof Theory and Computational
Complexity, pp. 61–95. Oxford University Press, Oxford (1993)

4. Bonet, M.L., Buss, S.R.: The deduction rule and linear and near-linear proof sim-
ulations. The Journal of Symbolic Logic 58(2), 688–709 (1993)

5. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems?
In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, Birkhäuser, pp. 30–56
(1995)

6. Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd Annual
ACM Symposium on Theory of Computing, pp. 151–158. ACM Press, New York
(1971)

7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44, 36–50 (1979)

8. Dowd, M.: Model-theoretic aspects of P�=NP. Unpublished manuscript (1985)
9. Glaßer, C., Selman, A.L., Sengupta, S.: Reductions between disjoint NP-pairs.

Information and Computation 200(2), 247–267 (2005)
10. Glaßer, C., Selman, A.L., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM Journal

on Computing 33(6), 1369–1416 (2004)
11. Glaßer, C., Selman, A.L., Zhang, L.: Survey of disjoint NP-pairs and relations to

propositional proof systems. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.)
Essays in Theoretical Computer Science in Memory of Shimon Even, pp. 241–253.
Springer, Heidelberg (2006)

12. Glaßer, C., Selman, A.L., Zhang, L.: Canonical disjoint NP-pairs of propositional
proof systems. Theoretical Computer Science 370, 60–73 (2007)

13. Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems.
SIAM Journal on Computing 17(2), 309–335 (1988)

14. Homer, S., Selman, A.L.: Oracles for structural properties: The isomorphism prob-
lem and public-key cryptography. Journal of Computer and System Sciences 44(2),
287–301 (1992)

15. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for
promise classes. Information and Computation 184, 71–92 (2003)

16. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

17. Kraj́ıček, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54,
1079–1963 (1989)

18. Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theoretical Com-
puter Science 295, 323–339 (2003)

19. Razborov, A.A.: On provably disjoint NP-pairs. Technical Report TR94-006, Elec-
tronic Colloquium on Computational Complexity (1994)

20. Sadowski, Z.: On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science 288(1), 181–193 (2002)

Satisfiability of Algebraic Circuits

over Sets of Natural Numbers

Christian Glaßer, Christian Reitwießner,
Stephen Travers, and Matthias Waldherr

Theoretische Informatik
Julius-Maximilians-Universität Würzburg, Germany

{glasser,reitwiessner,travers}@informatik.uni-wuerzburg.de

Abstract. We investigate the complexity of satisfiability problems for
{∪, ∩, −, +, ×}-circuits computing sets of natural numbers. These prob-
lems are a natural generalization of membership problems for expressions
and circuits studied by Stockmeyer and Meyer (1973) and McKenzie and
Wagner (2003).

Our work shows that satisfiability problems capture a wide range
of complexity classes like NL, P, NP, PSPACE, and beyond. We show
that in several cases, satisfiability problems are harder than membership
problems. In particular, we prove that testing satisfiability for {∩, +, ×}-
circuits already is undecidable. In contrast to this, the satisfiability for
{∪, +, ×}-circuits is decidable in PSPACE.

1 Introduction

In complexity theory, satisfiability questions play an important role in under-
standing the nature of computational problems. The satisfiability test for
Boolean formulas is the question of whether there exists an assignment of truth
values true and false to the variables such that the Boolean expression evaluates
to true. This was the first natural problem proven to be NP-complete [Coo71]
and it is still one of the most prominent NP-complete problems today. The lat-
ter also holds for the similar problem of testing satisfiability for boolean circuits,
where boolean expressions are described in a more succinct way.

In this paper, we investigate satisfiability questions for a more general kind
of circuits, namely algebraic circuits over sets of natural numbers. The notion
of algebraic circuits has its origin in Integer Expressions introduced by Stock-
meyer and Meyer [SM73] in 1973. An integer expression is an expression built
up from single natural numbers by using set operations (−, ∪, ∩) and algebraic
operations (+, ×). Stockmeyer and Meyer investigated the complexity of mem-
bership problems for such expressions, i.e., given an expression E, how difficult
is it to test whether a certain natural number is a member of the set described
by E? Restricting the set of allowed operations results in membership problems
of different complexities.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 253–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 C. Glaßer et al.

Wagner [Wag84] introduced circuits over sets of natural numbers in 1984. The
latter describe integer expressions in a more succinct way. The input gates of
such a circuit are labeled with natural numbers, the inner gates compute set
operations (−, ∪, ∩) and arithmetic operations (+,×). Wagner [Wag84], Yang
[Yan00], and McKenzie and Wagner [MW03] studied the complexity of mem-
bership problems for algebraic circuits over natural numbers: Here, for a given
circuit C with given numbers assigned to the input gates, one has to decide
whether a given number n belongs to the set described by C. Recently, equiv-
alence problems for algebraic circuits, i.e., deciding whether two given circuits
compute the same set, were also studied [GHR+07].

In this paper, we study generalizations of membership problems, namely sat-
isfiability problems for algebraic circuits over sets of natural numbers. In contrast
to membership problems, here a circuit can contain unassigned input gates. The
question is, given a circuit C with gate labels from O, O ⊆ {−, ∪, ∩, +, ×}, and
given a natural number n, does there exist an assignment of natural numbers
to the variable input gates such that n is contained in the set described by the
circuit? We denote this problem with SC(O).

As our circuits can still contain non-variable input gates with fixed inputs, it
is immediate that a satisfiability problem always is a generalization of a mem-
bership problem. Hence, solving a satisfiability problem is at least as hard as
solving a membership problem.

Notice that the domain of the input variables is unbounded, hence it is not a
priori clear that our satisfiability problems are decidable. Nevertheless, we can
characterize the complexity of many satisfiability problems precisely by proving
them to be complete for (decidable) complexity classes. In other cases however,
we can formally prove the satisfiability problem to be undecidable: We show
that the problem of solving diophantine equations, which was proven to be un-
decidable by Matiyasevich [DPR61, Mat70], can be reduced to SC(∩, +, ×), the
problem of testing satisfiability for {∩, +, ×}-circuits.

Interestingly, if we start with SC(∩, +, ×) and drop one of the operations ∩,
+, or ×, then in all three cases we arrive at an NP-complete problem, namely
SC(+, ×), SC(∩, +), or SC(∩, ×). The latter is of particular interest, since in
contrast to most other NP-complete problems, here the membership in NP is
more difficult to show than the NP-hardness. For this end, we introduce a prob-
lem that addresses the solvability of certain systems of monom equations. The
nontrivial fact that integer programming is contained in NP allows us to show
that the solvability of systems of monom equations also belongs to NP. Finally,
this can be used to establish SC(∩, ×) ∈ NP.

Our main open question is whether SC(−, ∪, ∩, ×), the satisfiability problem
for {−, ∪, ∩, ×}-circuits, is decidable. A further open question is to find a better
lower bound for the satisfiability problem for {×}-circuits. We prove this problem
to be in UP ∩ coUP.

A summary of our results (Table 1) and a discussion of open problems can be
found in the conclusions section.

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 255

2 Preliminaries

We fix the alphabet Σ = {0, 1}. Σ∗ is the set of words, and |w| is the length
of a word w ∈ Σ∗. N denotes the set of the natural numbers, N

+ denotes the
set of positive integers. We denote with L, NL, P, NP, coNP, and PSPACE
the standard complexity classes whose definitions can be found in textbooks on
computational complexity [Pap94].

We extend the arithmetical operations + and · to subsets of N: Let M, N ⊆ N.
We define the sum of M and N as M + N

df={m + n : m ∈ M and n ∈ N}. We
define the product of M and N as M × N

df={m · n : m ∈ M and n ∈ N}. Unless
otherwise stated, the domain of a variable is N.

For a complexity class C, let ∃p·C denote the class of languages L such that
there exists a polynomial p and a B ∈ C such that for all x, x ∈ L ⇐⇒ ∃y

(
|y| ≤

p(|x|), (x, y) ∈ B
)
.

Unless stated otherwise, all hardness- and completeness-results are in terms
of logspace many-one reducibility.

2.1 Satisfiability Problems for Circuits over Sets of Natural
Numbers

We define the circuit model and related decision problems. A circuit C=(V, E, gC)
is a finite, non-empty, directed, acyclic graph (V, E) with a specified node gC ∈
V . The graph can contain multi-edges, it does not have to be connected, and
V = {1, 2, . . . , n} for some n ∈ N. Moreover, the nodes in the graph (V, E) are
topologically ordered, i.e., for all v1, v2 ∈ V , if v1 < v2, then there is no path from
v2 to v1. The nodes in V are also called gates. Nodes with indegree 0 are called
input gates and gC is called the output gate. If in a circuit there is an edge from
gate u to gate v, then we say that u is a direct predecessor of v and v is the direct
successor of u. If there is a path from u to v but u is not a direct predecessor of
v, then u is an indirect predecessor of v and v is an indirect successor of u.

Let O ⊆ {∪, ∩,−, +, ×}. An O-circuit with unassigned input gates C =
(V, E, gC , α) is a circuit (V, E, gC) whose gates are labeled by the labeling func-
tion α : V → O∪N∪{�} such that the following holds: Each gate has an indegree
in {0, 1, 2}, gates with indegree 0 have labels from N ∪ {�}, gates with indegree
1 have label −, and gates with indegree 2 have labels from {∪, ∩, +, ×}. Input
gates with a label from N are called assigned (or constant) input gates; input
gates with label � are called unassigned (or variable) input gates.

Let u1 < · · · < un be the unassigned inputs in C, and let x1, . . . , xn ∈ N.
By assigning value xi to the input ui for 1 ≤ i ≤ n, we obtain an O-circuit
C(x1, . . . , xn) whose input gates are all assigned. Consequently, if C has no
unassigned inputs, then C = C().

As all input gates of the circuit C(x1, . . . , xn) have some natural number
assigned to it, each gate g ∈ V computes a set I(g) ⊆ N, inductively defined as
follows:

– If g is an input gate, then I(g) df=
{

{α(g)}, if α(g) �= �,
{xk}, if g = uk for a k ∈ {1, . . . , n}.

256 C. Glaßer et al.

�

+

∩

(a)

�

+

∩

−

�

×

∩

∩

×

+

(b)

0 1 �

∪

−

×

−

∩

∩

(c)

Fig. 1.

– If g has label − and direct predecessor g1, then I(g) df= N − I(g1).
– If g has label ◦ ∈ {∪, ∩, +, ×} and direct predecessors g1 and g2, then we

define I(g) df= I(g1) ◦ I(g2).

Define I(C(x1,. . ., xn))df=I(gC), the set computed by the O-circuit C(x1, . . . , xn).
If a circuit computes a singleton, we will sometimes write I(C(x1, . . . , xn)) = a
instead of I(C(x1, . . . , xn)) = {a}.

Definition 1. Let O ⊆ {∪, ∩,−, +, ×}. We define membership problems and
satisfiability problems for circuits.

MC(O) df= {(C, b)
∣
∣ C is an O-circuit without unassigned inputs and b ∈ I(C())}

SC(O) df= {(C, b)
∣
∣ C is an O-circuit with unassigned inputs u1 < · · · < un and
there exist x1, . . . , xn ∈ N such that b ∈ I

(
C(x1, . . . , xn)

)
}

When an O-circuit C = (V, E, gc, α) is used as input for an algorithm, then
we use a suitable encoding such that it is possible to verify in deterministic
logarithmic space whether a given string encodes a valid circuit. In the following,
we will therefore assume that all algorithms start with such a validation of their
input strings.

2.2 Examples

Let C be the circuit in Fig. 1(a). The � indicates that the sole input gate is
unassigned. Moreover, we assume that the ∩-gate is the output gate. If 0 is

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 257

assigned to the input gate, then both the input gate and the +-gate compute
the set {0}. Consequently, the ∩-gate computes {0}. For all other assignments
to the input gate, the circuit computes ∅. Hence, (C, 0) ∈ SC(∩, +) and (C, b) /∈
SC(∩, +) for all b �= 0.

Let D be the circuit in Fig. 1(b). Depending on the assignments of the input
gates, D computes either {1} or ∅. Consequently, (D, 1) ∈ SC(−, ∩, +, ×) and
(D, b) /∈ SC(−, ∩, +, ×) for all b �= 1. The example in Fig. 1(c) shows a circuit
that generates either the empty set or any single prime.

3 Bounds That Can Be Translated from MC(O) to
SC(O)

This section summarizes upper and lower bounds that can be easily obtained
from known results about membership problems. Here we can directly infer
the lower bounds, since satisfiability problems are generalizations of member-
ship problems. Moreover, we show that for sets of operations O ⊆ {∪, ∩,−, +}
and O ⊆ {∪, +, ×}, the satisfiability problem can be expressed as a polynomi-
ally bounded projection of the corresponding membership problem. This allows
us to easily translate several known results into upper bounds for satisfiability
problems.

Proposition 1. The following results are immediate consequences of the results
by McKenzie and Wagner [MW03].

1. SC(−, ∪, ∩, +), SC(∪, ∩, +), SC(∪, ∩, ×), SC(−, ∪, ∩, ×), SC(∪, +, ×) are
≤log

m -hard for PSPACE.
2. SC(∪, ×) is ≤log

m -hard for NP.
3. SC(∩) and SC(∪) are ≤log

m -complete for NL.
4. SC(×) is ≤log

m -hard for NL.
5. SC(∪, ∩) is ≤log

m -complete for P.

By definition, the problem SC(O) is an unrestricted projection of MC(O). We
now show that for O ⊆ {∪, ∩,−, +} and O ⊆ {∪, +, ×} this projection is poly-
nomially bounded.

Lemma 1. Let C be a circuit over the operations O ⊆ {∪, ∩,−, +, ×} with
exactly n unassigned inputs. For b ∈ N, x1, . . . , xn ∈ N and c ≤ b it holds that

1. if O ⊆ {∪, ∩,−, +}, then
c ∈ I(C(x1, . . . , xn)) ⇐⇒ c ∈ I(C(min(x1, b + 1), . . . , min(xn, b + 1))).

2. if O ⊆ {∪, +, ×}, then
c ∈ I(C(x1, . . . , xn)) =⇒ c ∈ I(C(min(x1, b + 1), . . . , min(xn, b + 1))).

Corollary 1. Let C be a circuit over the operations O ⊆ {∪, ∩,−, +} or O ⊆
{∪, +, ×} with exactly n unassigned inputs and let b ∈ N.

(C, b) ∈ SC(O) ⇐⇒ ∃x1, . . . , xn ∈ {0, . . . , b+1} s.t. (C(x1, . . . , xn), b) ∈ MC(O)

258 C. Glaßer et al.

Corollary 2. Let O ⊆ {∪, ∩,−, +} or O ⊆ {∪, +, ×} be a set of operations and
let C be a complexity class. Then it holds that MC(O) ∈ C =⇒ SC(O) ∈ ∃p·C.

Together with the results by McKenzie and Wagner [MW03] we obtain:

Corollary 3. It holds that

1. SC(−, ∪, ∩, +), SC(∪, ∩, +), and SC(∪, +, ×) are in PSPACE.
2. SC(−, ∪, ∩), SC(∩, +), SC(∪, ×), SC(∪, +), SC(+), SC(+, ×) are in NP.

4 Satisfiability and Diophantine Equations

Circuits with gates + and × can be used to compute multivariate polynomials.
The presence of ∩ then allows us to translate the solvability of diophantine
equations into the satisfiability of circuits. Hence the latter satisfiability problems
are undecidable. Particularly, they are not polynomially bounded projections of
their membership problems.

Lemma 2. There exists a logspace computable function that on input of a multi-
variate polynomial p(x1, . . . , xn) computes a {+, ×}-circuit C with n unassigned
inputs such that for all y1, . . . , yn ∈ N, I(C(y1, . . . , yn)) = {p(y1, . . . , yn)}.

Theorem 1. SC(∩, +, ×) is undecidable.

Proof. We show that the question of whether a given diophantine equation has
solutions in N can be reduced to SC(∩, +, ×). By the Davis-Putnam-Robinson-
Matiyasevich theorem [DPR61, Mat70] this implies that SC(∩, +, ×) is
undecidable.

Let p(x1, . . . , xn) = 0 be a diophantine equation with integer coefficients.
By moving negative monoms and constants to the right-hand side, we obtain
an equation l(x1, . . . , xn) = r(x1, . . . , xn) such that all coefficients in l, and
all coefficients in r are positive. According to Lemma 2, we construct circuits
Cl and Cr such that Cl(x1, . . . , xn) = {l(x1, . . . , xn)} and Cr(x1, . . . , xn) =
{r(x1, . . . , xn)}. Define a new circuit by C′(x1, . . . , xn) df= 0 × (Cl(x1, . . . , xn) ∩
Cr(x1, . . . , xn)). Then p(x1, . . . , xn) = 0 has a solution in N if and only if (C′, 0) ∈
SC(∩, +, ×). ��

5 Decidable Satisfiability Problems

In this section we prove upper and lower bounds for decidable satisfiability prob-
lems for circuits. Here it turns out that the problems SC(∩, ×), SC(+), and
SC(×) are particularly interesting. For SC(∩, ×), proving membership in NP is
nontrivial. We finally prove this with help of certain systems of monom equa-
tions and the (also nontrivial) result that integer programming belongs to NP.
Moreover, we show that SC(+) is likely to be more difficult than SC(×). While
SC(+) is NP-hard, SC(×) belongs to UP ∩ coUP.

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 259

5.1 Circuits with Both Arithmetic and Set Operations

The problem SC(∩, ×) has an interesting property. In contrast to most other
NP-complete problems, here proving the membership in NP is more difficult than
proving the hardness for NP. We start working towards a proof for SC(∩, ×) ∈
NP and define the following problem which asks for the solvability of systems of
monom equations.

Name: MonEq
Instance: A list of equations of the following form.

x5z7 = 59y3z2

yz2 = 23x5

x2y4z3 = 311

Question: Is this system of equations solvable over the natural numbers?

Formally, the problem MonEq is defined as follows (where we define 00 to be 1).

MonEq df= {(A, B, C, D)
∣
∣ A = (ai,j) ∈ N

m×n, B = (bi,j) ∈ N
m×n,

C = (c1, . . . , cm) ∈ N
m, D = (d1, . . . , dm) ∈ N

m,
and there exist x1, . . . , xn ∈ N such that
for all i ∈ [1, m],

∏n
j=1 x

ai,j

j = cdi

i ·
∏n

j=1 x
bi,j

j }

Note that formally, this definition neither allows constant factors at the left-
hand side of equations nor allows products of constant factors like 291 · 393 · 597.
However, such factors can be easily expressed by using additional variables. For
example, the equation 73 · 1570 · x5y7 = 37z3 can be equivalently transformed
into the following system.

a = 73

b = 1570

abx5y7 = 37z3

We show that systems of monom equations can be solved in nondeterministic
polynomial time. Our proof transforms the original problem MonEq to a more
restricted version. Then we show the latter to be in NP where we use the fact
that integer programming belongs to NP.

Lemma 3. MonEq ∈ NP.

Utilizing the fact that systems of monom equations can be solved in nondeter-
ministic polynomial time we now show that SC(∩, ×) belongs to NP. Observe
that this is nontrivial, since the smallest satisfying assignment of a {∩, ×}-circuit
can be exponentially large.

Theorem 2. SC(∩, ×) ∈ NP

Proof. We describe a nondeterministic polynomial-time algorithm for SC(∩, ×)
on input (C, d). Without loss of generality we may assume that the nodes

260 C. Glaßer et al.

1, . . . , m are the unassigned input gates and the nodes m + 1, . . . , m + n are
the assigned input gates with labels b1, . . . , bn. We recursively attach monoms
of the form x7

1x
23
2 · · · x5

m+n to the gates of C: We attach the monom xi to in-
put gate i. Let i be a gate with the direct predecessors i1 and i2 such that the
monom M1 is attached to i1 and M2 is attached to i2. If i is a ×-gate, then
we attach the monom M1 · M2 to i (where we simplify the product in the sense
that multiple occurrences of variables xj are combined). If i is a ∩-gate, then we
attach the monom M1 to i. In this way, we attach a monom to each gate of C.
Now each ∩-gate i induces a monom equation M1 = M2 where M1 and M2 are
the monoms that are attached to i’s direct predecessors. These equations form a
system of monom equations. Next we add the following equations to this system.

– For i ∈ [1, n] the equation xm+i = bi where bi is the label of the assigned
input gate m + i.

– The equation M = d where M is the monom attached to the output gate.

Our algorithm accepts if and only if the obtained system of monom equations
has a solution within the natural numbers. By Lemma 3, the described algorithm
is a nondeterministic polynomial-time algorithm. So it remains to argue for the
correctness of this algorithm.

For a monom M attached to some gate, let M(a1, . . . , am, b1, . . . , bn) denote
the number that is obtained when M is evaluated for x1 = a1, . . ., xm = am,
xm+1 = b1, . . ., xm+n = bn. A straightforward induction on the structure of C
yields the following.

Claim. If gate g has the monom M attached, then for all a1, . . . , am ∈ N,
the gate g of the circuit C(a1, . . . , am) either computes ∅ or computes the set
{M(a1, . . . , am, b1, . . . , bn)}.

We show that the algorithm accepts (C, d) if and only if (C, d) ∈ SC(∩, ×). As-
sume our algorithm accepts on input (C, d). So there exist a1, . . . , am such that
a1, . . . , am, b1, . . . , bn is a solution for the constructed system of monom equa-
tions. Suppose I(C(a1, . . . , am)) = ∅. Then there exists a ∩-gate g with direct
predecessors g1 and g2 such that g is connected to the output gate, I(g1) �= ∅,
I(g2) �= ∅, and I(g1) �= I(g2). Let M , M1, and M2 be the monoms attached
to g, g1, and g2 respectively. By the claim, I(g1) = {M1(a1, . . . , am, b1, . . . , bn)}
and I(g2) = {M2(a1, . . . , am, b1, . . . , bn)}. The equation M1 = M2 appears in our
system of monom equations. Therefore it holds that M1(a1, . . . , am, b1, . . . , bn) =
M2(a1, . . . , am, b1, . . . , bn) and hence I(g1) = I(g2). We have already seen that
the latter is not true and so it follows that I(C(a1, . . . , am)) �= ∅. Now let M de-
note the monom attached to the output gate. By the claim, I(C(a1, . . . , am)) =
{M(a1, . . . , am, b1, . . . , bn)}. The equation M = d appears in the system of
monom equations. So I(C(a1, . . . , am)) = {d} and hence (C, d) ∈ SC(∩, ×).

Conversely, assume now that (C, d) ∈ SC(∩, ×), i.e., there exist a1, . . . , am ∈
N such that I(C(a1, . . . , am)) = {d}. We show that x1 = a1, . . ., xm = am,
xm+1 = b1, . . ., xm+n = bn is a solution for the system of monom equations
that is constructed by the algorithm. The latter immediately implies that the

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 261

algorithm accepts on input (C, d). In the circuit C(a1, . . . , am), each ∩-gate g
that is connected to the output gate computes a nonempty set. So if g1 and g2

are the predecessors of g, then I(g) = I(g1) = I(g2). Let M , M1, and M2 be
the monoms attached to g, g1, and g2 respectively. From the claim it follows
that M1(a1, . . . , am, b1, . . . , bn) = M2(a1, . . . , am, b1, . . . , bn). So all equations of
the form M1 = M2 are satisfied. Moreover, the additional equations of the form
xm+i = bi are trivially satisfied by our solution. From I(C(a1, . . . , am)) = {d}
and from the claim it follows that M(a1, . . . , am, b1, . . . , bn) = d where M is
the monom attached to C’s output gate. This shows that all equations of our
system are satisfied by the solution (a1, . . . , am, b1, . . . , bn) and it follows that
the algorithm accepts. ��

Theorem 3. SC(∩, ×) is ≤log
m -hard for NP.

The next corollary shows that we can utilize the algorithm presented in Theo-
rem 2 which evaluates {∩, ×}-circuits also to evaluate {∪, ∩, ×}-circuits: How-
ever, to cope with the ∪-gates we first have to unfold the circuit such that no
inner gate has outdegree greater than 1. This can cause an exponential blow up
in the size of the circuit.

Corollary 4. SC(∪, ∩, ×) ∈ NEXP.

5.2 Circuits with Either Arithmetic or Set Operations

We now discuss that SC(×) is easier than SC(+) unless NP = coNP. More pre-
cisely, we show that SC(×) ∈ UP ∩ coUP and prove SC(+) to be NP-complete.
Here it is interesting to note that the same variant of the KNAPSACK-problem
is used to establish both, the upper bound for SC(×) and the lower bound
for SC(+). The latter requires a version of KNAPSACK that allows the re-
peated use of weights. The upper bound for SC(×) depends on the property
that KNAPSACK is weakly NP-complete [GJ79], i.e., the problem is easy to
solve if the weights are given in unary representation. These constraints lead to
the following variant of the KNAPSACK-problem which is known to be weakly
NP-complete [Pap94, 9.5.33].

KNAPSACK′ df={(v1, . . . , vn, b)
∣
∣n ≥ 0, v1, . . . vn, b ∈ N and there exist
u1, . . . , un ∈ N such that

∑n
i=1 uivi = b}

Theorem 4. SC(+) and SC(+, ×) are ≤log
m -complete for NP.

By MC(×) ∈ NL [MW03] and Corollary 2, it is immediately clear that SC(×) ∈
NP. We now prove the better upper bound UP∩coUP by utilizing dynamic pro-
gramming. More precisely, we will show that testing whether (C, pe) ∈ SC(×)
for a prime p and e ≥ 0 reduces in polynomial time to solving a KNAPSACK′ in-
stance where the weights are encoded in unary. By the weak NP-completeness of
KNAPSACK′, the latter instance can be solved in polynomial time via dynamic
programming. We obtain that an SC(×) instance can be solved in polynomial
time if we know the factorization of the target number. This allows us to prove
SC(×) ∈ UP ∩ coUP.

262 C. Glaßer et al.

Proposition 2 ([GJ79]). KNAPSACK′ is computable in polynomial time if
the input numbers are given in unary coding.

Theorem 5. SC(×) ∈ UP ∩ coUP.

Proof. Let C be a {×}-circuit with unassigned inputs u1, . . . , uk and let n ≥ 0.
We now describe how to decide whether (C, n) ∈ SC(×). Recall that MC(×) ∈
NL [MW03], hence a circuit without unassigned inputs can be evaluated in
polynomial time. If n = 0, we accept if and only if I(C(0, 0, . . . , 0)) = 0. If
n > 0, we compute a

df= I(C(1, 1, . . . , 1)). In the case a = 0 we reject, since a = 0
implies that the circuit computes 0 regardless of the inputs. If a �= 0, then no
constant input that is connected to the output node can be labeled with 0.
In addition, we can conclude that every number computable by the circuit is
divisible by a. Consequently, if n is not divisible by a, we reject.

Let C′ be the circuit obtained by replacing all labels of constant input gates
in C by 1. Clearly, this transformation can be performed in polynomial time.
For all b ≥ 0 it now holds that (C, a · b) ∈ SC(×) ⇐⇒ (C′, b) ∈ SC(×).

The following nondeterministic algorithm decides whether (C′, n′) ∈ SC(×)
for n′ df= n

a :

1. guess numbers m, p1, . . . , pm, e1, . . . , em such that 1 ≤ m ≤ |n′|,
2≤p1 < p2 < · · · < pm ≤ n′, and for all i it holds that 1 ≤ ei ≤ |n′|

2. if at least one of the pi is not prime then reject
3. if n′ �= pe11 · · · pemm then reject
4. // here n′ = pe11 · · · pemm is the prime factorization of n′

5. if (C′, peii) ∈ SC(×) for all i ∈ [1, m] then accept else reject

Step 2 is possible in polynomial time by the algorithm by Agrawal, Kayal, and
Saxena [AKS04]. We now explain that step 5 can also be carried out in poly-
nomial time. Note that there exist e1, . . . , ek such that for every assignment
x1, . . . , xn to the input gates u1, . . . , uk, we have I(C′(x1, . . . , xk)) = xe1

1 · · ·xek

k .
The exponents only depend on the circuit C′. Moreover, they can be computed

in polynomial time: First transform C′ into a +-circuit C′′ as follows: Replace
all ×-nodes with +-nodes. Then relabel all constant inputs with 0 instead of 1.
Now observe that I(C′′(0, . . . , 0

︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−j

) = ej .

As this can be done in polynomial time, we have shown that all exponents
can be computed in polynomial time.

Claim. For a prime p and e ≥ 0, (C′, pe) ∈ SC(×) can be tested in polynomial
time.

Proof. If a prime power pe is computed at the output gate of C′, then it fol-
lows that all input gates must have powers of p assigned to them. In this case
it suffices to solve the following problem: Do there exist y1, . . . , yk such that
(py1)e1 · · · (pyk)ek = pe?

We conclude that (C′, pe) ∈ SC(×) ⇔ ∃y1, . . . , yk(e1y1+e2y1+· · ·+ekyk = e).

Satisfiability of Algebraic Circuits over Sets of Natural Numbers 263

It turns out that the question of whether (C′, pe) ∈ SC(×) is precisely the
KNAPSACK′ problem. Since e ≤ log n, it follows that the unary coding of e is
polynomial in n and hence polynomial in the input. By Proposition 2, it follows
that we can check (C, pe)∈SC(×) in polynomial time. This proves the claim. ��

We have shown that the above algorithm runs in polynomial time. To see that
the algorithm accepts if and only if (C′, n′) ∈ SC(×), observe that the following
holds: (C′, n′) ∈ SC(×) ⇔ ∀1≤i≤m(C′, pli

i) ∈ SC(×), where n′ = pl1
1 · . . . · plm

m is
the prime factorization of n′. Every number has a unique prime factorization.
Therefore, there exists exactly one path on which the algorithm reaches step 5.
This shows SC(×) ∈ UP. If we exchange ‘accept’ and ‘reject’ in step 5, then we
arrive at an algorithm witnessing SC(×) ∈ UP. This completes the proof. ��

We now show the NP-hardness of SC(−, ∪, ∩) by reducing 3SAT to SC(−, ∪, ∩).
Here we utilize the natural correspondence between {−, ∪, ∩} and {¬, ∨, ∧}.

Theorem 6. SC(−, ∪, ∩) is ≤log
m -complete for NP.

6 Conclusions

Table 1 summarizes our results. It shows that in most cases we can precisely
characterize the complexity of the different variants of the satisfiability problem.
Several open questions are apparent from it.

Table 1. Upper and lower bounds for SC(O). All bounds are with respect to ≤log
m -

reductions and the numbers refer to the corresponding theorems.

O Lower Bound Upper Bound
− ∪ ∩ + × undecidable
− ∪ ∩ + PSPACE Pr.1 PSPACE Co.3
− ∪ ∩ × PSPACE Pr.1
− ∪ ∩ NP Th.6 NP Co.3

∪ ∩ + × undecidable
∪ ∩ + PSPACE Pr.1 PSPACE Co.3
∪ ∩ × PSPACE Pr.1 NEXP Co.4
∪ ∩ P Pr.1 P Pr.1
∪ + × PSPACE Pr.1 PSPACE Co.3
∪ + NP Th.4 NP Co.3
∪ × NP Pr.1 NP Co.3
∪ NL Pr.1 NL Pr.1

∩ + × undecidable
∩ + NP Th.4 NP Co.3
∩ × NP Th.3 NP Th.2
∩ NL Pr.1 NL Pr.1

+ × NP Th.4 NP Th.4
+ NP Th.4 NP Th.4

× NL Pr.1 UP ∩ coUP Th.5

264 C. Glaßer et al.

Our main open question is whether SC(−, ∪, ∩, ×) is decidable. In the absence
of +-gates, we cannot express general diophantine equations, which indicates
the difficulty of proving undecidability. On the other hand, we do not know any
decidable upper bound for this problem, since here the complementation-gates
make it difficult to find a bound for the input gates. As the example in Fig. 1(c)
shows, such circuits can express nontrivial statements about prime numbers.
A further open question is to find a better lower bound for the satisfiability
problem for {×}-circuits. We prove this problem to be in UP∩coUP. Membership
in P seems to be difficult, since SC(×) comprises the following factoring-like
problem: Is the factorization of a given number n of a certain form, for instance
n = x3 ·y5 ·z2? However, proving SC(×) to be hard for factorization is still open.

References

[AKS04] Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathemat-
ics 160, 781–793 (2004)

[Coo71] Cook, S.A.: The complexity of theorem proving procedures. In: Proceed-
ings 3rd Symposium on Theory of Computing, pp. 151–158. ACM Press,
New York (1971)

[DPR61] Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential
Diophantine equations. Annals of Mathematics 74(2), 425–436 (1961)

[GHR+07] Glaßer, C., Herr, K., Reitwießner, C., Travers, S., Waldherr, M.: Equiva-
lence problems for circuits over sets of natural numbers. In: Diekert, V.,
Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 127–
138. Springer, Heidelberg (2007)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. Mathematical sciences series. Freeman
(1979)

[Kar72] Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Plenum Press (1972)

[Mat70] Matiyasevich, Y.V.: Enumerable sets are diophantine. Doklady Akad.
Nauk SSSR 191, 279–282, 1970. Translation in Soviet Math. Doklady
11, 354–357 (1970)

[MW03] McKenzie, P., Wagner, K.W.: The complexity of membership problems for
circuits over sets of natural numbers. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 571–582. Springer, Heidelberg (2003)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Read-
ing, MA (1994)

[SM73] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time.
In: Proceedings 5th ACM Symposium on the Theory of Computing, pp.
1–9. ACM Press, New York (1973)

[Wag84] Wagner, K.: The complexity of problems concerning graphs with regu-
larities. In: Chytil, M.P., Koubek, V. (eds.) Mathematical Foundations of
Computer Science 1984. LNCS, vol. 176, pp. 544–552. Springer, Heidelberg
(1984)

[Yan00] Yang, K.: Integer circuit evaluation is PSPACE-complete. In: IEEE Con-
ference on Computational Complexity, pp. 204–213 (2000)

Post Embedding Problem Is Not Primitive Recursive,
with Applications to Channel Systems�

Pierre Chambart and Philippe Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France
{chambart,phs}@lsv.ens-cachan.fr

Abstract. We introduce PEP, the Post Embedding Problem, a variant of PCP
where one compares strings with the subword relation, and PEPreg, a further vari-
ant where solutions are constrained and must belong to a given regular language.
PEPreg is decidable but not primitive recursive. This entails the decidability of
reachability for unidirectional systems with one reliable and one lossy channel.

Keywords: Post correspondence problem, Lossy channel systems, Higman’s
Lemma.

1 Introduction

Post correspondence problem, or shortly PCP, can be stated as the question whether
two morphisms u,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whether u(σ) =
v(σ) for some non-empty σ ∈ Σ+. This undecidable problem plays a central role in com-
puter science because it is very often easier and more natural to prove undecidability by
reduction from PCP than from, say, the halting problem for Turing machines.

In this paper we introduce PEP, a variant of PCP where one asks whether u(σ) is a
subword of v(σ) for some σ. The subword relation, also called embedding, is denoted

“�”: w � w′ def⇔ w can be obtained from w′ by erasing some letters, possibly all of
them, possibly none. We also introduce PEPreg, an extension of PEP where one adds
the requirement that a solution σ belongs to a regular language R ⊆ Σ∗.

As far as we know, PEP and PEPreg have never been considered in the literature
[13, 9]. This is probably because PEP is trivial (Prop. 3.1). However, and quite surpris-
ingly, adding a regular constraint makes the problem considerably harder. In this paper
we show that PEPreg is decidable but that it is not primitive recursive.

Channel systems. What led us to consider PEPreg are verification problems for chan-
nel systems, i.e., systems of finite-state machines that communicate asynchronously
via unbounded FIFO channels. These systems are Turing-powerful in general but sev-
eral restricted families or variants have decidable verification problems. For example
lossy channel systems, where messages can be lost nondeterministically, have decidable
reachability and termination problems [7, 3, 15]. For systems with one reliable channel
(no message losses), reachability is easily decidable if the system is unidirectional: one

� Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 265–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

266 P. Chambart and P. Schnoebelen

q1

q2q3

r!a

l!d

r!b

l!c p1 p2

p3p4

r?c

l?a

l?c

r?b

l?b

r?a

r?d

channel r (reliable)

channel l (lossy)

a b d a c

b c

Fig. 1. A unidirectional channel system with one reliable and one lossy channel

sender sends messages to a receiver via the reliable channel, but no communication is
possible in the other direction. With two (reliable) unidirectional channels between the
sender and the receiver, reachability is undecidable. The open question that motivated
our study is ReachUcs, i.e., reachability for channel systems with unidirectional com-
munication through one reliable and one unreliable channels, as illustrated in Figure 1.

It is easy to reduce PEP and PEPreg to ReachUcs. It turns out that reductions from
ReachUcs to PEPreg also exist. More surprisingly, we are able to reduce PEPreg to
ReachLcs, the reachability problem for (classical) lossy channel systems, and to reduce
ReachLcs to ReachUcs. Finally, all three problems are equivalent.

Summary of our contributions

1. We introduce PEPreg, a new decidable variant of the PCP problem that is based
on the subword relation. A surprising fact is that the regularity constraint makes
PEPreg very different from PEP, and highly non-trivial.

2. We prove that PEPreg is equivalent to (i.e., inter-reducible with) ReachUcs and
ReachLcs, two verification problems for systems of communicating automata. This
provides the decidability of ReachUcs (and a new decidability proof for ReachLcs).

3. This shows that PEPreg is not primitive recursive (since ReachLcs is not either [15]).

This last point is quite interesting. In recent years, several problems coming from var-
ious areas have been shown to be not primitive recursive by reductions from ReachLcs:
see, e.g., [2, 4, 6, 8, 10, 11, 12]. This is a clear indication that ReachLcs and equivalent
problems occupy a specific niche that had not been identified previously. Discovering
a simple and natural problem like PEPreg amid this class will help extend the range of
problems that can be connected to the class: PEPreg can be used to simplify existing
reduction proofs, and make some future proofs easier to obtain.

Outline of the paper. Section 2 recalls the necessary definitions and notations. We prove
that PEPreg is decidable in Section 3 and explore variants and extensions in Section 4.
The reductions between PEPreg and ReachLcs or ReachUcs are given in sections 5
and 6. Proofs omitted for lack of space can be found in the long version of this paper [5].

2 Notations and Definitions

Words. We write u,v,w,t,σ,ρ,α,β, . . . for words, i.e., finite sequences of letters such as
a,b, i, j, . . . from alphabets Σ,Γ, . . ., and denote with u.v, or uv, the concatenation of u

Post Embedding Problem Is Not Primitive Recursive 267

and v. The length of u is written |u|. A morphism from Σ∗ to Γ∗ is a map h : Σ∗ → Γ∗ that
respects the monoidal structure, i.e., with h(ε) = ε and h(σ.ρ)= h(σ).h(ρ). A morphism
h is completely defined by its image h(1), h(2), . . . , on Σ = {1,2, . . .}. We often simply
write h1,h2, . . ., and hσ, instead of h(1),h(2), . . ., and h(σ).

Quotients. Let L be a language and m a word: m\L
def= {w|m.w ∈ L} is the (right)

quotient of L by m. When L ⊆ Σ∗, we write L(L) for the set {m\L | m ∈ Σ∗} of all
quotients of L. It is well-known that if R is a regular language, then L(R) is finite and
only contains regular languages (that still have their quotients in L(R)). L(R) can be
built effectively from a canonical DFA for R just by varying the initial state.

Embeddings. Given two words u = a1 . . .an and v = b1 . . .bm, we write u � v when u is a
subword of v, i.e., when u can be obtained by erasing some letters (possibly none) from
v. For example, abba � abracadabra. Equivalently, u � v when u can be embedded in
v, i.e., when there exists an order-preserving injective map h : {1, . . . ,n} → {1, . . . ,m}
such that ai = bh(i) for all i = 1, . . . ,n. It is well-known that the subword relation is a
partial ordering on words, and it is a well-quasi-ordering (Higman’s Lemma) when we
consider words over a fixed finite alphabet. This means that any set of words has a finite
number of minimal elements (minimal w.r.t. �).

Upward-closure. A language L ⊆ Γ∗ is upward-closed if u ∈ L and u � v imply v ∈ L. It
is downward-closed if its complement is upward-closed. Higman’s Lemma entails that
upward-closed languages (hence also downward-closed languages) are regular.

Splitting words. When u � v, we write v[u] for the longest v1 such that v is some v0.v1

with u � v0. Hence v[u] is the longest suffix of v that can be retained if one has to
remove some prefix containing u. Dually, for any u and v, we write u{v} for the shortest
u1, such that u can be written as some u0.u1 with u0 � v. Hence u{v} is the shortest
suffix of u that can be obtained if one may only remove prefixes that are contained in v.
Observe that u{v} is always defined while v[u] is only defined when u � v.

When reasoning about embedding and concatenation, a natural and simple tool is the
following.

Lemma 2.1 (Simple Decomposition Lemma). If u.w � v.t then either u � v or w � t.

However, Lemma 2.1 only works one way. For deeper analyses, we shall need the fol-
lowing more powerful tool.

Lemma 2.2 (Complete Decomposition Lemma)

u.w � v.t if and only if

{
u � v and w � v[u].t

or u
� v and u{v}.w � t.

3 PEP: Post Correspondence with Embedding

The problem we are considering is a variant of Post correspondence problem where
equality is replaced by embedding, and where an additional regular constraint is im-
posed over the solution.

268 P. Chambart and P. Schnoebelen

Problem PEPreg

Instance: Two finite alphabets Σ and Γ, two morphisms u,v : Σ∗ → Γ∗, and a regular
language R ⊆ Σ∗.

Answer: Yes if and only if there exists a σ ∈ R such that uσ � vσ.

In the above definition, the regular constraint applies to σ but this is inessential and
our results still hold when the constraint applies to uσ, or vσ, or both (see Section 4).

For complexity issues, we assume that the constraint R in a PEPreg instance is given
as a nondeterministic finite-state automaton (NFA) AR. By a reduction between two
decision problems, we mean a logspace many-one reduction. We say two problems are
equivalent when they are inter-reducible.

PEP is the special case of PEPreg where R is Σ+, i.e., where there are no constraints
over the form of a non-trivial solution. As far as we know, PEP and PEPreg have never
been considered in the literature and this is probably because PEP is trivial:

Proposition 3.1. There is a σ ∈ Σ+ such that uσ � vσ if and only if there is some i ∈ Σ
such that ui � vi.

This is a direct corollary of Lemma 2.1. A consequence is that PEP is decidable in
deterministic logarithmic space.

Surprisingly, adding a regularity constraint makes the problem much harder, as will
be proved later. As of now, we focus on proving the following main result.

Theorem 3.2 (Main Result). PEPreg is decidable.

In the rest of this section, we assume a given PEPreg instance made of u,v : Σ∗ → Γ∗

and R ⊆ Σ∗. We consider some L(R)-indexed families of languages in Γ∗:

Definition 3.3 (Blocking family). An L(R)-indexed family (AL,BL)L∈L(R) of
languages in Γ∗ is a blocking family if for all L ∈ L(R):

σ ∈ L and α ∈ AL imply αuσ
� vσ, (B1)

σ ∈ L and β ∈ BL imply uσ
� βvσ. (B2)

The terminology “blocking” comes from the fact that the α prefix “blocks” solutions
in L to α.uσ � vσ. For BL, the situation is dual: adding β ∈ BL is not enough to allow
solutions in L to uσ � β.vσ.

There is a largest blocking family, called the blocker languages, or blocker family,
(XL,YL)L∈L(R), given by:

XL
def= {α ∈ Γ∗ | αuσ
� vσ for all σ ∈ L}, (B3)

YL
def= {β ∈ Γ∗ | uσ
� βvσ for all σ ∈ L}. (B4)

A blocking family provides information about the absence of solutions to several
variants of our PEPreg instance. For example, the u,v,R instance itself is positive iff
ε
∈ XR iff ε
∈ YR.

For proving that a given family is blocking, we use a criterion called “stability”.

Post Embedding Problem Is Not Primitive Recursive 269

Definition 3.4 (Stable family). An L(R)-indexed family (AL,BL)L∈L(R) of languages
is stable iff, for all L ∈ L(R):

1. AL ⊆ Γ∗ is upward-closed and BL ⊆ Γ∗ is downward-closed,
2. if ε ∈ L, then ε
∈ AL ∪BL,
3. for all i ∈ Σ and α ∈ AL:

(a) if α.ui � vi then vi[α.ui] ∈ Bi\L,
(b) if α.ui
� vi then (α.ui){vi} ∈ Ai\L,

4. for all i ∈ Σ and β ∈ BL:
(a) if ui � β.vi then (β.vi)[ui] ∈ Bi\L,
(b) if ui
� β.vi then ui{β.vi} ∈ Ai\L.

Recall that AL and BL, being respectively upward- and downward-closed, must be reg-
ular languages. Observe also that ε ∈ BL iff BL
= ∅, while ε ∈ AL iff AL = Γ∗.

Proposition 3.5 (Soundness). A stable family is a blocking family.

Proof. Assume that (AL,BL)L∈L(R) is stable. We prove that it satisfies (B1) and (B2) by
induction on the length of σ.

Base case: σ = ε. Hence uσ = vσ = ε. Assuming αuσ � vσ requires α = ε but if σ ∈ L,
stability implies that ε
∈ AL. σ ∈ L also implies that BL is empty so that uσ
� βvσ
is vacuously true.

Inductive case: assume that σ is some i.ρ with i ∈ Σ and ρ ∈ Σ∗. Recall that σ ∈ L iff
ρ ∈ i\L.

Let α ∈ AL. If αui � vi, then vi[αui] ∈ Bi\L by stability. Hence uρ
� (vi[αui])vρ
by ind. hyp. Then αuσ = αuiuρ
� vivρ = vσ by Lemma 2.2. If, on the other hand,
αui
� vi, then (αui){vi} ∈ Ai\L by stability, hence (αui){vi}uρ
� vρ by ind. hyp.,
entailing αuσ
� vσ by Lemma 2.2.

For β ∈ BL the reasoning is similar. If ui � βvi, then (βvi)[ui] ∈ Bi\L by stability,
hence uρ
� (βvi)[ui]vρ by ind. hyp., hence uσ = uiuρ
� βvivρ = βvσ by Lemma 2.2.
If, on the other hand, ui
� βvi, then ui{βvi}∈ Ai\L by stability, hence ui{βvi}uρ
� vρ
by ind. hyp., hence uσ
� βvσ. �

The criterion is also sufficient:

Proposition 3.6 (Completeness). The blocker family (XL,YL)L∈L(R) is stable.

Proof. Clearly, as defined by (B3) and (B4) and for any L ∈ L(R), XL is upward-closed
and YL is downward-closed. Similarly, ε
∈ XL and ε
∈ YL when ε ∈ L.

It remains to check conditions 3 and 4 for stability. We consider four cases:

3a: Assume that αui � vi for some i in Σ and some α in some XL. If, by way of con-
tradiction, we assume that vi[α.ui]
∈ Yi\L then, by (B4), there is some ρ ∈ i\L such
that uρ � vi[α.ui]vρ. Thus αuiuρ � vivρ by Lemma 2.2, i.e., αuσ � vσ writing σ for
i.ρ. But, since σ ∈ L, this contradicts α ∈ XL.

4a: A similar reasoning applies if we assume that ui � βvi for some i in Σ and some
β in some YL while (βvi)[ui]
∈ Yi\L: we derive from (B4) that uρ � (βvi)[ui]vρ for
some ρ ∈ i\L. Hence uiuρ � βvivρ by Lemma 2.2, a contradiction since i.ρ ∈ L.

270 P. Chambart and P. Schnoebelen

3b: If we assume that αui
� vi for α ∈ XL and (αui){vi}
∈ Xi\L then, by (B3), there is
some ρ ∈ i\L s.t. (αui){vi}uρ � vρ. Then αuiuρ � vivρ by Lemma 2.2, a contradic-
tion since i.ρ ∈ L.

4b: Similarly, assuming that ui
� βvi while ui{βvi}
∈ Ai\L, we derive (ui{βvi})uρ �
vivρ, i.e., uiuρ � βvivρ, another contradiction. �

Proposition 3.7 (Stability is decidable). It is decidable whether an L(R)-indexed fam-
ily (AL,BL)L∈L(R) of regular languages is a stable family.

Proof. We can assume that the AL and BL are given by DFA’s. Conditions 1 and 2 of
stability are easy to check.

For a given i ∈ Σ and L ∈ L(R), checking condition 3a needs only consider α’s that
are shorter than vi, which is easily done.

Checking condition 3b is trickier. One way to do it is to consider the set of all α’s
such that αui
� vi. This is a regular set that can be obtained effectively. Then the set of
all corresponding (αui){vi} is also regular and effective (see [5]) so that we can check
that it is included in Ai\L.

For condition 4a, and given some L ∈ L(R) and some i ∈ Σ, the set of all β’s such
that ui � βvi is regular and effective. One can then compute the corresponding set of
all (βvi)[ui], again regular and effective, and check inclusion in Bi\L. The complement
set of all β’s such that ui
� βvi is also regular and effective, and one easily derives the
corresponding ui{βvi}’s (a finite set of suffixes of ui), hence checking condition 4b. �
Proof (of Theorem 3.2). Since PEPreg is r.e., it is sufficient to prove that it is also co-r.e.
For this we observe that, by Propositions 3.5 and 3.6, a PEPreg instance is negative if,
and only if, there exists a stable family (AL,BL)L∈L(R) satisfying ε ∈ AR. One can ef-
fectively enumerate all families (AL,BL)L∈L(R) of regular languages and check whether
they are stable (Proposition 3.7) (and have ε ∈ AR). If the PEPreg instance is negative,
this procedure will eventually terminate, e.g., when it considers the blocker family. �
Remark 3.8. Computing the blocker family for a negative PEPreg instance cannot be
done effectively (this is a consequence of known results on lossy channel systems).
Thus when the procedure described above terminates, there is no way to know that it
has encountered the largest blocking family. �

4 Variants and Extensions

Short morphisms. PEPreg
≤1 is PEPreg with the constraint that all ui’s and vi’s have length

≤ 1, i.e., they must belong to Γ∪{ε}.

Proposition 4.1. PEPreg reduces to PEPreg
≤1.

Proof (Sketch). Let u,v,R be a PEPreg instance. For all i ∈ Σ, write ui in the form
a1

i . . .ali
i and vi in the form b1

i . . .bmi
i . Let k = max{li,mi | i ∈ Σ}. One builds a PEPreg

≤1

instance u′,v′,R′ by letting Σ′ def= Σ×{1,2, . . . ,k}, u′(i, p) def= ap
i if p ≤ li, and u′(i, p) def= ε

otherwise. Similarly, v′(i, p) is vp
i , the pth letter in vi, or ε. We now let R′ def= h(R) where

h : Σ → Σ′ is the morphism defined by h(i) = (i,1)(i,2) . . . (i,k). Finally u′,v′,R′ is a
PEPreg

≤1 instance that is positive iff u,v,R is positive. �

Post Embedding Problem Is Not Primitive Recursive 271

Constraining uσ and vσ. PEPu_reg is like PEPreg except that the constraint R ⊆ Γ∗ now
applies to uσ: a solution is some σ ∈ Σ∗ with uσ ∈ R (and uσ � vσ). Similarly, PEPv_reg

has the constraint apply to vσ, while PEPuv_reg has two constraints, R1,R2 ⊆ Γ∗, that
apply to, respectively and simultaneously, uσ and vσ.

Proposition 4.2. PEPuv_reg reduces to PEPreg.

Proof. Let u,v,R1,R2 be a PEPuv_reg instance. Let R
def= u−1(R1)∩v−1(R2). (Recall that

the image of a regular R by an inverse morphism is regular and can easily be constructed
from R.) By definition σ ∈ R iff uσ ∈ R1 and vσ ∈ R2. Thus the PEPreg instance u,v,R
is positive iff u,v,R1,R2 is. �

Reductions exist in the other direction, as the next two propositions show.

Proposition 4.3. PEPreg reduces to PEPv_reg.

Proof (Sketch). Let u,v,R be a PEPreg instance. W.l.o.g., we may assume that Σ∩Γ =
∅. Define a PEPv_reg instance u′,v′,R′ by letting v′ : Σ∗ → (Γ∪Σ)∗ be given by v′

i
def= i.vi

and keeping u′ = u unchanged. Let R′ def= h−1(R) where h : (Γ∪Σ)∗ → Γ∗ is the erasing
morphism that suppresses letters from Σ. Note that v′

σ ∈ R′ iff σ = h(v′
σ) ∈ R, so that

u′,v′,R′ is a positive PEPv_reg instance iff u,v,R is a positive PEPreg instance. �

Proposition 4.4. PEPreg
≤1 reduces to PEPu_reg.

Proof (Sketch). Let u,v,R be a PEPreg
≤1 instance. W.l.o.g., we assume Σ = {1,2, . . . ,k}

and let Σ′ def= {0}∪Σ with g : Σ′∗ → Σ∗ the associated erasing morphism. We also assume

Γ∩Σ′ = ∅ and let Γ′ def= Γ∪Σ′, with h : Γ′∗ → Σ∗ as erasing morphism.
With u,v,R, we associate a PEPu_reg instance u′,v′,R′ based on Σ′ and Γ′, and defined

by u′
0

def= ε, v′
0

def= 1.2 . . .k, and, for i ∈ Σ, u′
i

def= i.ui and v′
i

def= vi. Letting R′ = h−1(R) ensures
that u′

σ ∈ R′ iff g(σ) ∈ R. Clearly, if u′
σ � v′

σ, then ug(σ) � vg(σ). Conversely, if uσ′ � vσ′ ,
it is possible to find a σ ∈ g−1(σ′) that satisfies u′

σ � v′
σ: this is just a matter of inserting

enough 0’s at the appropriate places (and this is where we use the assumption that all
ui’s and vi’s have length ≤ 1). �

Now, since PEPu_reg and PEPv_reg are special cases of PEPuv_reg, and since PEPreg
≤1 is

a special case of PEPreg, Propositions 4.1, 4.2, 4.3 and 4.4 entail the following.

Theorem 4.5. PEPreg, PEPreg
≤1, PEPu_reg, PEPv_reg and PEPuv_reg are inter-reducible.

Context-free constraints and Presburger constraints. PEPcf is the extension of PEPreg

where we allow the constraint R to be any context-free language (say, given in the
form of a context-free grammar). PEPdcf is PEPcf restricted to deterministic context-
free constraints. PEPPres is the extension where R ⊆ Σ∗ can be any language defined
by a Presburger constraint over the number of occurrences of each letter from Σ (or,
equivalently, the commutative image of R is a semilinear subset of the commutative
monoid N

Σ).

272 P. Chambart and P. Schnoebelen

Theorem 4.6. PEPdcf, PEPcf and PEPPres are undecidable.

Proof. The (classic) PCP problem reduces to PEPdcf or PEPPres by associating, with
an instance u,v : Σ∗ → Γ∗, the constraint R≥ ⊆ Σ+ defined by

σ ∈ R≥
def⇔ |uσ| ≥ |vσ| and σ
= ε.

Obviously, uσ � vσ and σ ∈ R≥ iff uσ = vσ. Observe that R≥ is easily defined in the
quantifier-free fragment of Presburger logic. Furthermore, since R≥ can be recognized
by a counter machine with a single counter, it is indeed deterministic context-free. �

5 From PEPreg to Lossy Channel Systems

We now reduce PEPreg to ReachLcs, the reachability problem for lossy channel
systems.

Systems composed of several finite-state components communicating via several
channels (all of them lossy) can be simulated by systems with a single channel and
a single component (see, e.g., [15, Section 5]). Hence we define here a lossy channel
system (a LCS) as a tuple S = (Q,M,{c},Δ) where Q = {q1,q2, . . .} is a finite set of
control states, M = {a1,a2, . . .} is a finite message alphabet, c is the name of the single
channel, and Δ = {δ1, . . .} is the finite set of transition rules. Rules in Δ are writing

rules, of the form q
c!u−→ q′ (where u ∈ M∗ is any sequence of messages), or reading rules

q
c?u−→ q′. We usually omit writing “c” in rules since there is only one channel, and no

possibility for confusion.
The behaviour of S is given in the form of a transition system. A configuration of S

is a pair 〈q,v〉 ∈ Q × M∗ of a state and a channel contents. Transitions between config-
urations are obtained from the rules. Formally, 〈q,v〉 −→ 〈q′,v′〉 is a valid transition iff

Δ contains a reading rule of the form q
?u−→ q′ and v = uv′, or Δ contains a writing rule

of the form q
!u−→ q′ and v′ = vu′ for some u′ � u. The intuition behind this definition

is that a reading rule consumes u from the head of the channel while a writing rule
appends a (nondeterministically chosen) subsequence u′ of u, and the rest of u is lost.
See, e.g., [3, 15] for more details on LCS’s.

Remark 5.1. This behaviour is called write-lossy because messages can only be lost
when they are appended to the channel, but once inside c they remain there until a
reading rule consumes them. This is different from, e.g., front-lossy semantics, where
messages are lost when consumed (see [14]), or from the usual definition of LCS’s,
where messages can be lost at any time. These differences are completely inessential
when one considers questions like reachability or termination, and authors use the def-
inition that is technically most convenient for their purpose. In this paper, as in [1], the
write-lossy semantics is the most convenient one. �

Remark 5.2. Below we use extended rules of the form q
!u ?v−−→ q′. These are a shorthand

notation for pairs of “consecutive” rules q
!u−→ s and s

?v−→ q′ where s is an extra interme-
diary state that is not used anywhere else (and that we may omit listing in Q). �

Post Embedding Problem Is Not Primitive Recursive 273

ReachLcs, the reachability problem for LCS’s, is the question, given a LCS S and two
states q,q′ ∈ Q, whether there exists a sequence of transitions in S going from 〈q,ε〉 to
〈q′,ε〉. The rest of this section proves the following theorem.

Theorem 5.3. PEPreg reduces to ReachLcs.

Remark 5.4. Since ReachLcs is decidable [3], Theorem 5.3 provides another proof that
PEPreg is decidable. �

Let u,v,R be a PEPreg instance and σ ∈ R be a solution. We say σ is a direct solution
if uρ � vρ for every prefix ρ of σ. An equivalent formulation is: σ = i1 . . . im is a direct
solution iff there are words v′

1, . . . ,v
′
m such that:

1. v′
k � vik for all k = 1, . . . ,m,

2. ui1 . . .uim = v′
1 . . .v′

m,
3. |ui1 . . .uik | ≤ |v′

1 . . .v′
k| for all k = 1, . . . ,m.

A codirect solution is defined in a similar way, with the difference that we now
require |ui1 . . .uik | ≥ |v′

1 . . .v′
k| for all k = 1, . . . ,m (i.e., the ui’s are ahead of the v′

i’s
instead of lagging behind).

We let PEPreg
dir and PEPreg

codir denote the questions whether a PEPreg instance has a
direct (resp. codirect) solution. Obviously, PEPreg

dir and PEPreg
codir are equivalent problems

since an instance u,v,R has a codirect solution iff its mirror image ũ, ṽ, R̃ had a direct
solution.

Proposition 5.5. PEPreg
dir (and PEPreg

codir) reduce to ReachLcs.

Proof (Idea). Let u,v,R be a PEPreg
dir instance. Recall that R is given via some NFA

AR = 〈Q,Σ,δ,qinit,F〉. With this instance, one associates a LCS S = 〈Q,Γ,{c},Δ〉 with

a graph structure (Q,Δ) inherited from AR. The difference is that an edge r
i−→ s in AR

gives rise to a transition rule r
!vi ?ui−−→ s in S. With such rules, S can write the sequence

v′
1,v

′
2, . . . on c, read ui1 ,ui2 , . . . in lock-step fashion, and finally can move from the ini-

tial configuration 〈qinit,ε〉 to some final configuration 〈 f ,ε〉 with f ∈ F iff the PEPreg

instance has a direct solution. Restricting to direct solutions is what ensures that the
v′

1 . . .v′
k prefix that has been written on the channel is always longer than ui1 . . .uik . �

If we now look at a general solution to a PEPreg instance (more precisely a PEPreg
≤1 in-

stance) it can be decomposed as a succession of alternating direct and codirect solutions
to subproblems that are constrained by residuals of R.

Formally, assume u,v,R is a PEPreg
≤1 instance and σ = i1 . . . im is a solution. Then there

are words v′
1, . . . ,v

′
m with v′

k � vik for k = 1, . . . ,m, and such that ui1 . . .uim = v′
1 . . .v′

m.

Now, for 0 ≤ k ≤ m, define dk
def= |ui1 . . .uik |− |v′

1 . . .v′
k|. Then obviously d0 = dm = 0. σ

is a direct solution if dk ≤ 0 for all k. It is codirect if dk ≥ 0 for all k. In general, dk may
oscillate between positive and negative values. But since all ui’s and vi’s have length
≤ 1, the difference dk+1 − dk is in {−1,0,1}. Hence dk cannot change sign without
being zero. In summary, the following holds:

Lemma 5.6. A PEPreg
≤1 instance u,v,R is positive iff there are states q0, q1, . . . , q2m in

AR with q0 = qinit, q2m ∈ F, and such that, for all 0 ≤ i < m, u,v,R2i is a positive PEPreg
dir

274 P. Chambart and P. Schnoebelen

instance and u,v,R2i+1 is a positive PEPreg
codir instance (where Ri is the regular language

recognized by AR when the initial state is changed to qi and the final states to {qi+1}).

With Lemma 5.6, one may prove Theorem 5.3 by extending the construction proving
Proposition 5.5. Now the LCS looks for a sequence of alternating direct and codirect
solutions. In direct mode, it proceeds as earlier until some state q2i+1 is reached. It
may then switch to codirect mode. For this, it checks that the channel is empty (see
below), guesses nondeterministically q2i+2, stores q2i+1 and q2i+2 in its finite memory,
and now looks for a codirect solution to u,v,R2i+1. This is done by working on the
mirror problem ũ, ṽ, and moving backward from q2i+2 to q2i+1. When q2i+1 is reached
(which can be checked since it has been stored when switching mode) it is possible to
switch back to direct mode, starting from state q2i+2 (which was stored too), again after
checking that the channel is empty. The emptiness checks use standard tricks, e.g., rules

q
!# ?#−−→ q that write a special symbol #
∈ Γ and consume it immediately.

6 Reachability for Unidirectional Systems

6.1 Unidirectional Systems

ReachUcs is the reachability problem for UCS, i.e., systems of two components com-
municating unidirectionally via one reliable and one lossy channel, as illustrated in
Fig. 1. A UCS has the form S = (Q1, Q2, M, {r,l}, Δ1, Δ2). The Q1,Δ1 pair defines

the sender component, with rules of the form q
r!u−→ q′ or q

l!u−→ q′. The Q2,Δ2 pair has

rules q
r?u−→ q′ or q

l?u−→ q′, defining the receiver component. A configuration is a tuple
〈q1,q2,v1,v2〉 with control states q1 and q2 for the components, contents v1 for channel
r, and v2 for l.

The operational semantics is as expected. A rule q
r!u−→ q′ (resp. q

l!u−→ q′) from Δ1

gives rise to all transitions 〈q,q2,v1,v2〉 −→ 〈q′,q2,v1u,v2〉 (resp. all 〈q,q2,v1,v2〉 −→
〈q′,q2,v1,v2u′〉 for u′ � u). A rule q

r?u−→ q′ (resp. q
l?u−→ q′) from Δ2 gives rise to all transi-

tions 〈q1,q,uv1,v2〉 −→ 〈q1,q′,v1,v2〉 (resp. all 〈q1,q,v1,uv2〉 −→ 〈q1,q′,v1,v2〉). Observe
that message losses only occur when writing to channel l.

Remark 6.1. A consequence of unidirectionality is that a run 〈q1,q2,v1,v2〉 −→ ·· · −→
〈q′

1,q
′
2,v

′
1,v

′
2〉 can always be reordered so that it first uses only transitions from Δ1 that

fill the channels, followed by only transitions from Δ2 that consume from them. �
Theorem 6.2 [5]. ReachLcs reduces to ReachUcs.

6.2 From Unidirectional Systems to PEPreg

We now show that PEPreg is expressive enough to encode ReachUcs.

Theorem 6.3. ReachUcs reduces to PEPreg.

Consider an ReachUcs instance that asks whether one can go from 〈q0,q′
0,ε,ε〉 to

〈q f ,q′
f ,ε,ε〉1 in some UCS S = (Q1,Q2,M,{r,l},Δ1,Δ2). Without loss of generality,

1 For simplification purposes, this proof considers ReachUcs instances where the channels are
empty in the starting and ending configurations. This is no real loss of generality since the
general ReachUcs problem easily reduces to the restricted problem.

Post Embedding Problem Is Not Primitive Recursive 275

we assume that the rules in S only read or write at most one message: formally, we
write Mε for M∪{ε} and denote with α(δ) ∈ Mε (resp. β(δ) ∈ Mε) the messages that rule
δ writes to, or reads from, r (resp. l). Observe that whether α(δ) and β(δ) are read or
written depends on whether δ belongs to Δ1 or Δ2. Observe also that there is at least one
ε among α(δ) and β(δ).

Assume that the ReachUcs instance is positive and that a witness run π first uses a
sequence of rules δ1 . . .δm ∈ Δ∗

1, followed by a sequence γ1 . . .γl ∈ Δ∗
2 (this special form

is explained in Remark 6.1). Then π first writes w = α(δ1) . . .α(δm) to r, then reads
w′ = α(γ1) . . .α(γl) from r, and we conclude that w = w′. Simultaneously, it writes a
subword w′′ of β(δ1) . . .β(δm) to l, and reads it in the form β(γ1) . . .β(γl).

We are now ready to express this as a PEPreg problem. Let Σ def= Δ1 ∪ Δ2 (assuming

Δ1 ∩Δ2 = ∅) and Γ def= M. The morphisms are given by

u(δ) def=

{
β(δ) if δ ∈ Δ2,

ε otherwise,
v(δ) def=

{
β(δ) if δ ∈ Δ1,

ε otherwise.

Now write R1 for the set of all sequences δ1 . . .δm ∈ Δ∗
1 that form a connected path from

q0 to q f in Q1, and R2 for the set of all sequences γ1 . . .γl ∈ Δ∗
2 that form a connected

path from q′
0 to q′

f in Q2. Let R3 contains all rules δ ∈ Δ1 ∪ Δ2 with α(δ) = ε, and all
sequences δ.γ in Δ1Δ2 with α(δ) = α(γ). R1 and R2 are regular subsets of Γ∗, while R3

is even finite.
We now let R

def= (R1 �� R2)∩R∗
3, where �� denotes the shuffle of two languages (recall

that this is regularity preserving). We conclude the proof of Theorem 6.3 with:

Lemma 6.4 [5]. u,v,R is a positive PEPreg instance iff the ReachUcs instance is
positive.

By combining with Theorems 6.3 and 6.2 we obtain the equivalence (inter-reducibility)
of our three problems: PEPreg, ReachLcs and ReachUcs. This has two important new
corollaries:

Corollary 6.5. ReachUcs is decidable (but not primitive recursive).

Corollary 6.6. PEPreg is (decidable but) not primitive recursive.

7 Concluding Remarks

We introduced PEPreg, a variant of Post Correspondence Problem based on embedding
(a.k.a. subword) rather than equality. Furthermore, a regular constraint can be imposed
on the allowed solutions, which makes the problem non-trivial.

PEPreg was introduced while considering ReachUcs, a verification problem for chan-
nel systems where a sender may send messages to a receiver through one reliable and
one lossy channel, and where no communication is allowed in the other direction.

Our main results are (1) a non-trivial proof that PEPreg is decidable, and (2) three
non-trivial reductions showing that PEPreg, ReachUcs and ReachLcs are equivalent.
ReachLcs is the now well-known verification problem for lossy channel systems, where

276 P. Chambart and P. Schnoebelen

all channels are lossy but where no unidirectionality restriction applies. The equivalence
between the three problems has two unexpected consequences: it shows that ReachUcs
is decidable, and that PEPreg is not primitive recursive. We also show that (3) PEPreg

and PEPreg
dir , an important variant, are inter-reducible.

Beyond the applications to the theory of channel systems (our original motivation),
the discovery of PEPreg is interesting in its own right. Indeed, in recent years the liter-
ature has produced many hardness proofs that rely on reductions from ReachLcs. We
expect that such results, existing or yet to come, are easier to prove by reducing from
PEPreg, or from PEPreg

dir , than from ReachLcs.

References

1. Abdulla, P.A., Baier, C., Purushothaman Iyer, S., Jonsson, B.: Simulating perfect channels
with probabilistic lossy channels. Information and Computation 197(1–2), 22–40 (2005)

2. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results
for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer,
Heidelberg (2005)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and
Computation 127(2), 91–101 (1996)

4. Amadio, R., Meyssonnier, Ch.: On decidability of the control reachability problem in the
asynchronous π-calculus. Nordic Journal of Computing 9(2), 70–101 (2002)

5. Chambard, P., Schnoebelen, Ph.: Post embedding problem is not primitive recursive, with
applications to channel systems. Research Report LSV-07-28, Lab. Specification and Verifi-
cation, ENS de Cachan, Cachan, France (September 2007)

6. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: Proc. LICS
2006, pp. 17–26. IEEE Comp. Soc. Press, Los Alamitos (2006)

7. Finkel, A.: Decidability of the termination problem for completely specificied protocols.
Distributed Computing 7(3), 129–135 (1994)

8. Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Non-primitive recursive decid-
ability of products of modal logics with expanding domains. Annals of Pure and Applied
Logic 142(1–3), 245–268 (2006)

9. Halava, V., Hirvensalo, M., de Wolf, R.: Marked PCP is decidable. Theoretical Computer
Science 255(1–2), 193–204 (2001)

10. Konev, B., Wolter, F., Zakharyaschev, M.: Temporal logics over transitive states. In:
Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp.
182–203. Springer, Heidelberg (2005)

11. Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS
2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)

12. Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over
finite words. Logical Methods in Comp. Science 3(1), 1–27 (2007)

13. Ruohonen, K.: On some variants of Post’s correspondence problem. Acta Informatica 4(19),
357–367 (1983)

14. Schnoebelen, P.: Bisimulation and other undecidable equivalences for lossy channel systems.
In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 385–399. Springer,
Heidelberg (2001)

15. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. In-
formation Processing Letters 83(5), 251–261 (2002)

Synthesis of Safe Message-Passing Systems�

Nicolas Baudru and Rémi Morin

Aix-Marseille universités — UMR 6166 — CNRS
Laboratoire d’Informatique Fondamentale de Marseille

163, avenue de Luminy, F-13288 Marseille Cedex 9, France

Abstract. We show that any regular set of basic MSCs can be implemented by
a deadlock-free communicating finite-state machine with local termination: Pro-
cesses stop in local dead-states independently from the contents of channels and
the local states of other processes. We present a self-contained, direct, and rela-
tively simple construction based on a new notion called context MSC.

Introduction

Message Sequence Charts (MSCs) are a popular model often used for the documenta-
tion of telecommunication protocols. They profit by a standardized visual and textual
presentation and are related to other formalisms such as sequence diagrams of UML.
An MSC gives a graphical description of communications between processes. It usually
abstracts away from the values of variables and the actual content of messages. Such
specifications are implicitly subjected to some refinement before implementation.

The class of regular sets of MSCs introduced in [10] is of particular interest. These
languages can be described by finite automata because the number of messages within
channels is bounded. Regular languages enjoy several other logical and algebraic prop-
erties and they can be model-checked with the help of specific techniques (see e.g. [1]).
The theory of regular MSC languages has been extended in various directions [3,7,8,9].
In particular [3] and [7] extend to the framework of unbounded channels one of the
main result from [10]: Any regular set of MSCs can be implemented by a communicat-
ing finite-state machine (for short, a CFM) with bounded channel capacities.

Yet, the main drawback of the CFMs built in [3,7,10] is that they possibly lead to
deadlocks. In this paper we improve that result and prove that we can make sure that
the CFM built from a regular set of MSCs is deadlock-free. As opposed to [3,7,10]
the CFMs we consider satisfy two other interesting properties. First, processes stop
in local final states independently from the local states of other processes, that is, we
adopt a local acceptance condition similarly to [1,8]. Second, final local states are
dead-states: Differently from [1,8] we require that no process can leave any final local
state, that is, each process terminates locally. This second requirement is particularly
relevant because deadlock-free CFMs with local termination are stuck-free: Whenever
all processes stop, no unexpected message remains within the channels. This is the
main difference from [1,3,7,8,10] for which the acceptance condition ensures that all
channels are empty: The system relies implicitly on a global supervisor that checks
emptyness of all channels and controls the termination of all processes.

� Supported by the ANR project SOAPDC.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 277–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

278 N. Baudru and R. Morin

In this paper we do not assume any global supervisor. We build CFMs with local
termination that are deadlock-free and such that any accepting execution leads to empty
channels. The necessary counterpart of these strong requirements is that we build non-
deterministic CFMs. In particular CFMs may have multiple (finitely many) initial global
states: Intuitively this means that processes can synchronize in a preliminary phase in
order to agree on some decisions before the system starts. Similarly to [3,7,10] and
differently from [1,8] the implementation process allows to add some control informa-
tion to specified messages. This refinement implements intuitively a kind of distributed
control over the system.

A proof sketch of our result relies on the rich theory of Mazurkiewicz traces [5]
and proceeds as follows. A first step due to Kuske [11] encodes the given regular set
of MSCs L into a regular trace language L′ over some independence alphabet that
depends on the channel-bound of L. Next one applies directly a variant of Zielonka’s
theorem [13] which asserts that L′ is accepted by a deadlock-free non-deterministic
asynchronous cellular automaton Z with local termination. It remains then only to
turn Z into a deadlock-free CFM with local termination that accepts L. As opposed
to Kuske’s encoding, this last step is unfortunately not easy. The main reason is that
components of asynchronous cellular automata synchronize by means of shared vari-
ables whereas processes of a CFM exchange messages. In [2] we designed a rather
involved method based on a bounded time-stamp protocol by Mukund, Narayan Kumar
and Sohoni [12] in order to build a deadlock-free deterministic CFM from a deadlock-
free deterministic asynchronous automaton. This approach can be adapted in order to
preserve local termination and yield the expected deadlock-free and stuck-free CFM.

Let us now explain why we choose not to develop this proof sketch. First the tech-
nique from [2] is particularly suitable for deterministic CFMs but it is rather compli-
cated. Since we consider here non-deterministic CFMs, we prefer to present a simpler
construction that consists of a single technical lemma and two basic inductions. Second
we believe that our direct and self-contained approach is more valuable than refering
to the analogous result in the setting of Mazurkiewicz traces [13]. Finally there are
only few known methods to build CFMs from regular languages so our new inductive
approach may be also interesting by itself.

This paper is organized as follows. We introduce in Section 1 a straightforward and
natural extension of basic MSCs called context MSCs: The latter are simply composi-
tional MSCs [9] provided with a channel-state. Context MSCs come equipped with
some associative product which is useful to decompose regular languages of basic
MSCs into simpler components inductively in a Kleene-like manner. From an algebraic
viewpoint, the composition of context MSCs forms a particular case of concurrency
monoid [6] in which basic MSCs form a submonoid, that is, the product of context
MSCs is a natural extension of the usual composition of basic MSCs. In Section 2 we
formalize the model of CFMs with local termination together with the key notion of a
deadlock. As announced above, we observe that deadlock-free CFMs with local termi-
nation are stuck-free. Section 3 presents our main technical result: We show that the
iteration of some implementable and initiated set of context MSCs is implementable
provided that it is valid and channel-bounded. Finally our main result (Theorem 4.1) is
established by means of two elementary decomposition techniques.

Synthesis of Safe Message-Passing Systems 279

1 Message Sequence Charts

Following a classical trend of concurrency theory the executions of a distributed system
are regarded as labeled partial orders (called pomsets). Although our result holds for
non-FIFO channels we assume in this paper that all channels are FIFO in order to sim-
plify the presentation. Furthermore, for the same reason, the actual content of messages
are abstracted from the notion of MSCs similarly to the approach adopted in [3,7,10].

In this paper, we call alphabet any non-empty set; elements of alphabets are called
actions. A pomset over an alphabet Σ is a triple t = (E, �, ξ) where (E, �) is a finite
partial order and ξ is a mapping from E to Σ without autoconcurrency: ξ(x) = ξ(y)
implies x � y or y � x for all x, y ∈ E. A pomset can be seen as an abstraction of
an execution of a concurrent system. In this view, the elements e of E are events and
their label ξ(e) describes the basic action of the system that is performed by the event
e ∈ E. Furthermore, the order � describes the causal dependence between events. Let
t = (E, �, ξ) be a pomset and x, y ∈ E. Then y covers x (denoted x−≺y) if x ≺ y and
x ≺ z � y implies y = z. An event x is minimal if y � x implies y = x.

An order extension of a pomset t = (E, �, ξ) is a pomset t′ = (E, �′, ξ) such
that �⊆�′. A linear extension of t is an order extension that is linearly ordered. It
corresponds to a sequential view of the concurrent execution t. Linear extensions of
a pomset t over Σ can naturally be regarded as words over Σ. By LE(t) ⊆ Σ�, we
denote the set of linear extensions of a pomset t over Σ.

An ideal of a pomset t = (E, �, ξ) is a downward-closed subset H ⊆ E: x ∈
H ∧ y � x ⇒ y ∈ H . The restriction t′ = (H, � ∩(H × H), ξ ∩ (H × Σ)) is called
a prefix of t and we write t′ � t. For all z ∈ E, we denote by ↓tz the ideal of events
below z, i.e. ↓tz = {y ∈ E | y � z}. We denote by |t|a the number of events x ∈ E
such that ξ(x) = a.

1.1 Basic and Context Message Sequence Charts

Message sequence charts are defined in the Z.120 recommendation of the ITU-T with
a formal syntax and graphical rules. They can be seen also as particular pomsets over
some alphabet that we introduce first. Let I be a finite set of processes (also called
instances). For any instance i ∈ I, the alphabet Σi is the disjoint union of the set of send
actions Σ!

i = {i!j | j ∈ I \{i}} and the set of receive actions Σ?
i = {i?j | j ∈ I \{i}}.

Observe that the alphabets Σi are disjoint and we let ΣI =
⋃

i∈I Σi. Given an action
a ∈ ΣI , we denote by Ins(a) the unique instance i such that a ∈ Σi, that is the
particular instance on which each occurrence of action a occurs. Finally, for any pomset
(E, �, ξ) over ΣI we denote by Ins(e) the instance on which the event e ∈ E occurs:
Ins(e) = Ins(ξ(e)).

A channel-state describes the number of messages in transit at some stage of an
execution. Formally we let K = {(i, j) ∈ I × I | i 	= j} denote the set of all channels
within the instances I. Then a channel-state is simply a mapping χ : K → N. The empty
channel-state 0 maps each channel to 0. Let χ be a channel-state and M = (E, �, ξ)
be a pomset over ΣI . We say that two events e, f ∈ E match each other w.r.t. χ if e is
a send event from i to j and f is the corresponding receive event on j: Formally, we put
e �χ f if ξ(e) = i!j, ξ(f) = j?i, and moreover χ(i, j) + |↓Me|i!j = |↓Mf |j?i.

280 N. Baudru and R. Morin

DEFINITION 1.1. A context MSC is a pair (M, χ) where M = (E, �, ξ) is a pomset
over ΣI and χ ∈ N

K is a channel-state such that

M1: ∀e, f ∈ E: Ins(e) = Ins(f) ⇒ (e � f ∨ f � e)
M2: ∀e, f ∈ E: e �χ f ⇒ e � f
M3: ∀e, f ∈ E: [e−≺f ∧ Ins(e) 	= Ins(f)] ⇒ e �χ f
M4: ∀(i, j) ∈ K : χ(i, j) + |M |i!j � |M |j?i

A context MSC (M, χ) is also denoted by M@χ. By M1, events occurring on the same
instance are linearly ordered: Non-deterministic choice cannot be described within an
MSC. Axiom M2 formalizes that the reception of any message will occur after the
corresponding send event. By M3, causality in M consists only in the linear dependency
over each instance and the ordering of pairs of corresponding send and receive events.

Let M@χ be a context MSC. Then χ is called the domain of M@χ. The codomain
of M@χ is the channel-state χ′ such that χ′(i, j) = χ(i, j) + |M |i!j − |M |j?i for
all channels (i, j) ∈ K. Axiom M4 ensures that the codomain of a context MSC is a
channel-state. It is clear that the usual set of basic MSCs can be identified with the subset
of context MSCs whose domain and codomain are the empty channel-state. Observe
here that context MSCs satisfy the following consistence property: If two context MSCs
share the same domain and a common linear extension then they are identical.

1.2 Semigroup of Context Message Sequence Charts

We come now to the definition of the concatenation of two context MSCs. First we add
formally a special context MSC 0 to the set of context MSCs. This additional context
MSC 0 is called non-valid and will act as a zero: We put x · 0 = 0 · x = 0.

DEFINITION 1.2. Let M1@χ1 = (E1, �1, ξ1, χ1) and M2@χ2 = (E2, �2, ξ2, χ2) be
two valid MSCs. Let � be the binary relation over E1 × E2 such that e1 � e2 if
ξ1(e1) = i!j, ξ2(e2) = j?i, and χ1(i, j) + |↓M1

e1|i!j = |M1|j?i + |↓M2
e2|j?i.

If the codomain of M1@χ1 is χ2 then the product M1@χ1 · M2@χ2 is the context
MSC (E, �, ξ, χ1) where E = E1 E2, ξ = ξ1 ∪ ξ2 and the partial order � is the
transitive closure of �1 ∪ �2 ∪{(e1, e2) ∈ E1 × E2 | Ins(e1) = Ins(e2)}∪ �.

If the codomain of M1@χ1 is not χ2 then M1@χ1 · M2@χ2 = 0.

This product extends the usual concatenation of basic MSCs viewed as the subset of
context MSCs whose domain and codomain are the empty channel-state 0. The consis-
tence property allows us to characterize this product as follows.

PROPOSITION 1.3. Let M1@χ1 and M2@χ2 be two valid context MSCs such that the
codomain of M1@χ1 is χ2. Let u1 and u2 be some linear extensions of M1 and M2

respectively. Then the product M1@χ1 · M2@χ2 is the valid context MSC M@χ1 such
that u1.u2 ∈ LE(M).

Let cMSC denote the set of all (valid and non-valid) context MSCs. Proposition 1.3
above enables us to check easily that the product of context MSCs is associative. Thus
the set of context MSCs forms a semigroup. The proof of our main result relies on a
representation of MSC languages in the form of rational expressions built by means

Synthesis of Safe Message-Passing Systems 281

of unions (L1 + L2), products (L1 · L2), and strict iterations (L+ =
⋃

k�1 Lk). We
could identify formally all empty context MSCs as a single context MSC and get a
concurrency monoid [4,6].

1.3 Regular Sets of MSCs

Let χ1, χ2 be two channel-states. A subset of valid context MSCs L ⊆ cMSC \ {0}
is located at (χ1, χ2) if all context MSCs from L have domain χ1 and codomain χ2.
Then χ1 and χ2 are called respectively the domain and the codomain of L.

DEFINITION 1.4. A located set of MSCs L is regular if the corresponding set of words
LE(L) =

⋃
M@χ∈L LE(M) is recognizable in the free monoid Σ�

I . A set of context
MSCs is regular if it is a finite union of regular located sets of context MSCs.

In particular a subset of basic MSCs is regular in the sense of [10] if and only if it is
regular according to the above definition.

For later purposes, we need to extend the usual notion of channel-bounded languages
from basic MSCs to context MSCs as follows. The channel-width of a valid context
MSC M@χ is

maxu∈LE(M) maxv�u max(i,j)∈K χ(i, j) + |v|i!j − |v|j?i.

Intuitively the channel-width of M@χ is the maximal number of messages that may
be in transit within some channel at any stage of the execution of M@χ. A subset of
valid context MSCs L is channel-bounded by B ∈ N if each context MSC from L has
a channel-width at most B.

Consider now a regular set of context MSCs L located at (χ1, χ2) and the minimal
deterministic automaton A = (Q, ı, F, −→) over ΣI that accepts LE(L). All states of
A are reachable from the initial state ı ∈ Q and co-reachable from the subset of final
states F ⊆ Q. The next basic observation asserts that each state from A corresponds to
some particular channel-state.

PROPOSITION 1.5. There exists a mapping χ : Q → N
K such that χ(ı) = χ1, χ(q) =

χ2 for all q ∈ F , and q
u−→ q′ implies χ(q′)(i, j) = χ(q)(i, j) + |u|i!j − |u|j?i for all

q, q′ ∈ Q and all channels (i, j) ∈ K.

It follows that any regular set of context MSCs is channel-bounded.

2 Deadlock-Free and Stuck-Free Message-Passing Systems

In this section we introduce the model of communicating finite-state machines and the
related notions of deadlock, local termination, and stuck messages. The semantics of
these systems is given in a natural way by means of sets of MSCs.

2.1 Communicating Finite-State Machines with Local Termination

Recall here that MSC specifications are used usually at an early stage of the design so
that a refinement procedure can occur before implementation. In this paper refinement

282 N. Baudru and R. Morin

corresponds to the possibility to add some control information to messages in order to
be able to build a correct implementation. To do so we use a fixed set Λ of control mes-
sages that will be added to the contents of specified messages. We denote by i!mj the
action by i that sends a message with control information m to j. Its receipt by j is de-
noted by j?mi. We put ΣΛ

i = {i!mj, i?mj | j ∈ I \ {i}, m ∈ Λ} and ΣΛ
I =

⋃
i∈I ΣΛ

i .
A refined channel-state describes the sequence of control information associated with
the sequence of messages in transit; it is formalized as a map ρ : K → Λ�.

A communicating finite-state machine (for short, a CFM) over Λ consists of a pro-
cess Ai = (Qi, −→i, Fi) for each instance i ∈ I together with a finite set of initial
global states I ⊆

(∏
i∈I Qi

)
× (Λ�)K where Qi is a finite set of local states for process

i, −→i⊆ Qi × ΣΛ
i × Qi is a local transition relation for i, and Fi ⊆ Qi is a subset of

final local states. All along this paper we require additionally that all final local states
are dead: For all instances i and for all final local states qi ∈ Fi, there is no transition
qi

a−→i q′i for all a ∈ ΣΛ
i and all q′i ∈ Qi. Thus we consider only CFMs with local

termination.
In this setting, a global state is a pair s = (q, ρ) where q ∈

∏
i∈I Qi is a tuple of

local states and ρ : K → Λ� is a refined channel-state. For all global states s = (q, ρ)
with q = (qi)i∈I and all i ∈ I we put s ↓ i = qi. A global state s is final if s ↓ i ∈ Fi

for all i ∈ I. Thus F =
(∏

i∈I Fi

)
× (Λ�)K denotes the set of all final global states.

Intuitively each process stops independently from the current contents of channels
and independently from the local states of other processes. This approach is somehow
more restrictive than [1,3,7,8,10] which assume that final global states are associated
with the empty channel-state. On the other hand we allow multiple (finitely many) initial
global states and consequently we consider in this paper non-deterministic CFMs.

2.2 Deadlocks and Stuck Messages

The system of global states associated to a communicating finite-state machine S is
the transition system AS = (S, −→) where S =

∏
i∈I Qi × (Λ�)K is the set of all

global states and the global transition relation −→⊆ S × ΣΛ
I × S satisfies the two next

properties for any global states s = (q, ρ) and s′ = (q′, ρ′):

– for all distinct instances i and j, s
i!mj−→ s′ if

1. s ↓ i
i!mj−→i s′ ↓ i and s′ ↓ k = s ↓ k for all k ∈ I \ {i},

2. ρ′(i, j) = ρ(i, j) · m and ρ(x) = ρ′(x) for all x ∈ K \ {(i, j)};

– for all distinct instances i and j, s
j?mi−→ s′ if

1. s ↓ j
j?mi−→j s′ ↓ j and s′ ↓ k = s ↓ k for all k ∈ I \ {j},

2. ρ(i, j) = m · ρ′(i, j) and ρ(x) = ρ′(x) for all x ∈ K \ {(i, j)}.

As usual with transition systems, for any word u = a1...an over ΣΛ
I , we write s

u−→ s′

if there are some global states s0, ..., sn ∈ S such that s0 = s, sn = s′ and for each
r ∈ [1, n], sr−1

ar−→ sr. For all global states s1, s2 ∈ S we denote by L(S, s1, s2) the
set of words u over ΣΛ

I such that s1
u−→ s2. We say that a CFM S is safe if all global

states reachable from I are co-reachable from F . In other words, a safe CFM has no
deadlock.

Synthesis of Safe Message-Passing Systems 283

Let π : ΣΛ
I → ΣI be the mapping that forgets the additional control information:

π(i!mj) = i!j and π(j?mi) = j?i. This mapping extends in the obvious way to a map
from words over ΣΛ

I to words over ΣI . For any refined channel-state ρ, π(ρ) denotes
the channel-state χ such that χ(i, j) is the length of ρ(i, j) for all (i, j) ∈ K.

Consider now a CFM S and two global states s1, s2 with respective refined channel-
states ρ1, ρ2. For any word u ∈ L(S, s1, s2) there exists a unique context MSC M@χ
such that χ = π(ρ1) and π(u) is a linear extension of M . Moreover M@χ has codomain
π(ρ2). The language of context MSCs L(S) accepted by S consists of all valid context
MSCs M@χ such that there are two global states s = (q, ρ) ∈ I and s′ = (q′, ρ′) ∈ F
with π(ρ) = χ and a word v ∈ LE(M) such that v ∈ π(L(S, s, s′)). Noteworthy, it can
be easily shown that this condition ensures that all linear extensions of M belong to
π(L(S, s, s′)). Observe also that if L(S) consists of basic MSCs and S is safe then all
initial global states and all reachable final global states are associated with the empty
channel-state: Thus there are no message stuck in channels when the system stops.

2.3 Implementable Languages: Two Basic Properties

We say that a language L of context MSCs is implementable if there exists a safe CFM
that accepts L. Clearly any finite union of implementable languages is implementable.
Observe now that for any implementable located set L of context MSCs, there exists
a safe CFM that accepts L and such that all initial global states s = (q, ρ) share a
common refined channel-state ρ. Now it is not difficult to check that the product of two
implementable located languages is implementable if this product is valid.

LEMMA 2.1. Let L1 and L2 be two implementable sets of context MSCs.

1. L1 + L2 is implementable.
2. If L1 · L2 is valid, i.e. 0 	∈ L1 · L2, then L1 · L2 is implementable.

3 Iteration of Implementable Languages

In this section we establish for the iteration operation a result analogous to Lemma 2.1.
With no surprise dealing with iteration turns out to be more complicated.

Let k ∈ I be some fixed instance. A context MSC M@χ is initiated (by k) if M
admits a least event and this event is labeled by some send action from k. A located set
of context MSCs L is initiated (by k) if all context MSCs from L are initiated (by k).

THEOREM 3.1. Let L be some initiated and implementable set of context MSCs located
at some (χ0, χ0). If L+ is channel-bounded then L+ is implementable, too.

This section is devoted to the proof of this result. We fix some initiated and imple-
mentable set of context MSCs L located at some (χ0, χ0). We assume that L+ is
channel-bounded by B. Let S be a safe CFM over Λ that accepts L. We denote by
Ai the local process of instance i in S. We can assume that messages initially in chan-
nels do not carry any relevant control information, that is, we assume formally that
for all initial global states s = (q, ρ), any global state s̃ = (q, ρ̃) with π(ρ̃) = χ0 is
initial, too.

284 N. Baudru and R. Morin

3.1 Intuitive Description of the Consensus Protocol

We build from S a safe CFM S′ that accepts L+. Control messages exchanged within S′

are pairs (m, τ) where m ∈ Λ is a control message from S and τ is a tag added by S′.
Process k will act as a leader within S′: It will make some choices along the executions
and these choices will be formalized and communicated to other processes by means
of these tags. The choices made by k and the tags used by S′ are essentially built upon
the subset I of initial global states of S. We say that an instance i is live in some initial
global state s ∈ I if the local state s ↓ i is not final for the local process Ai of S: We
put Live(s) = {i ∈ I | s ↓ i /∈ Fi}. Since L is initiated, k ∈ Live(s) for all s ∈ I .

Basically each process A′i of S′ simulates and iterates the behaviors of Ai: It possi-
bly starts a new execution when it reaches a final local state of Ai. However the global
behaviors of the whole system S′ must correspond also to iterations of L: Each execu-
tion of S′ has to appear as a sequence of phases that simulate each an execution of S.
That is why all processes must follow a consensus protocol that determines at each step
which processes should take part in the next phase and from which local states they
should start. Since L is initiated by k, all other instances start any execution from S by
receiving a first message, called the initiating message. The tag added to this message
by S′specifies from which local state of S each instance should start a new phase.

The first role of process k is to choose on-the-fly a sequence of initial global states
s1,..., sn ∈ I from S and initiate a new simulation of some execution of S from sm

as soon as it has finished the previous phase from sm−1. In doing so, it moves from a
final local state of Ak to the local state of Ak that corresponds to sm and sends its first
message with a tag that includes sm. These actions are considered atomic. Instances
that are not live in sm will not take part in this phase.

The second role of process k is to choose on-the-fly a subset of processes that must
terminate —that is, that will not take part in further phases. This information is nec-
essary because each process has to know when it does not need to wait any longer
for a new initiating message, that is, when it reaches a final local state of S′. The
choice of terminating instances is included in the tag of messages exchanged by S′

within a phase. Thus process k keeps track of the subset H of instances that have al-
ready terminated in previous phases. Obviously the subset H ⊆ I grows from phase
to phase. In order to avoid deadlocks, process k makes sure that the next phase can be
achieved by non-terminated processes, that is, the next phase starts from some s ∈ I
with Live(s) ⊆ I \ H. Moreover process k chooses among the live instances of s the
subset of instances G ⊆ Live(s) that will simulate their last execution of S. As a conse-
quence the new value of H is H ∪ G. In that way the sequence of phases s1,..., sn ∈ I
is associated with an increasing sequence of dead instances H1 ⊆...⊆ Hn ⊆ I. Since
all processes must stop at some point, the choices by process k must lead eventually to
Hn = I.

We detail now how process k chooses the sequence of initial global states s1,...,
sn ∈ I together with the sequence of terminating instances H1,..., Hn = I starting
from some set of initially dead or terminating instances H0. As explained above the
sequence H0, H1,..., Hn is increasing, Hm\Hm−1 ⊆ Live(sm), Live(sm) ⊆ I\Hm−1

and Hn = I. Let us consider the finite directed graph G whose nodes are the subsets
H of I and such that there is an edge from H to H′ if there exists some initial global

Synthesis of Safe Message-Passing Systems 285

state s ∈ I such that H ⊆ H′, H′ \ H ⊆ Live(s) and Live(s) ⊆ I \ H. A node
H ⊆ I is secure if there exists a path in G from H to I. In particular I is secure. A pair
(s, H′) ∈ I×2I is a secure choice for H if H ⊆ H′, H′\H ⊆ Live(s), Live(s) ⊆ I\H
and H′ is secure. Clearly if H is secure and H 	= I then there are some secure choices
(s, H′) for H. Before starting a new phase, process k selects arbitrarily a secure choice
(s, H′) and initiates a new phase accordingly. This new phase is associated with the
extended set of dead or terminating instances H′.

Intuitively all messages exchanged within a phase are tagged with the same informa-
tion. The tag of a phase consists basically of

– the global initial state s ∈ I so that each process i ∈ I knows from which local
state s ↓ i it should start over, and

– the subset H′ of instances that will not take part in further phases.

However if the domain χ0 of L is not empty then each process of S consumes a fixed
sequence of messages before it receives messages sent within S. Therefore each process
A′i receives first from j a fixed sequence of messages with a tag possibly different from
the ongoing phase and accepts only messages with some correct tag afterwards.

Now it is crucial that two concurrent phases associated with the same tag do not
interfere. For that reason process k counts the number of phases in which each instance
is live modulo some constant D by means of some counter κ : I → [0, D − 1] and
adds this counter to the tag of phases. Thus tags are actually triples (s, H′, κ). We take
D = |I| + B + 1 where |I| is the number of instances and L+ is channel-bounded by
B. The proof of our technical lemma below (Lemma 3.3) explains why these counters
ensure that phases with the same tag cannot interfere.

3.2 Formal Construction of S′

We define now formally the processes A′i of the CFM S′ according to the above intu-
itions. Let T = I × 2I × [0, D − 1]I be the set of all tags. The set of messages used by
S′ is Λ′ = Λ × T . A local state of A′i is a triple r = (q, τ, χ) where q is a local state of
Ai, τ is a tag, and χ is a channel-state bounded by B. The latter enables each process to
ensure that the appropriate number of messages from the past are received along each
channel. Let i be some instance. Let r = (q, τ, χ) and r′ = (q′, τ ′, χ′) be two local
states of A′i where τ = (s, H, κ) and τ ′ = (s′, H′, κ′). We put r

a−→i r′ in A′i if one of
the next conditions is satisfied:

1. Instance i is k and it initiates a new phase: i = k, q ∈ Fi, i 	∈ H, a = i!m,τ ′
j,

s′ ↓ i
i!mj−→i q′ in Ai, χ′ = χ0, (s′, H′) is a secure choice for H, κ′(l) = κ(l) + 1

mod D for all l ∈ Live(s′), and κ′(l) = κ(l) for all l /∈ Live(s′).
2. Instance i is not k and it starts a new phase: i 	= k, q ∈ Fi, i 	∈ H, a = i?m,τ ′

j,

s′ ↓ i
i?mj−→i q′ in Ai, χ′ = χ0, χ0(j, i) = 0, H ⊆ H′ and κ′(i) = κ(i)+1 mod D.

3. Process i goes on the current phase and receives a message from a previous phase:

τ = τ ′, a = i?n,τ ′′
j, q

i?mj−→i q′ in Ai, χ(j, i) � 1, χ′(j, i) = χ(j, i) − 1 and
χ(x) = χ′(x) for all x 	= (j, i).

286 N. Baudru and R. Morin

4. Process i goes on the current phase and receives a message with the current tag:

τ = τ ′, a = i?m,τ j, q
i?mj−→i q′ in Ai, χ(j, i) = 0 and χ = χ′.

5. Process i goes on the current phase and sends a message: τ = τ ′, a = i!m,τ j,

q
i!mj−→i q′ in Ai, and χ = χ′.

A local state r = (q, τ, χ) of A′i with τ = (s, H, κ) is final if q ∈ Fi and i ∈ H, that is,
if it corresponds to a final local state of Ai and must not take part in further phases. It
is easy to check that each local final state of A′i is dead.

We fix some refined channel-state ρ′0 such that π′(ρ′0) = χ0. A global state s′ =
(q′, ρ′) of S′ is initial if ρ′ = ρ′0 and there exists some initial global state s0 ∈ I of S

and some secure subset of instances H0 such that for all i ∈ I we have s′ ↓ i = (s0 ↓
i, τ0, χ0) where τ0 = (s0, H0, 0).

With no surprise S′ simulates any iteration of L. To prove this basic fact we need
to introduce some notations that relate the global states of S′ to those of S in a natural
way. First for any local state r = (qi, τ, χ) we put ω(r) = qi. Second the first projection
from Λ′ = Λ × T to Λ induces a mapping ω from words over Λ′ to words over Λ. Then
any refined channel-state ρ′ over Λ′ corresponds to some refined channel-state ω(ρ′)
such that ω(ρ′)(i, j) = ω(ρ′(i, j)) for all channels (i, j) ∈ K. Finally each global state
s′ = (q′, ρ′) of S′ corresponds to the global state ω(s′) = (q, ω(ρ′)) of S where q
consists of the local states ω(s′ ↓ i).

PROPOSITION 3.2. We have L+ ⊆ L(S′).

Proof. Let M0@χ0,..., Mn@χ0 be some MSCs from L. We show that the product
M@χ0 = M0@χ0 · ... · Mn@χ0 belongs to L(S′). For each m ∈ [0, n] there are two
global states sm and s′m of S and um ∈ L(S, sm, s′m) such that sm ∈ I , s′m ∈ F ,
and π(um) ∈ LE(Mn). For each m ∈ [0, n] we denote by Hm the set of instances
that are not live in all sm+1,..., sn. In particular Hn = I and for all m � 1 we have
Live(sm) ⊆ I \ Hm−1, Hm−1 ⊆ Hm, and Hm \ Hm−1 ⊆ Live(sm). We let s′0 be the
initial global state of S′ that corresponds to s0 and H0. By induction over m � n, we
can check that there exists a word u that corresponds to an execution of S′ consisting
of m phases associated with the secure choices (s1, H1),..., (sm, Hm) and such that
π′(u) = π(u0)...π(um). Moreover u leads S′ from s′0 to some global state s′ such that
ω(s′) is a final global state of S. In the case m = n, we get that s′ ↓ i = (qi, τm, χm)
with qi ∈ Fi for all processes i ∈ I. Recall that Hn = I. Let i ∈ I such that i /∈ H0.
Let m be the least integer such that i ∈ Hm. Then i ∈ Live(sm), i takes part in um,
and τm = (sm, Hm, κm). Thus s′ ↓ i ∈ F ′i for all i ∈ I and M@χ0 ∈ L(S′).

3.3 A Technical Lemma

Let s′0 be an initial global state of S′ associated with s0 ∈ I , H0 ⊆ I and τ0 =
(s0, H0, 0). Let s′ be some global state of S′ and u, v be two words over ΣΛ′

I . We say
that u and v are equivalent w.r.t. s′0 and s′ if

– u ∈ L(S′, s′0, s
′) if and only if v ∈ L(S′, s′0, s

′) and
– π′(u) ∈ LE(M) if and only if π′(v) ∈ LE(M) for all context MSCs M@χ0.

Synthesis of Safe Message-Passing Systems 287

We come to our key technical result. The latter formalizes that each execution of S is
equivalent to a series of phases that simulate possibly incomplete executions of S.

LEMMA 3.3. Let s′ be a global state of S′ and u ∈ L(S′, s′0, s′). Let M@χ0 be the
context MSC such that π′(u) ∈ LE(M). There exist n � 0, a sequence of words
u0, ..., un over ΣΛ′

I , a sequence s′1, ..., s
′
n+1 of global states of S′ with s′n+1 = s′,

a sequence of tags τ1, ..., τn with τm = (sm, Hm, κm) for each m ∈ [1, n], and a
sequence s0, ..., sn of global states of S such that

– (sm, Hm) is a secure choice for Hm−1 for all m ∈ [1, n],
– u0...un is equivalent to u w.r.t. s′0 and s′,
– um ∈ L(S′, s′m, s′m+1) and π′(um) ∈ π(L(S, sm, sm)) for each m ∈ [0, n],
– if i takes part in um and m ∈ [0, n] then s′m+1 ↓ i = (sm ↓ i, τm, χ) for some χ,
– if i takes part in um and m � 1 then ω(s′m) ↓ i ∈ Fi,
– if i takes part in ul and i ∈ Live(sm) with m � l then i takes part in um.

Proof. A phase m ∈ [0, n] is called incomplete if sm /∈ F . We proceed by induction
over the size of u. The base case where u is the empty word is trivial. Induction step:
Assume u = v.a with a ∈ ΣΛ′

I . The proof proceeds by case analysis over the five
rules that define the transition relation of A′i. The key observation is the following. By
induction hypothesis, π(v) is a linear extension of a prefix of some MSC from L+.
Therefore there are at most B messages pending in s′. On the other hand there are at
most |I| instances i with ω(s′) ↓ i /∈ Fi. As a consequence incomplete phases in s′

have distinct tags and no instance can skip any phase.

COROLLARY 3.4. We have L(S′) ⊆ L+.

Proof. We apply Lemma 3.3 with the assumption that s′ is a final global state. Then
k ∈ Hn, Hn = I and ω(s′) ↓ i ∈ Fi for all instances i. It follows that for all i ∈ I and
all m ∈ [0, n] we have ω(s′m+1) ↓ i ∈ Fi. Furthermore i takes part in um whenever
i ∈ Live(sm). Therefore sm is a final global state of S hence π◦ω(um) ∈ LE(Mm) for
some Mm@χ0 from L. Since π′(um) = π ◦ ω(um), we get that π′(u0...un) ∈ LE(M)
with M@χ0 ∈ Ln+1. It follows that π′(u) ∈ LE(M). Hence L(S′) ⊆ L+.

COROLLARY 3.5. The CFM S′ is safe.

Proof. Let s′0 be an initial global state of S′ and s′ be a global state of S′ reachable from
s′0. Let u ∈ L(S′, s′0, s

′). We apply Lemma 3.3 and consider u0,..., un such that u0...un

is equivalent to u w.r.t. s′0 and s′. The proof proceeds in two steps. We claim first that we
can assume up to some completion of u that ω(s′m+1) ↓ i = sm ↓ i is a final local state
of Ai for all m ∈ [0, n] and all i ∈ Live(sm). This step makes use of the hypothesis that
S is safe: Each ω(um) can be completed into a sequence that leads S from sm to a final
global state. Second we proceed similarly to the proof of Proposition 3.2 and complete
u in order to reach a final global state of S′. This step makes use of the requirement that
process k chooses always secure choices so that its local value of H is secure after each
phase.

288 N. Baudru and R. Morin

4 Elementary Decompositions of Regular Sets of MSCs

We come to the main result of this paper: Any regular set of basic MSCs is accepted by
a deadlock-free CFM with local termination. The next statement expresses this result
in the more general setting of context MSCs. Its proof follows from Lemma 2.1 and
Theorem 3.1 by means of two simple inductions.

THEOREM 4.1. All regular languages of context MSCs are implementable.

Proof. Let L be a regular set of context MSCs. By Lemma 2.1 we can assume that L
is located. We proceed by induction over the number of processes k that send messages
in L. Base case: There are no send actions in any MSC from L. Then L is finite hence
implementable. Induction step: We fix some instance k such that some MSCs from L
contain some send action from k. We consider the minimal deterministic automaton
A = (Q, ı, F, −→) over ΣI that accepts LE(L). By Proposition 1.5 we can provide A

with a canonical mapping χ which associates a channel-state χ(q) to each state q ∈ Q.
For any two states q, q′ ∈ Q let Lq,q′ denote the set of context MSCs M@χ such that
χ = χ(q) and q

u−→ q′ for all u ∈ LE(M). Clearly Lq,q′ is a regular located set of
MSCs. Moreover the subset of Lq,q′ that restricts to the context MSCs that are initiated
by k (resp. do not contain any occurrence of any send action from k) is also regular.

Now L is a finite union of sets of context MSCs of the form Lk = L′k · L′′k where
all L′k and all L′′k are located and regular, no send action from some k occurs in any
L′k, and each L′′k is initiated by k or consists of a single empty MSC. By induction
hypothesis we can assume that L is initiated by some k. For all q, q′ ∈ Q and all j ∈ I,
the round Lq,q′,j is the subset of context MSCs M@χ from Lq,q′ that are initiated by
k and contain a single send action from k and the latter is k!j. Clearly all rounds are
regular. By induction hypothesis all rounds are implementable.

By Kleene’s theorem, L can be described by some rational expression r obtained
from rounds by means of union, product, and strict iteration. Since L is regular, it is
channel-bounded and valid. It follows that any subexpression s of r describes a valid
and channel-bounded set of MSCs. Moreover if s+ is a subexpression of r then s de-
scribes a located and initiated set of context MSCs whose domain and codomain co-
incide. By induction over the rational expression r with the help of Lemma 2.1 and
Theorem 3.1, we get immediately that L is implementable.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs.
TCS 331, 97–114 (2005)

2. Baudru, N., Morin, R.: Safe Implementability of Regular Message Sequence Charts Specifi-
cations. In: Proc. of the ACIS 4th Int. Conf. SNDP, pp. 210–217 (2003)

3. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to EMSO
logic. TCS 358, 150–172 (2006)

4. Bracho, F., Droste, M., Kuske, D.: Representations of computations in concurrent automata
by dependence orders. TCS 174, 67–96 (1997)

5. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)
6. Droste, M.: Recognizable languages in concurrency monoids. TCS 150, 77–109 (1995)

Synthesis of Safe Message-Passing Systems 289

7. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for
existentially bounded communicating automata. I&C 204, 920–956 (2006)

8. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs: Model-
Checking and Realizability. Journal of Computer and System Sciences 72, 617–647 (2006)

9. Gunter, E.L., Muscholl, A., Peled, D.: Compositional message sequence charts. Intern. Jour-
nal on Software Tools for Technology Transfer 5(1), 78–89 (2003)

10. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory
of Regular MSC Languages. I&C 202, 1–38 (2005)

11. Kuske, D.: Regular sets of infinite message sequence charts. I&C 187, 80–109 (2003)
12. Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in message-passing

systems. TCS 290, 221–239 (2003)
13. Zielonka, W.: Safe executions of recognizable trace languages by asynchronous automata.

In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 278–289.
Springer, Heidelberg (1989)

Automata and Logics for Timed Message
Sequence Charts

S. Akshay1,2, Benedikt Bollig1, and Paul Gastin1

1 LSV, ENS Cachan, CNRS, France
2 Institute of Mathematical Sciences, Chennai, India

Abstract. We provide a framework for distributed systems that impose tim-
ing constraints on their executions. We propose a timed model of communicat-
ing finite-state machines, which communicate by exchanging messages through
channels and use event clocks to generate collections of timed message sequence
charts (T-MSCs). As a specification language, we propose a monadic second-
order logic equipped with timing predicates and interpreted over T-MSCs. We
establish expressive equivalence of our automata and logic. Moreover, we prove
that, for (existentially) bounded channels, emptiness and satisfiability are decid-
able for our automata and logic.

1 Introduction

One of the most famous connections between automata theory and classical logic, es-
tablished in the early sixties by Büchi and Elgot [7], is the equivalence of finite-state
machines and monadic second-order logic (MSO) over words. This study of relations
between logical formalisms and automata has had many generalizations including ex-
tensions and abstractions of the definition of words themselves.

A natural extension, for instance, are timed words which are very important in the
context of verification of safety critical timed systems. For this, we have automata mod-
els such as timed automata [1] and event-clock automata (ECA) [2]. The latter have
implicit clocks allowing them to record or predict time lapses. This is well-suited for
real-time specifications (such as bounded response time) and allows for a suitable logi-
cal characterization by a timed MSO over timed words as shown in [9].

On the other hand, in a distributed setting, we might have several agents interacting
to generate a global behavior. This interaction can be specified using message sequence
charts (MSCs) which generalize words and reflect the causality of events in a system
execution. MSCs have been known for a long time independently, as they serve as
documentation of design requirements that are referred throughout the design process
and even in the final system integration and acceptance testing. MSCs are used for
describing the behavior of communicating finite-state machines (CFMs) [6], which are a
fundamental model for concurrent systems and communicating protocols. These CFMs
have communicating channels between the constituent finite-state automata and a single
MSC diagram subsumes a whole set of sequential runs of the CFM.

Our goal is to merge the timed and distributed approaches mentioned above. For
this, we first consider timed MSCs (T-MSCs) which are just MSCs with time stamps
at events (as in timed words). These are ideal to describe real-time system executions,

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 290–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automata and Logics for Timed Message Sequence Charts 291

keeping explicitly the causal relation between events. Next, we consider MSCs with
timing constraints (TC-MSCs) where we associate lower and upper bounds on the time
interval between certain pairs of events. This is more suitable for a specifier and also
useful to describe a (possibly infinite) family of T-MSCs in a finite way.

We introduce event clock communicating finite-state machines (EC-CFM) recog-
nizing timed MSCs. These are CFMs equipped with implicit event clocks allowing
us to record or predict time lapses as in the ECA. For the logical framework, we use a
timed version of monadic second-order logic (TMSO) with additional timing predicates
to specify necessary timing constraints. We interpret both EC-CFMs and TMSO over
T-MSCs and prove a constructive equivalence between them, with and without bounds
on channels. This is done by lifting the corresponding results from the untimed case
[12,11,5] by using TC-MSCs, since they can be seen as MSCs whose labelings are
extended by timing information and also as a representation of infinite sets of T-MSCs.

Further, we prove that, over “existentially bounded” channels, the emptiness check-
ing of our automaton model and, thus, the satisfiability problem of our logic are de-
cidable. Our approach consists of constructing a global finite timed automaton that can
simulate the runs of the EC-CFM (which is a distributed machine) and so, reduce the
problem to emptiness checking on a timed automaton. The hard part of the construction
lies in “cleverly” maintaining the partial-order information (of the T-MSC) along the
sequential runs of the global timed automaton, while using only finitely many clocks.

Related Work. Past approaches to timing in MSCs with a formal semantics and analysis
have been looked at in [3,4,8,13]. While [3] and [4] only consider single MSCs or high-
level MSCs, one of the first attempts to study channel automata in the timed setting goes
back to Krcal and Yi [13], who provide local timed automata with the means to commu-
nicate via FIFO channels. They do not consider MSCs as a semantics of their automata
but rather look at restricted channel architectures (e.g., one-channel systems) to transfer
decidability of reachability problems from the untimed to the timed setting. A simi-
lar automaton model was independently introduced by Chandrasekaran and Mukund in
[8], who even define its semantics in terms of timed MSCs. They propose a practical
solution to a very specific matching problem using the tool UPPAAL.

Outline. We define MSCs in Section 2, together with their timed extensions. Our logic
and the automaton model are introduced in Section 3. We describe the equivalence
results between our automata and logic over timed MSCs in Section 4. In Section 5, it
is shown that emptiness of automata is decidable for existentially bounded channels.

2 Timed Message Sequence Charts

We fix a finite set Ag of at least two agents or processes. The set of communication
actions on process p is Actp = {p!q | q ∈ Ag \ {p}} ∪ {p?q | q ∈ Ag \ {p}}, where
p!q means that process p sends a message to process q and p?q means that process p
receives a message from process q. Furthermore, we let Act =

⋃
p∈Ag Actp.

An Act-labeled partial order is a triple M = (E, �, λ) where (E, �) is a finite
partial order (elements from E are called events) and λ : E → Act is a labeling
function. For e ∈ E, ↓e denotes {e′ ∈ E | e′ � e}. We define a message relation

292 S. Akshay, B. Bollig, and P. Gastin

MsgM ⊆ E × E matching send events with their corresponding receives, assuming a
FIFO architecture on the channels. That is, (e, e′) ∈ MsgM if λ(e) = p!q and λ(e′) =
q?p for some p, q ∈ Ag , and |↓e ∩ λ−1(p!q)| = |↓e′ ∩ λ−1(q?p)|.

A message sequence chart (MSC) is an Act-labeled partial order M = (E, �, λ)
such that (i) for any p ∈ Ag , the restriction of � to process p (denoted �p) is a total
order, (ii) the partial order � is the transitive closure of MsgM ∪

⋃
p∈Ag�p, and (iii)

for any distinct p, q ∈ Ag, the number of send events is equal to the number of receive
events, i.e, |λ−1(p!q)| = |λ−1(q?p)|.

p q r

e1

e′1

e2

e′2 e3

e′3

Fig. 1. An MSC

Fig. 1 depicts an MSC as a diagram. The events of each process
are arranged along the vertical lines and messages are shown as hor-
izontal or downward-sloping directed edges. Note that λ(e1) = p!q,
λ(e2) = q?p, e1 �p e′1, (e′2, e3) ∈ MsgM and e1 � e3. The lin-
earizations of an MSC form a word language over Act under λ. E.g.,
(p!q)(q?p)(q!r)(p!r)(r?q)(r?p) is one linearization of the MSC in
Fig. 1. An MSC is uniquely determined by one of its linearizations.

The first natural attempt while trying to add timing information to MSCs would be to
add time stamps to the events of the MSCs. This is motivated from timed words where
we have words with time stamps added at each action. This approach is quite realistic
when we want to model the real-time execution of concurrent systems.

Definition 1. A timed MSC (T-MSC) is a tuple (E, �, λ, t) where (E, �, λ) is an MSC
and t : E → R

≥0 is a function such that if e1 � e2 then t(e1) ≤ t(e2). The set of all
T-MSCs is denoted TMSC.

A timed linearization of a T-MSC is a possible execution in terms of a word from
(Act × R

≥0)∗, which thus respects both the causal order and the order imposed by the
time stamping. A T-MSC is shown in 2(a). Note that it has several timed linearizations
as the concurrent events e4 and f3 occur at the same time. A possible timed linearization
is (p!q, 2)(q?p, 2.1)(p!r, 3)(r?p, 3)(p!q, 4)(q?p, 4.5)(p!r, 6)(q!r, 6)(r?q, 6)(r?p, 7).

Now a family of T-MSCs with the same induced MSC can be specified by timing
constraints on pairs of events of the MSC. This approach is better suited to a specifier
who can then decide and enforce constraints between occurrences of events. As an
example consider Fig. 2(b). The label (0, 1] on message from e1 to f1 specifies the
lower bound and upper bound on the delay of message delivery. The label [1, 5] from
f1 to e′3 represents the bounds on the delay between f1 and e′3 and so on.

The question here is how flexible do we want this timing to be, i.e, between which
pairs of events do we allow constraints. For an MSC M = (E, �, λ), one obvious set
of pairs is given by MsgM which allows us to time messages. A more flexible approach
is to allow timing between the next (or previous) event of any action and an event in the
MSC. For this, we define the relations NextM

σ , PrevM
σ for every σ ∈ Act as follows:

• NextM
σ = {(e, e′) | λ(e′) = σ, e ≺ e′, (e ≺ e′′ ∧ λ(e′′) = σ) =⇒ e′ � e′′}

• PrevM
σ = {(e, e′) | λ(e′) = σ, e′ ≺ e, (e′′ ≺ e ∧ λ(e′′) = σ) =⇒ e′′ � e′}

E.g., in Fig. 2(b), (e2, e4) ∈ NextM
p!r, (f1, e

′
3) ∈ NextM

r?p, and (e4, e3) ∈ PrevM
p!q . Note

that these relations are in fact partial maps and hence one can also write f = NextM
σ (e)

for (e, f) ∈ NextM
σ and similarly for PrevM

σ . In fact MsgM can also been seen as a

Automata and Logics for Timed Message Sequence Charts 293

p q r

e1, 2
e2, 3

e3, 4

e4, 6

f1, 2.1

f2, 4.5
f3, 6

e′
1, 3

e′
2, 6

e′
3, 7

p q r

e1
e2

e3

e4

f1

f2

f3

e′
1

e′
2

e′
3

(0,1]

[0,2][1,4]
[2,4]

[1,5]

(a) (b)

Fig. 2. A T-MSC and a TC-MSC

partial function E ��� E mapping a send event to its corresponding receive in the MSC
M . Further, we remark that these relations can all be defined for a T-MSC T as well.
Since they depend only on the underlying partial order, we write MsgT , NextT

σ , etc.
Let us denote the set of symbols {Msg} ∪ {Prevσ | σ ∈ Act} ∪ {Nextσ | σ ∈

Act} by TC (for timing constraints). For an MSC (or T-MSC) M , we let TCM =⋃
α∈TC(αM) be our set of allowed timing pairs. This is flexible enough to specify

what we need. It also generalizes the approach of D’Souza [9] in the timed words case.
Further, this is similar to the approach adopted by Alur et al. [3] to time MSCs and so
we can use their analysis tool to check consistency of the timing constraints in an MSC.

To specify timing constraints we will use rational bounded intervals over the real
line. These can be open or closed intervals but we require them to be nonempty and the
bounds to be rational. The set of all such intervals is denoted by I.

Definition 2. An MSC with timing constraints (TC-MSC) is a tuple (E, �, λ, τ) where
M = (E, �, λ) is an MSC and τ : TCM ��� I is a partial function. The TC-MSC is
called maximally defined if τ is a total function.

With this definition, TC-MSCs can be considered as abstractions of T-MSCs and timed
words. Let M = (E, �, λ, τ) be a TC-MSC. A T-MSC T = (E, �, λ, t) is a realization
of M if, for all (e, e′) ∈ dom(τ), we have |t(e) − t(e′)| ∈ τ(e, e′). Thus for instance,
the T-MSC in Fig. 2(a) is a realization of the TC-MSC in Fig. 2(b).

3 Logic and Automata for Timed MSCs

Monadic Second-Order Logic. We will define several monadic second-order logics as a
means to describe sets of T-MSCs. Their syntax depends on a set R of (binary) relation
symbols, which settles the access to the partial-order relation of an MSC or T-MSC. One
example is R� = {�, Msg} containing symbols for the partial order and the message
relation. The formal syntax of our logic TMSO(R) is given by:

ϕ ::= Pσ(x) | x ∈ X | x = y | R(x, y) | δ(x, α(x)) ∈ I | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

where σ ∈ Act, R ∈ R, α ∈ TC, I ∈ I, x, y are individual (or first-order) variables,
and X is a set (or second-order) variable (each from an infinite supply of variables).

Let T = (E, �, λ, t) be a T-MSC and let I be an interpretation that maps first-order
variables to elements in E and second-order variables to subsets of E. Let us define

294 S. Akshay, B. Bollig, and P. Gastin

when T, I |= ϕ for ϕ ∈ TMSO(R). As usual, Pσ(x) expresses that x is labeled with σ,
i.e., λ(I(x)) = σ. The novelty is the timing predicate δ(x, α(x)) ∈ I by which we mean
that the time difference between x and αT (x) is contained in I , i.e., T, I |= δ(x, α(x)) ∈
I if I(x) ∈ dom(αT) and |t(I(x)) − t(αT (I(x)))| ∈ I . For the set R of binary relation
symbols we will use R� = {�, Msg} or R≺· = {≺·p | p ∈ Ag} ∪ {Msg}. The
interpretation of ≺·p is the immediate successor relation on process p: ≺·p := ≺p \ ≺p

2.
The interpretation of Msg is indeed MsgT . The rest of the semantics is classical for
MSO logics. For sentences ϕ in this logic, we define Ltime(ϕ) = {T ∈ TMSC |
T |= ϕ}. The existential fragment of TMSO(R), which is denoted by ETMSO(R),
comprises all formulas ∃X1 . . . ∃Xnϕ such that ϕ does not contain any set quantifier.

We will give TMSO formulas a natural semantics in terms of TC-MSCs, too. The
only noteworthy difference is in the atomic predicate δ(x, α(x)) ∈ I . For a TC-MSC
M = (E, �, λ, τ), we define M, I |= δ(x, α(x)) ∈ I if τ(I(x), αM (I(x))) ⊆ I ,
which implicitly implies I(x) ∈ dom(αM) and (I(x), αM (I(x))) ∈ dom(τ). The set
of TC-MSCs that satisfy a TMSO sentence ϕ is denoted by LTC(ϕ). The following
implication is easy to see. Its converse holds in a restricted case, as we will see later.

Lemma 3. Let a T-MSC T be a realization of some TC-MSC M and let ϕ be a TMSO
formula. Then, M ∈ LTC (ϕ) implies T ∈ Ltime(ϕ).

Event-Clock Communicating Finite-State Machines (EC-CFMs). A natural model of
communication protocols are communicating finite-state machines [6], which consist
of finite-state machines with message channels between any pair of them. To introduce
the timed model we attach recording and predicting clocks (as in [2]) to these machines.

Definition 4. An EC-CFM is a tuple A = (C, (Ap)p∈Ag , F) where C is a finite set of
control messages, Ap = (Qp, →p, ιp) is a finite transition system over Actp × [TC ���
I]×C (i.e., ιp ∈ Qp is the initial state and →p is a finite subset of Qp×Actp×[TC ���
I] × C × Qp) with [TC ��� I] denoting the set of partial maps from TC to I, and
F ⊆

∏
p∈Ag Qp is a set of global final states.

The input of an EC-CFM A is a T-MSC T = (E, �, λ, t). Consider a map r : E →⋃
p∈Ag Qp labeling each event of process p with a state from Qp. Define r− : E →⋃
p∈Ag Qp as follows: For event e in process p, if there is an event e′ in process p such

that e′ ≺·p e, then we set r−(e) = r(e′). Otherwise, we set r−(e) = ιp. Then r is said
to be a run of A on T if, for all (e, e′) ∈ MsgT with e in process p and e′ in process q,
there are guards g, g′ ∈ [TC ��� I] and a control message c ∈ C such that

(1) (r−(e), λ(e), g, c, r(e)) ∈ →p and (r−(e′), λ(e′), g′, c, r(e′)) ∈ →q,
(2) for all α ∈ dom(g), we have e ∈ dom(αT) and |t(e) − t(αT (e))| ∈ g(α), and
(3) for all α ∈ dom(g′), we have e′ ∈ dom(αT) and |t(e′) − t(αT (e′))| ∈ g′(α).

Let r be a run of A on T . We define sp = r(ep), where ep is the maximal event in
process p. If there are no events on process p, we set sp = ιp. Then run r is successful
if the tuple (sp)p∈Ag belongs to F . A T-MSC is accepted by an EC-CFM A if it admits
a successful run. We denote by Ltime(A) the set of T-MSCs that are accepted by A.

As in the logic, we can give EC-CFMs a semantics in terms of TC-MSCs as well. For
defining a run on TC-MSC M = (E, �, λ, τ) we just replace condition (2) above by

Automata and Logics for Timed Message Sequence Charts 295

saying that, for all α ∈ dom(g), we must have e ∈ dom(αM) and τ(e, αM (e)) ⊆ g(α).
We do the same for condition (3). Then, with the same notion of acceptance as above,
we can denote the set of all TC-MSCs accepted by a given EC-CFM A as LTC(A).

Lemma 5. Let T be a realization of some TC-MSC M and let A be an EC-CFM. Then,
M ∈ LTC (A) implies T ∈ Ltime(A).

4 Equivalence of EC-CFMs and MSO Logic

In [5], the equivalence between EMSO formulas (with restricted signature) and CFMs
over MSCs has been established. In [11], the equivalence between full MSO formulas
and CFMs over MSCs has been described in the context of bounded channels. We will
lift these theorems to the timed setting, using the concepts from the previous sections.

Theorem 6. Let L be a set of T-MSCs. The following are equivalent:

1. There is an EC-CFM A such that Ltime(A) = L.
2. There is ϕ ∈ ETMSO(R≺·) such that Ltime(ϕ) = L.

The construction of an ETMSO formula from an EC-CFM follows the similar construc-
tions applied, for example, to finite and asynchronous automata. In addition, we have
to cope with guards occurring on local transitions of the given EC-CFM. Assume that
g : TC ��� I is such a guard. To ensure that the timing constraints that come along
with g are satisfied we use the formula

∧
α∈dom(g) δ(x, α(x)) ∈ g(α).

The rest of this section is devoted to the construction of an EC-CFM from an ETMSO
formula, whose size is elementary in the size of the formula. The basic idea is to reduce
this to an analogous untimed result, which has also been applied in the settings of words
and traces [9,10]. For this, we establish a connection between TMSO and ordinary
MSO logic without timing predicate, and between EC-CFMs and their untimed variant.
Usually, these untimed formalisms are parametrized by a finite alphabet Σ to speak
about structures whose labelings are provided by Σ. Hence, in our framework, we need
to find a finite abstraction of the infinite set of possible time stamps. Applying this
finite abstraction, we move from T-MSCs to TC-MSCs and establish the converse of
Lemmas 3 and 5 in Lemmas 8 and 9, resp. This finally allows us to translate ETMSO
formulas into EC-CFMs. We provide more details below.

First, we define proper interval sets. We call a set of intervals S ⊆ I proper if it
forms a finite partition of R

≥0. We say that an interval set refines another interval set if
every interval of the latter is the union of some collection of intervals of the former. For
any finite interval set, we can easily obtain a proper interval set refining it.

Let T = (E, �, λ, t) be a T-MSC and S be a proper interval set. We introduce the
TC-MSC MS

T := (E, �, λ, τ) where, for any (e, e′) ∈ TCT , τ(e, e′) is defined to be
the unique interval of S containing |t(e) − t(e′)|.

Lemma 7. Let T be a T-MSC and let S be a proper interval set. Then, MS
T is the unique

maximally defined TC-MSC that uses intervals from S and admits T as realization.

Given a TMSO formula ϕ, we let Int(ϕ) denote the finite set of intervals I for which
ϕ has a sub-formula of the form δ(x, α(x)) ∈ I . Similarly, for any EC-CFM A, we

296 S. Akshay, B. Bollig, and P. Gastin

have a finite set, denoted Int(A), of intervals occurring in A as guards. Now look at
any proper interval set S that refines Int(ϕ). We can translate the TMSO formula ϕ to
another TMSO formula ϕS by replacing each sub-formula of the form δ(x, α(x)) ∈ I
by the formula

∨
J∈S:J⊆I δ(x, α(x)) ∈ J . Using Lemma 7, we can show the following

Lemmas, which then enable us to prove the reverse direction of Theorem 6.

Lemma 8. Given a T-MSC T , a TMSO formula ϕ, and a proper interval set S that
refines Int(ϕ), we have T |= ϕ iff MS

T |= ϕ iff MS
T |= ϕS .

Lemma 9. Let A be an EC-CFM and let S be a proper interval set that refines Int(A).
For a T-MSC T , we have T ∈ Ltime(A) iff MS

T ∈ LTC (A).

Proof (of Theorem 6, (2) → (1)). Observe that any TC-MSC can be viewed as an MSC
with an additional labeling by removing the intervals from pairs of events and attaching
them to the corresponding events. More precisely, a TC-MSC M = (E, �, λ, τ) can be
represented as an MSC M = (E, �, λ, γ) with additional labeling γ : E → (TC ���
I) describing the timing constraints, i.e., γ(e)(α) = τ(e, αM (e)) if e ∈ dom(αM) and
(e, αM (e)) ∈ dom(τ); otherwise, γ(e)(α) is undefined. This view will allow us to ap-
ply equivalences between logic and automata in the untimed case. So far, however, the
additional labeling γ is over an infinite alphabet, as there are infinitely many intervals
that might act as constraints. So, for any proper interval set S, we define TCMSC(S)
as the set of TC-MSCs M = (E, �, λ, τ) such that τ(e, e′) ∈ S for any (e, e′) ∈
dom(τ). Note that, if M ∈ TCMSC(S) and I ∈ S then M, I |= δ(x, α(x)) ∈ I iff
τ(I(x), αM (I(x))) = I iff γ(I(x))(α) = I . Hence a timing predicate can be trans-
formed into a labeling predicate: for any ϕ ∈ TMSO such that Int(ϕ) ⊆ S, there is an
untimed MSO formula ϕ such that M, I |= ϕ iff M, I |= ϕ for all M ∈ TCMSC(S).
In the following, we denote by Lu(ϕ) the set of MSCs with additional labeling γ that
satisfy an untimed MSO sentence ϕ. We can build an untimed MSO(R≺·) sentence μS≺·
such that Lu(μS≺·) is the set of maximally defined MSCs M = (E, �, λ, γ) with addi-
tional labeling γ using intervals from S, i.e., for all e ∈ E, we have α ∈ dom(γ(e)) iff
e ∈ dom(αM) and in this case γ(e)(α) ∈ S.

Similarly, an EC-CFM A can be interpreted over MSCs with the additional labeling γ
by replacing conditions (2) and (3) of runs by γ(e) = g and γ(e′) = g′, resp. We denote
by Lu(A) the untimed MSCs with additional labeling γ that are accepted by A. Here,
for a TC-MSC M ∈ TCMSC(S) and an automaton A with guards in [TC ��� S], we
have M ∈ Lu(A) implies M ∈ LTC(A). The converse does not hold in general.

Let ϕ ∈ ETMSO(R≺·) be the given formula and let S be a proper interval set that
refines Int(ϕ). Consider the untimed MSO(R≺·)-formula ψ = ϕS ∧ μS≺·. By [5], there
is an EC-CFM A with guards from [TC ��� S] such that Lu(A) = Lu(ψ). We will
show that Ltime(ϕ) = Ltime(A).

Let T be a T-MSC. By Lemma 8 we have T |= ϕ iff MS
T |= ϕS . Since Int(ϕS) ⊆ S

and MS
T ∈ TCMSC(S) we have MS

T |= ϕS iff M
S
T |= ϕS . Now, MS

T is maximally

defined, hence we obtain M
S
T |= μS≺·. Therefore, T ∈ Ltime(ϕ) iff M

S
T ∈ Lu(ψ) =

Lu(A). We have seen above that this implies MS
T ∈ LTC (A). We show that here

the converse holds, too. If MS
T ∈ LTC (A) we can build a TC-MSC M ′ = (E, �

, λ, τ ′) such that dom(τ ′) ⊆ dom(τ), τ ′(e, e′) = τ(e, e′) for all (e, e′) ∈ dom(τ ′), and

Automata and Logics for Timed Message Sequence Charts 297

M
′ ∈ Lu(A). Now, Lu(A) ⊆ Lu(μS≺·) hence M

′
is maximally defined and we obtain

M ′ = MS
T . To summarize, we have shown that T ∈ Ltime(ϕ) iff MS

T ∈ LTC (A), and
we conclude with Lemma 9 that this is equivalent to T ∈ Ltime(A). ��

To characterize EC-CFMs in terms of full TMSO, we need to define restrictions on
the channel size. For an integer B > 0, a word w ∈ Act∗ is B-bounded if, for any
p, q ∈ Ag and any prefix u of w, the number of occurrences of p!q in u exceeds that of
q?p by at most B. An MSC M is said to be existentially B-bounded (∃-B-bounded) if
it has some B-bounded linearization. A T-MSC (E, �, λ, t) is said to be untimed-∃-B-
bounded if (E, �, λ) is ∃-B-bounded. Note that, directly lifting the definition of bounds
from MSCs to T-MSCs is not completely intuitive: there are untimed-∃-1-bounded
T-MSCs whose minimal channel capacity for a timed linearization exceeds 1.

Following the same lines as in the proof of Theorem 6 but using the equivalence
result from [11], we can show the following theorem.

Theorem 10. Let B > 0 and let L be a set of untimed-∃-B-bounded T-MSCs. There is
an EC-CFM A with Ltime(A) = L iff there is ϕ ∈ TMSO(R�) with Ltime(ϕ) = L.
Both directions are effective.

5 Deciding Emptiness of EC-CFMs

In this section, we investigate emptiness checking for EC-CFMs. While the problem is
of course undecidable in its full generality, we give a partial solution to it.

Theorem 11. The following problem is decidable:

INPUT: An EC-CFM A and an integer B > 0.
QUESTION: Is there T ∈ Ltime(A) such that T has a B-bounded timed linearization?

Here, a timed linearization of T is B-bounded if the channel size never exceeds B
during its execution.

We fix an EC-CFM A = (C, (Ap)p∈Ag , F), with Ap = (Qp, →p, ιp), and B > 0.
From A, we build a (finite) timed automaton that accepts a timed word w ∈ (Act ×
R
≥0)∗ iff w is a B-bounded timed linearization of some T-MSC in Ltime(A). As empti-

ness is decidable for finite timed automata [1], we have shown Theorem 11.
Let us first recall the basic notion of a timed automaton. For a set Z of clocks, the set

Form(Z) of clock formulas over Z is given by the grammar ϕ ::= true | false | x ∼
c | x − y ∼ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 where x, y ∈ Z , ∼ ∈ {<, ≤, >, ≥, =}, and c
ranges over R

≥0.
A timed automaton (with ε-transitions) over Σ is a tuple B = (Q, Z, δ, ι, F) where

Q is a set of states, Z is a set of clocks, ι ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ ⊆ Q × (Σ ·∪ {ε}) × Form(Z) × 2Z × Q is the transition relation.
The definition of a run of B and its language L(B) ⊆ (Σ × R

≥0)∗ are as usual.
To keep track of the clock constraints used in A, we need to recover a partial order

from a word. Firstly, the partial order of an MSC can be recovered from any of its
linearizations. If w is a linearization of MSC M , then M is isomorphic to the unique
MSC (E, �, λ) such that E = {u ∈ Act∗ | u �= ε and w = uv for some v} (i.e.,

298 S. Akshay, B. Bollig, and P. Gastin

E is the set of nonempty prefixes of w), λ(uσ) = σ for u ∈ Act∗ and σ ∈ Act ,
and �p = {(u, v) ∈ E × E | u is a prefix of v and λ(u), λ(v) ∈ Actp}. Thus, we
might consider the partial-order relation of M to be a relation over prefixes of a given
linearization of M . We go further to describe deterministic finite automata (DFA) that
actually run on words that are linearizations of an MSC and accept if the first and last
letter of it are related under �, PrevM

σ , or NextM
σ . More precisely, our finite automata

will run on linearizations of MSCs with additional labelings in {0, . . . , B − 1}. We say
that such an MSC (E, �, λ, ρ) (with ρ : E → {0, . . . , B − 1}) is B-well-stamped if,
for any e ∈ E, ρ(e) = |↓e ∩ λ−1(λ(e))| mod B.

Lemma 12. There are DFA C� = (Q�, δ�, s�
0, F

�) and C� = (Q�, δ�, s�
0, F

�) over
Act × {0, . . . , B − 1} with |Q�| = |Q�| = BO(|Ag|2) (for B ≥ 2) such that, for any
w = (σ, m)w′(τ, n) ∈ (Act × {0, . . . , B − 1})∗ and u, v ∈ (Act × {0, . . . , B − 1})∗,
the following holds: If uwv is a linearization of some B-well-stamped MSC M , then

• w ∈ L(C�) iff (u(σ, m)w′(τ, n) , u(σ, m)) ∈ PrevM
σ and

• w ∈ L(C�) iff (u(σ, m) , u(σ, m)w′(τ, n)) ∈ NextM
τ .

From now on, we suppose C� = (Q�, δ�, s�
0, F

�) and C� = (Q�, δ�, s�
0, F

�) from the
above lemma to be fixed. We moreover suppose that the previous automaton C� has a
unique sink state s�

sink , from which there is no final state reachable anymore.

The Timed Automaton. Let us describe a timed automaton B that simulates the
EC-CFM A. To simplify the presentation, we allow infinitely many clocks and infinitely
many states, though on any run only finitely many states and clocks will be seen. Later,
we will modify this automaton in order to get down to finitely many states and clocks.

We use Ind = Act × N as (an infinite) index set. A state of the timed automaton
B = (QB, Z, δ, ιB, FB) will be a tuple st = (s, χ, η, ξ�, ξ�, γ�, γm) where

• s = (sp)p∈Ag ∈
∏

p∈AgQp is a tuple of local states,

• χ : Ag2 → C≤B describes the contents of the channels,
• η : Act → {0, . . . , B − 1} gives the number that should be assigned to the next

occurrence of an action,
• ξ� : Ind ��� Q� and ξ� : Ind ��� Q� associate with “active” indices, states in the

previous and next automata as given by Lemma 12,
• γ� : Ind ��� Int(A) associates next constraints with active indices, and
• γm : Ag2 ×{0, . . . , B −1} ��� Int(A) describes the guards attached to messages.

The initial state is ιB = ((ιp)p∈Ag , χ0, η0, ξ
�
0 , ξ�

0 , γ�
0 , γm

0) where χ0 and η0 map any
argument to the empty word and 0, resp., and the partial maps ξ�

0 , ξ�
0 , γ�

0 , and γm
0 are

nowhere defined. We will use clocks from the (infinite) set Z = {z�
σ,i, z

�
σ,i | (σ, i) ∈

Ind}∪{zm
p,q,i | (p, q, i) ∈ Ag2 ×{0, . . . , B −1}}. Then, δ ⊆ QB×Act ×Form(Z)×

2Z × QB contains ((s, χ, η, ξ�, ξ�, γ�, γm), τ, ϕ, R, (s′, χ′, η′, ξ′�, ξ′�, γ′�, γ′m)) if
there is a local transition (sp, τ, g, c, s′p) ∈ →p on process p such that

• s′r = sr for all r ∈ Ag \ {p}.
• if τ = p!q, then χ′(p, q) = c · χ(p, q) and χ′(r, s) = χ(r, s) for (r, s) �= (p, q).

Automata and Logics for Timed Message Sequence Charts 299

• if τ = p?q, then χ(q, p) = χ′(q, p) · c and χ′(r, s) = χ(r, s) for (r, s) �= (q, p).
• η′(τ) = (η(τ) + 1) mod B and η, η′ coincide on all other actions.
• The states of the previous automata are updated. We initialize a new copy starting

on the current position in order to be able to determine which latter positions are
related with the current one by PrevT

τ . We also reset a corresponding new clock z�
τ,i

(see below). Indeed, all existing copies of C� are updated except those that would
reach the s�

sink state which are released since they will not be needed anymore.

ξ′�(σ, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ�(s�
0, (τ, η(τ))) if σ = τ ∧ i = min(N \ dom(ξ�(σ)))

δ�(ξ�(σ, i), (τ, η(τ))) if (σ, i) ∈ dom(ξ�) ∧
δ�(ξ�(σ, i), (τ, η(τ))) �= s�

sink

undefined otherwise,

• The states of the next automata are updated similarly, starting a new copy of C� for
each action σ such that there is a Nextσ constraint on the local transition. We also
reset corresponding new clocks z�

σ,i (see below).

ξ′�(σ, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ�(s�
0, (τ, η(τ))) if Nextσ ∈ dom(g) ∧ i = min(N \ dom(ξ�(σ)))

δ�(ξ�(σ, i), (τ, η(τ))) if (σ, i) ∈ dom(ξ�) ∧ (σ �= τ ∨

δ�(ξ�(σ, i), (τ, η(τ))) /∈ F �)
undefined otherwise.

• The next guards are updated. Each guard generating a new copy of C� is recorded
with the same new index. Guards that were registered before and are matched by
the current action are released. All other recorded guards are kept unchanged.

γ′�(σ, i) =

⎧
⎪⎨

⎪⎩

g(Nextσ) if Nextσ ∈ dom(g) ∧ i = min(N \ dom(ξ�(σ)))
undefined if σ = τ ∧ ξ′�(τ, i) ∈ F �

γ�(σ, i) otherwise.

• The guards attached to message constraints are updated similarly.

γ′m(r, s, i) =

⎧
⎪⎨

⎪⎩

g(Msg) if Msg ∈ dom(g) ∧ τ = r!s ∧ i = η(τ)
undefined if τ = s?r ∧ i = η(τ)
γm(r, s, i) otherwise.

• The guard ϕ makes sure that all constraints that get matched at the current event
are satisfied. E.g., if the local transition contains a Prevσ constraint, then we have
to check z�

σ,i ∈ g(Prevσ) for the (unique) i such that ξ′�(σ, i) ∈ F �. If there is no
such i then there is no σ in the past of the current event and the Prevσ constraint of
the local transition cannot be satisfied. In this case, we set ϕ to false.

ϕ =
∧

(σ,i) | Prevσ∈dom(g)
and ξ′�(σ,i)∈F �

z�
σ,i ∈ g(Prevσ) ∧

∧

σ | Prevσ∈dom(g)
and {i|ξ′�(σ,i)∈F �}=∅

false

∧
∧

i∈dom(γ�(τ)) |
ξ′�(τ,i)∈F �

z�
τ,i ∈ γ�(τ, i) ∧

∧

(q,p,i)∈dom(γm) |
τ=p?q, η(τ)=i

zm
q,p,i ∈ γm(q, p, i)

300 S. Akshay, B. Bollig, and P. Gastin

• All newly defined clocks have to be reset, so we set R to be the union of sets
{z�

τ,i | i = min(N \ dom(ξ�(τ)))}, {zm
p,q,i | τ = p!q and i = η(τ)}, and {z�

σ,i |
Nextσ ∈ dom(g) and i = min(N \ dom(ξ�(σ)))}.

Finally, the set of accepting states FB consists of all tuples (s, χ, η, ξ�, ξ�, γ�, γm) in
QB such that s ∈ F , χ = χ0, and the partial maps γ� and γm are nowhere defined. This
ensures that each registered guard has been checked. Indeed, a constraint registered in
γ� or γm is released only when it is checked with the guard ϕ.

One critical observation here is that, once we have specified the local transition of
A, this global transition of B gets determined uniquely. Thus, this step is always deter-
ministic. Note that the above automaton B has no ε-transitions either.

Theorem 13. B accepts precisely the B-bounded timed linearizations of Ltime(A).

A Finite Version of B. To get down to a finite timed automaton that is equivalent to B,
we have to bound the number of copies of the automata C� and C� that are active along
a run. We can show that the number of active copies of C� is already bounded:

Proposition 14. Assume that (s, χ, η, ξ�, ξ�, γ�, γm) is a reachable state of B. Then,
dom(ξ�) ⊆ Act × {0, . . . , |Q�|}.

We deduce that, for the previous constraints, we can restrict to the finite index set
Ind� = Act × {0, . . . , |Q�|}: in a reachable state, ξ� is a partial map from Ind� to Q�.
This also implies that B uses finitely many previous clocks from {z�

σ,i | (σ, i) ∈ Ind�}.
The remaining source of infinity comes from next constraints. The situation is not as

easy as for previous constraints. The problem is that the number of registered Nextσ

constraints, |dom(γ�)|, may be unbounded. Assume that (σ, i), (σ, j) ∈ dom(γ�) for
some i �= j. Then, also (σ, i), (σ, j) ∈ dom(ξ�) and the clocks z�

σ,i and z�
σ,j have been

reset. If we have ξ�(σ, i) = ξ�(σ, j) then the constraints associated with i and j will be
matched simultaneously. When matched, the guard on the transition of B will include
both z�

σ,i ∈ γ�(σ, i) and z�
σ,j ∈ γ�(σ, j). The idea is to keep the stronger constraint and

to release the other one. To determine the stronger constraint we have to deal separately
with the upper parts and the lower parts of the constraints. An additional difficulty
comes from the fact that the two clocks have not been reset simultaneously.

Let x ∼ c and x′ ∼′ c′ be two upper-guards which means that ∼, ∼′ ∈ {<, ≤}. We
say that x ∼ c is stronger than x′ ∼′ c′ if, when evaluated at the same instant, x ∼ c
holds implies x′ ∼′ c′ holds as well. The stronger constraint can be determined with
a diagonal guard: x ∼ c is stronger than x′ ∼′ c′ if either x′ − x < c′ − c or else
x′ − x ≤ c′ − c and (∼ = < or ∼′ = ≤). The relation stronger than is transitive and
total among upper-guards. We can define similarly stronger than for lower-guards, i.e,
when ∼, ∼′ ∈ {>, ≥}. We have x ∼ c stronger than x′ ∼′ c′ if either x′ − x > c′ − c
or else x′ − x ≥ c′ − c and (∼ = > or ∼′ = ≥).

Now, we get back to our problem and show how to change B so that the size of
dom(ξ�) in a state st = (s, χ, η, ξ�, ξ�, γ�, γm) can be bounded by |Act | · (2|Q�| + 1).
Note that dom(γ�) = dom(ξ�). A transition of B may initiate at most |Act | new copies
of C� (one for each σ ∈ Act such that Nextσ ∈ dom(g). Hence, we say that state st is
safe if for all σ ∈ Act we have |dom(ξ�(σ))| ≤ 2|Q�|. The transitions of B are kept in
the new automaton B′ only when they start in a safe state.

Automata and Logics for Timed Message Sequence Charts 301

If st is not safe, then |{i | ξ�(σ, i) = q}| > 2 for some σ ∈ Act and q ∈ Q�. In this
case, we say that st is unsafe for (σ, q) and let Active(σ, q) = {i | ξ�(σ, i) = q}.

If Active(σ, q) �= ∅, let iu ∈ Active(σ, q) be such that the upper-guard defined
by z�

σ,iu
∈ γ�(σ, iu) is stronger than all upper-guards defined by z�

σ,j ∈ γ�(σ, j) for
j ∈ Active(σ, q). Further, let i
 ∈ Active(σ, q) be defined similarly for lower-guards.

From the definition of the relation stronger than we know that all constraints z�
σ,j ∈

γ�(σ, j) for j ∈ Active(σ, q) are subsumed by the conjunction of z�
σ,i�

∈ γ�(σ, i
) and
z�

σ,iu
∈ γ�(σ, iu). Therefore, we can release all next constraints associated with (σ, j)

with j ∈ Active(σ, q) \ {i
, iu}.
To do this, we add to B′ an ε-transition (st, ϕ(σ, q, i
, iu), ε, ∅, st′). The guard should

evaluate to true if i
 and iu determine stronger lower- and upper-constraints among
those defined by Active(σ, q). Since the relation stronger than can be expressed with
diagonal constraints, we have ϕ(σ, q, i
, iu) ∈ Form(Z). We have that, in state st′ =
(s, χ, η, ξ�, ξ′�, γ′�, γm), only the next information is changed:

γ′�(τ, i) =

{
undefined if τ = σ and i ∈ Active(σ, q) \ {i
, iu}
γ�(τ, i) otherwise

ξ′�(τ, i) =

{
undefined if τ = σ and i ∈ Active(σ, q) \ {i
, iu}
ξ�(τ, i) otherwise.

Then, {i | ξ′�(σ, i) = q} = {i
, iu} and st′ is safe for (σ, q).
We deduce that in the automaton B′, we can restrict to the finite index set Ind� =

Act × {0, . . . , 2|Q�|} for the partial maps ξ� and γ� used for the next constraints. Con-
sequently, B′ uses finitely many next clocks from {z�

σ,i | (σ, i) ∈ Ind�}. The following
proves Theorem 11, from which we deduce a decidability result for our logic.

Theorem 15. The timed automaton B′ is finite. It has BO(|Ag|2) many clocks (for B ≥
2), and we have L(B′) = L(B).

Corollary 16. The following problem is decidable:

INPUT: ϕ ∈ TMSO(R�) and an integer B > 0.
QUESTION: Is there T ∈ Ltime(ϕ) such that T has a B-bounded timed linearization?

Acknowledgment. We thank Martin Leucker for motivating discussions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of timed

automata. TCS 211(1-2), 253–273 (1999)
3. Alur, R., Holzmann, G., Peled, D.: An analyser for message sequence charts. In: Margaria,

T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer, Heidelberg (1996)
4. Ben-Abdallah, H., Leue, S.: Timing constraints in message sequence chart specifications. In:

Proc. of FORTE 1997, pp. 91–106 (1997)
5. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to EMSO

logic. TCS 358(2-3), 150–172 (2006)

302 S. Akshay, B. Bollig, and P. Gastin

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2)
(1983)

7. Büchi, J.: Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math. 5,
66–72 (1960)

8. Chandrasekaran, P., Mukund, M.: Matching scenarios with timing constraints. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 91–106. Springer, Heidelberg
(2006)

9. D’Souza, D.: A logical characterisation of event clock automata. International Journal of
Foundations of Computer Science 14(4), 625–640 (2003)

10. D’Souza, D., Thiagarajan, P.S.: Product interval automata: A subclass of timed automata. In:
Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) Foundations of Software Technology
and Theoretical Computer Science. LNCS, vol. 1738, pp. 60–71. Springer, Heidelberg (1999)

11. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for
existentially bounded communicating automata. IC 204(6), 920–956 (2006)

12. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A theory of reg-
ular MSC languages. IC 202(1), 1–38 (2005)

13. Krcal, P., Yi, W.: Communicating timed automata: The more synchronous, the more difficult
to verify. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 243–257. Springer,
Heidelberg (2006)

Propositional Dynamic Logic for

Message-Passing Systems

Benedikt Bollig1, Dietrich Kuske2, and Ingmar Meinecke2

1 LSV, ENS Cachan, CNRS
61, Av. du Président Wilson, F-94235 Cachan Cedex, France

bollig@lsv.ens-cachan.fr
2 Institut für Informatik, Universität Leipzig

PF 100920, D-04009 Leipzig, Germany
{kuske,meinecke}@informatik.uni-leipzig.de

Abstract. We examine a bidirectional Propositional Dynamic Logic
(PDL) for message sequence charts (MSCs) extending LTL and TLC−.
Every formula is translated into an equivalent communicating finite-state
machine (CFM) of exponential size. This synthesis problem is solved in
full generality, i.e., also for MSCs with unbounded channels. The model
checking problems for CFMs and for HMSCs against PDL formulas are
shown to be in PSPACE for existentially bounded MSCs. It is shown that
CFMs are to weak to capture the semantics of PDL with intersection.

1 Introduction

Messages sequence charts (MSCs) are an important formalism describing the
executions of message-passing systems. They are a common notation in telecom-
munication and defined by an ITU standard [14]. A significant task is to verify
system requirements. The model checking problem asks for an algorithm that
decides whether, given a formula ϕ of a suitable logic and a finite machine A,
every behavior of A satisfies ϕ. There exist a few such suitable temporal logics.
Meenakshi and Ramanujam proposed temporal logics over Lamport diagrams
(which are similar to MSCs) [17,18]. Peled [19] considered TLC− introduced
in [1] for Mazurkiewicz traces. Like these logics, our logic PDL is interpreted di-
rectly over MSCs, not over linearizations; it combines elements from [18] (global
next operator, past operators) and [19] (global next operator, existential in-
terpretation of the until-operator). The ability to express properties of paths
as regular expressions is also present in Henriksen and Thiagarajan’s dynamic
LTL [12,13], an extension of LTL for traces. Differently from their approach, our
path expressions are not bound to speak about the events of a single process,
but they can move from one process to another. Moreover, we provide past op-
erators to judge about events that have already been executed. We call our logic
PDL as it is essentially the original propositional dynamic logic as first defined
by Fischer and Ladner [8] but here in the framework of MSCs.

Already for very restrictive temporal logics, the model checking problem be-
comes undecidable [18]. In [19,15,11,10], however, it was tackled successfully

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 303–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 B. Bollig, D. Kuske, and I. Meinecke

for several logics by restricting to existentially B-bounded MSCs, which can be
scheduled such that the channel capacity respects a given size B. As a first step,
[19,15,10] translate formulas into machine models such that the semantics of the
formula and the machine coincide for existentially B-bounded MSCs (or their
linearizations). In the early stages of system design it seems more natural not
to fix a channel size B but to implement the entire semantics of ϕ. We therefore
construct, from a PDL formula ϕ, a communicating finite-state machine (CFM,
[5]) Aϕ such that L(ϕ) = L(Aϕ) wrt. the class of all (finite and infinite) MSCs.

In the literature, one finds several techniques to construct an automaton from
a temporal formula: One can use a tableau construction (cf. [7]), an incremen-
tal tableau (cf. [6]), or alternating automata [20]. Here, we use an inductive
method [9]: The events of an MSC are colored by additional bits, one for each
subformula of ϕ. Then we construct, for each such subformula γ, a CFM Aγ

whose task it is to check that the bit corresponding to γ is set at precisely
those nodes where γ holds. For this, the CFM Aγ reads the bits correspond-
ing to the top-level subformulas of γ. The overall CFM is obtained by running
synchronously all the CFMs arising from the subformulas.

A typical subformula in PDL is γ = 〈π〉 tt expressing that there is a finite
path starting in the current vertex that obeys the regular expression π. The
construction of a CFM for such a subformula turns out to be the most difficult
part. The basic idea is to start, in the current node v, a finite automaton C
that accepts the language of π and to ensure that C will eventually reach an
accepting state in some event v′. To ensure that this obligation is not propagated
forever, we adopt and extend the solution for sequential systems [13]: The MSC
is colored nondeterministically by two colors. Then a CFM checks that, along
each and every path, the color changes infinitely often (this is possible although
acceptance in a CFM refers to those paths that stay in one single process, only).
Then the path from v to v′ is allowed to change color at most once.

Altogether, we construct, for every PDL formula ϕ, an equivalent CFM Aϕ

that is exponential in the size of ϕ and the number of processes. Given another
CFM B, we then build a CFM A from Aϕ and B with L(A) = L(ϕ) ∩ L(B).
Note that up to now, no restriction on the channel capacity is imposed. Finally,
we decide whether A accepts some existentially B-bounded MSC. Only in this
decision step, the bound B is used. We also show how to model check high-level
MSCs (HMSCs) against PDL formulas. Both these model checking algorithms
run in space polynomial in the size of the formula and of the CFM, and in the
bound B. Since the logic TLC− of Peled is a fragment of PDL, we generalize
the model checking result from [19] and provide a different algorithm.

By [4,2], existential MSO logic is expressively equivalent to CFMs, and the
set of CFM-languages is not closed under complementation. Since, on the other
hand, PDL does not impose any restriction on the use of negation, we obtain
that PDL is a proper fragment of existential MSO although this is not obvious.

The final technical section considers an enriched logic iPDL (PDL with in-
tersection) where a node might be described by the intersection of two different
paths. This extension strengthens the expressive power of the formulas. But

Propositional Dynamic Logic for Message-Passing Systems 305

adapting a proof technique from colored grids [16], we show that there is an
iPDL-formula ϕ such that no CFM accepts precisely the semantics of ϕ.

A full version of this paper is available [3].

2 Definitions

The communication framework used in our paper is based on sequential pro-
cesses that exchange asynchronously messages over point-to-point, error-free
FIFO channels. Let P be a finite set of process identities which we fix through-
out this paper. Furthermore, let Ch = {(p, q) ∈ P2 | p �= q} denote the set of
channels. Processes act by either sending a message from p to q (denoted p!q), or
by receiving a message at p from q (denoted by p?q). For any process p ∈ P , we
define a local alphabet Σp = {p!q, p?q | q ∈ P \ {p}}, and we set Σ =

⋃
p∈P Σp.

2.1 Message Sequence Charts

Message sequence charts are special labeled partial orders. To define them, we
need the following definitions: A Σ-labeled partial order is a triple M = (V, ≤, λ)
where (V, ≤) is a partially ordered set and λ : V → Σ is a mapping. For v ∈ V
with λ(v) = pθq where θ ∈ {!, ?}, let P (v) = p denote the process that v is
located at. We define two binary relations proc and msg on V setting

– (v, v′) ∈ proc iff P (v) = P (v′), v < v′, and, for any u ∈ V with P (v) = P (u)
and v ≤ u < v′, we have v = u,

– (v, v′) ∈ msg iff there is a channel (p, q) with λ(v) = p!q, λ(v′) = q?p, and
|{u | λ(u) = p!q, u ≤ v}| = |{u | λ(u) = q?p, u ≤ v′}|.

Definition 2.1. A message sequence chart or MSC for short is a Σ-labeled
partial order (V, ≤, λ) such that

– ≤ = (proc ∪ msg)∗,
– {u ∈ V | u ≤ v} is finite for any v ∈ V ,
– P−1(p) ⊆ V is linearly ordered for any p ∈ P, and
– |λ−1(p!q)| = |λ−1(q?p)| for any (p, q) ∈ Ch.

We refer to the elements of V as events or nodes.

If (V, ≤, λ) is an MSC, then proc and msg are even partial and injective functions,
so v′ = proc(v) as well as v = proc−1(v′) are equivalent notions for (v, v′) ∈ proc;
msg(v) and msg−1(v) are to be understood similarly.

2.2 Propositional Dynamic Logic (PDL)

Path expressions π and local formulas α are defined by simultaneous induction.
This induction is described by the following rules

π ::= proc | msg | {α} | π; π | π + π | π∗

α ::= tt | σ | α ∨ α | ¬α | 〈π〉 α | 〈π〉−1
α

where σ ranges over the alphabet Σ.

306 B. Bollig, D. Kuske, and I. Meinecke

Local formulas express properties of single nodes in MSCs. To define the
semantics of local formulas, let therefore M = (V, ≤, λ) be an MSC and v a node
from M . Then we define, for σ ∈ Σ, M, v |= σ iff λ(v) = σ; M, v |= α1 ∨ α2 and
M, v |= ¬α are defined in the obvious manner. The semantics of forward -path
expressions 〈π〉α is given by

M, v |= 〈proc〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ proc and M, v′ |= α

M, v |= 〈msg〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ msg and M, v′ |= α

M, v |= 〈{α}〉β ⇐⇒ M, v |= α and M, v |= β

M, v |= 〈π1; π2〉α ⇐⇒ M, v |= 〈π1〉 〈π2〉 α

M, v |= 〈π1 + π2〉α ⇐⇒ M, v |= 〈π1〉 α or M, v |= 〈π2〉α

M, v |= 〈π∗〉α ⇐⇒ there exists n ≥ 0 with M, v |= (〈π〉)nα

The base cases for the semantics of backward -path expressions 〈π〉−1
α are de-

fined similarly by

M, v |= 〈proc〉−1
α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ proc and M, v′ |= α

M, v |= 〈msg〉−1
α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ msg and M, v′ |= α.

Replacing 〈.〉 with 〈.〉−1 in the remaining clauses completes the definition of the
semantics of local formulas.

Semantically, a local formula of the form 〈({α}; (proc+msg))∗〉β corresponds
to the until construct αUβ in Peled’s TLC−. In TLC−, however, one cannot
express properties such as “there is an even number of messages from p to q”,
which is certainly expressible in PDL.

Global formulas of PDL are positive Boolean combinations of formulas Eα and
Aα where α is a local formula. Here, Eα expresses the existence of some node
satisfying α while Aα says that α holds at all nodes. Because of this existential
and universal quantification, the expressible global properties are closed under
negation.

A local formula β is a subformula of a local formula α if it is a subformula
of α (seen as Boolean combination of forward- and backward-path formulas), or
if β is a subformula of some formula γ such that 〈π〉 γ or 〈π〉−1 γ is a subformula
of α or such that {γ} appears in some path expression in α. We denote the set
of subformulas of α by sub(α).

2.3 Communicating Finite-State Machines

This section defines CFMs [5], i.e., our model of a distributed system, together
with its behavior.

Definition 2.2. A communicating finite-state machine (CFM) is a tuple A =
(C, n, (Ap)p∈P , F) with n ≥ 0 where

Propositional Dynamic Logic for Message-Passing Systems 307

– C is a finite set of message contents or control messages,
– Ap = (Sp, →p, ιp) is a finite labeled transition system over the alphabet Σp ×

{0, 1}n × C for any p ∈ P with initial state ιp ∈ Sp,
– F ⊆

∏
p∈P Sp is a set of global final states.

A run of A on (M, c) (with M = (V, ≤, λ) an MSC and c : V → {0, 1}n,
which can be seen as an n-tuple of mappings V → {0, 1}) is a pair of mappings
ρ : V →

⋃
p∈P Sp and μ : V → C such that, for any v ∈ V ,

1. μ(v) = μ(msg(v)) if msg(v) is defined,
2. (ρ(proc−1(v)), λ(v), c(v), μ(v), ρ(v)) ∈ →P (v) if proc−1(v) is defined, and

(ιp, λ(v), c(v), μ(v), ρ(v)) ∈ →P (v) otherwise.

Since, even in an infinite MSC, some of the processes may execute only finitely
many events, acceptance of a run will depend on the set of states appearing
cofinally [2]: let cofinρ(p) = {ιp} if Vp = ∅, and cofinρ(p) = {s ∈ Sp | ∀v ∈
Vp ∃v′ ∈ Vp : v ≤ v′ ∧ ρ(v′) = s} if Vp �= ∅, where Vp = P−1(p). Then the
run (ρ, μ) is accepting if there is some (sp)p∈P ∈ F such that sp ∈ cofinρ(p) for
all p ∈ P . The language of A is the set L(A) of all pairs (M, c) that admit an
accepting run.

3 Translation of Formulas

Let α be a local formula of PDL. We will construct a “small” CFM that accepts
(M, (cβ)β∈sub(α)) iff, for all positions v ∈ V and all subformulas β of α, we have
M, v |= β iff cβ(v) = 1. This CFM will consist of several CFMs running in
conjunction, one for each subformula. For instance, if σ ∈ Σ and δ = β ∨ γ are
subformulas of α, then we will have sub-CFMs that check for every position v
whether cσ(v) = 1 iff λ(v) = σ and cδ(v) = cβ(v)∨cγ(v), resp. Similarly, for each
subformula ¬β, a sub-CFM checks c¬β(v) �= cβ(v) for each position v. While the
construction of these sub-CFMs is rather straightforward, more work has to be
invested for subformulas of the form 〈π〉α and 〈π〉−1 α. Since these formulas are
equivalent to 〈π; {α}〉 tt and 〈π; {α}〉−1

tt, respectively, we will only deal with the
latter ones.

3.1 The Backward-Path Automaton

Let π be a path expression, i.e., a regular expression over some alphabet Γ =
{proc, msg, {α1}, . . . , {αn}}. A word W ∈ Γ ∗ together with a node v from an
MSC M describe a path starting in that node that walks backwards. The let-
ters proc and msg denote the direction of the path, the letters {αi} denote
requirements about the node currently visited, i.e., that αi shall hold or, equiv-
alently, that ci(v) = 1 (where we write ci instead of cαi). The existence of such
a backward-path is denoted (M, c1, . . . , cn), v |=−1 W.

Now let C = (Q, ι, δ, G) be a finite automaton over Γ accepting the language of
the regular expression π. Then we can naturally build a first CFM A1 with sets of
local states 2Q such that the following are equivalent for all MSCs M = (V, ≤, λ),
all mappings ci : V → {0, 1}, and all mappings ρ : V → 2Q:

308 B. Bollig, D. Kuske, and I. Meinecke

– ρ is the state mapping of some run of A1 on (M, c1, . . . , cn)
– for all v ∈ V and q ∈ Q, we have q ∈ ρ(v) iff there exists W ∈ Γ ∗ with

q
W−→C G and (M, c1, . . . , cn), v |=−1 W .

From A1, we obtain a CFM A〈π〉−1tt accepting (M, c1, . . . , cn, c) iff A1 has a run
on (M, c1, . . . , cn) such that, for all v ∈ V , we have c(v) = 1 iff ι ∈ ρ(v) (i.e., iff
there exists W ∈ L(C) with (M, c1, . . . , cn), v |=−1 W). This construction proves

Theorem 3.1. Let 〈π〉−1
tt be a local formula such that π is a regular expression

over the alphabet {proc, msg, {α1}, . . . , {αn}}. Then there exists a CFM A〈π〉−1tt

with the following property: Let M be an MSC and let ci : V → {0, 1} be the
characteristic function of the set of positions satisfying αi (for all 1 ≤ i ≤ n).
Then (M, c1, . . . , cn, c) is accepted by A〈π〉−1tt iff c is the characteristic function
of the set of positions satisfying 〈π〉−1 tt.

3.2 The Forward-Path Automaton

We now turn to a similar CFM corresponding to subformulas of the form 〈π〉 tt.
We will prove the following analog to Theorem 3.1. This proof will, however, be
substantially more difficult.

Theorem 3.2. Let 〈π〉 tt be a local formula such that π is a regular expression
over the alphabet Γ = {proc, msg, {α1}, . . . , {αn}}. Then there exists a CFM
A〈π〉tt with the following property: Let M be an MSC and let ci : V → {0, 1} be
the characteristic function of the set of positions satisfying αi (for all 1 ≤ i ≤ n).
Then (M, c1, . . . , cn, c) is accepted by A〈π〉tt iff c is the characteristic function of
the set of positions satisfying 〈π〉 tt.

The rest of this section is devoted to the proof of this theorem. Let C =(Q, ι, T, G)
be a finite automaton over Γ that accepts the language of the regular
expression π.

Let W ∈ Γ ∗, M = (V, ≤, λ) an MSC, and v ∈ V . These data describe a
forward -path starting in v where the letters proc and msg denote the direction
and the letters {αi} requirements on the current node (i.e., that αi shall hold).
We denote the existence of such a forward path with (M, c1, . . . , cn), v |= W .

In order to prove Theorem 3.2, it therefore suffices to construct a CFM that
accepts (M, c1, . . . , cn, c) iff

∀v ∈ V : c(v) = 0 =⇒ ∀W ∈ L(C) : (M, c1, . . . , cn), v �|= W (1)
∧ ∀v ∈ V : c(v) = 1 =⇒ ∃W ∈ L(C) : (M, c1, . . . , cn), v |= W. (2)

Since the class of languages accepted by CFMs is closed under intersection, we
can handle the two implications separately (cf. Prop. 3.3 and 3.6 below).

Proposition 3.3. There exists a CFM A0 that accepts (M, c1, . . . , cn, c) iff (1)
holds.

Propositional Dynamic Logic for Message-Passing Systems 309

Proof. The basic idea is rather simple: whenever the CFM encounters a node v
with c(v) = 0, it will start the automaton C (that accepts the language of the
regular expression π) and check that it cannot reach an accepting state whatever
path we choose starting in v. Since the CFM has to verify more than one 0 and
since C is nondeterminsitic, the set of local states Sp equals 2Q\G with initial
state ιp = ∅ for any p ∈ P . ��

It remains to construct a CFM that checks (2). Again, the basic idea is simple:
whenever the CFM encounters a node v with c(v) = 1 (i.e., a node that is sup-
posed to satisfy 〈π〉 tt), it will start the automaton C (that accepts the language
of the regular expression π) and check that it can reach an accepting state along
one of the possible paths. Before, we had to prevent C from reaching an accepting
state. This time, we have to ensure that any verification of a claim c(v) = 1 will
eventually result in an accepting state being reached.

To explain our construction, suppose M = (V, ≤, λ) to be an MSC and
c1, . . . , cn, c : V → {0, 1} to be mappings. In order to verify (2), any node
v ∈ V with c(v) = 1 forms an obligation, namely the obligation to find a word
W ∈ L(C) such that (M, c1, . . . , cn), v |= W . This obligation is either satisfied
immediately or propagated to the successors of v, i.e., to the nodes proc(v) or
msg(v) (provided, they exist). Thus, every node from V obtains a set O of obli-
gations in the form of states of the finite automaton C. The crucial point now is
to ensure that none of these obligations is propagated forever. To this aim, the
set of obligations is divided into two sets O1 and O2. In general, the obligations
from O1 at node v are satisfied or propagated to the obligations from O1 at the
node msg(v) or proc(v). Similarly, obligations from O2 are propagated to O2; in
addition, newly arising obligations (in the form of nodes v with c(v) = 1) are
moved into O2. The only exception from this rule is the case O1 = ∅, i.e., all
“active” obligations are satisfied. In this case, all of O2 can be moved to O1.
Then, the run of the CFM is accepting iff, along each path in the MSC, the
exceptional rule is applied cofinally.

The problem arising here is that the success of a run of a CFM refers to
paths along a single process, only. Hence, infinite paths that change process
infinitely often cannot be captured directly. A solution is to guess an additional
0-1-coloring c0 such that no path can stay in one color forever, and to allow a
color change only if the exceptional rule is applied.

Thus, we are left with the task to construct a CFM accepting (M, c0) if no
infinite path in M stays monochromatic eventually (it is actually sufficient to
accept only such pairs, but not necessarily all, but sufficiently many). To achieve
this goal, we proceed as follows.

Let M be an MSC and c0 : V → {0, 1}. On V , we define an equivalence
relation ∼ whose equivalence classes are the maximal monochromatic intervals
on a process line.

Let Col be the set of all pairs (M, c0) with c0 : V → {0, 1} such that the
following hold

310 B. Bollig, D. Kuske, and I. Meinecke

(1) if v is minimal on its process, then c0(v) = 1
(2) if (v, v′) ∈ msg and w′ ≤ v′ with P (w′) = P (v′), then there exists (u, u′) ∈

msg with λ(u′) = λ(v′), c0(u) = c0(u′), and u′ ∼ w′

(3) any equivalence class of ∼ is finite.

In general, there can be messages (u, u′′) ∈ msg such that the colors of u and
u′′ are different, i.e., c0(u) �= c0(u′′). Condition (2) ensures that there are also
many messages (u, u′) with c0(u) = c0(u′). More precisely, looking at the event
w′ on process q, process q will receive in the future a message from process p
(at the event v′). Then the requirement is that process q receives some message
from process p (a) in the ∼-equivalence class of w′ such that (b) sending and
receiving of this message have the same color.

Given the above conditions (1–3), it is almost immediate to check that Col
can be accepted by some CFM:

Lemma 3.4. There exists a CFM ACol that accepts the set Col.

The main consequence of (1–3) is the following whose proof is elementary but
not trivial:

Lemma 3.5. Let (M, c0) ∈ Col and let (v1, v2, . . .) be some infinite path in M .
Then there exist infinitely many i ∈ N with c0(vi) �= c0(vi+1).

Proof. The crucial point is the following: Let (v, v′) ∈ msg be some message such
that the numbers of mutually non-equivalent nodes on the process lines before
v and v′, resp., are different. Then one obtains c0(v) �= c0(v′). ��

These two lemmas and the ideas explained above prove

Proposition 3.6. There exists a CFM A1 that accepts (M, c1, . . . , cn, c) iff (2)
holds.

3.3 The Overall Construction

Theorem 3.7. Let α be a local formula of PDL. Then one can construct a
CFM B such that (M, c) is accepted by B iff c : V → {0, 1} is the characteristic
function of the set of positions that satisfy α.

Proof. One first constructs a CFM A that accepts (M, (cβ)β∈sub(α)) iff

(1) cσ(v) = 1 iff λ(v) = σ for all v ∈ V and σ ∈ sub(α) ∩ Σ
(2) cγ∨δ(v) = max(cγ(v), cδ(v)) for all v ∈ V and γ ∨ δ ∈ sub(α)
(3) c¬γ(v) �= cγ(v) for all v ∈ V and ¬γ ∈ sub(α)
(4) A〈π〉γ accepts (M, cα1 , . . . , cαn , cγ , c〈π〉γ) for all formulas 〈π〉 γ ∈ sub(α)

where α1, . . . , αn are those local formulas for which {αi} appears in the
path expression π (cf. Theorem 3.2)

(5) A〈π〉−1γ accepts (M, cα1 , . . . , cαn , cγ , c〈π〉−1γ) for all 〈π〉−1 γ ∈ sub(α) where
α1, . . . , αn are those local formulas for which {αi} appears in the path ex-
pression π (cf. Theorem 3.1).

Propositional Dynamic Logic for Message-Passing Systems 311

This can be achieved since the intersection of CFM-languages can be accepted
by a CFM. The CFM B guesses the missing labelings cβ for β ∈ sub(α) \ {α}
and simulates A. ��
Recall that a global formula is a positive Boolean combination of formulas of
the form Eα and Aα where α is a local formula. Note that the sets of pairs
(M, c) with c(v) = 1 for at least one event (for all events, resp.) v ∈ V can be
accepted by CFMs. This, together with a careful analysis of the size of the CFMs
constructed so far, leads to the following corollary:

Corollary 3.8. Let ϕ be a global formula of PDL. Then one can construct a
CFM A that accepts M iff M |= ϕ. The numbers of local states and of control
messages of A belong to 2O((|ϕ|+|P|)2).

4 Model Checking

4.1 CFMs vs. PDL Specifications

We aim at an algorithm that decides whether, given a global formula ϕ and a
CFM A, every MSC from L(A) satisfies ϕ. The undecidability of this problem
can be shown following, e.g., the proof in [18] (the ideas from that paper can
easily be transferred to our setting from Lamport diagrams and the fragment
LD0 of PDL). To gain decidability, we follow the successful approach of, e.g.,
[15,11,10], and restrict attention to existentially B-bounded MSCs from L(A).

Let M = (V, ≤, λ) be an MSC. A linearization of M is a linear order � ⊇ ≤
on V of order type at most ω, which we identify with a finite or infinite word
from Σ∞.

A word w ∈ Σ∞ is B-bounded (where B ∈ N) if, for any (p, q) ∈ Ch and
any prefix u of w, 0 ≤ |u|p!q − |u|q?p ≤ B where |u|σ denotes the number of
occurrences of σ in u. An MSC M is existentially B-bounded if it admits a
B-bounded linearization.

The CFM A can be translated into a finite transition system that accepts pre-
cisely the B-bounded linearizations of MSCs accepted by A. Any configuration
of this transition system consists of

– the buffer contents (i.e., |Ch| many words over C of length at most B),
– a local state per process,
– one channel (i.e., a pair from Ch),
– a global state that is accepting in A, and
– a counter whose value is bounded by |Ch| + |P| in order to handle multiple

Büchi-conditions.

Hence a single configuration can be stored in space O(log(|P|+|Ch|)+|P| log n+
|Ch|B log |C| + log |Ch|) where n is the number of local states per process. This
therefore also describes the space requirement for deciding whether the CFM A
accepts at least one existentially B-bounded MSC.

Since the number of local states per process as well as that of messages of
the CFM in Cor. 3.8 is exponential, we obtain the following result on the model
checking of a CFM vs. a PDL specification:

312 B. Bollig, D. Kuske, and I. Meinecke

Theorem 4.1. The following is PSPACE-complete:

Input: B ∈ N (given in unary), CFM B, and a global formula ϕ ∈ PDL.
Question: Is there an existentially B-bounded MSC M ∈ L(B) with M |= ϕ?

Hardness follows from PSPACE-hardness of LTL-model checking.

4.2 HMSCs vs. PDL Specifications

In [19], Peled provides a PSPACE model checking algorithm for high-level mes-
sage sequence charts (HMSCs) against formulas of the logic TLC−, a fragment
of PDL. Now, we aim to model check an HMSC against a global formula of PDL,
and, thereby, to generalize Peled’s result.

Definition 4.2. An HMSC H = (S, →, s0, �, M) is a finite, directed graph
(S, →) with initial node s0 ∈ S, M a finite set of finite MSCs, and a label-
ing function � : S → M.

To define the semantics of an HMSC H, one replaces the MSCs �(s) by an ar-
bitrary linearization and then concatenates the words along a maximal initial
path in H. Then an MSC M is accepted by H (i.e., belongs to L(H)) if one of
its linearizations belongs to this word language L ⊆ Σ∞. Note that there is nec-
essarily some B ∈ N such that all words in L are B-bounded. Furthermore, this
number B can be computed from H. Now construct, as above, from the CFM A
from Cor. 3.8 the finite transition system that accepts all B-bounded lineariza-
tions of MSCs satisfying the global formula ϕ. Considering the intersection of
the language of this transition system with L allows us to prove

Theorem 4.3. The following problem is PSPACE-complete:

Input: An HMSC H and a global formula ϕ ∈ PDL.
Question: Is there an MSC M ∈ L(H) with M |= ϕ?

5 PDL with Intersection

PDL with intersection (or iPDL) allows, besides the local formulas of PDL, also
local formulas 〈π1 ∩ π2〉α where π1 and π2 are path expressions and α is a local
formula. The intended meaning is that there exist two paths described by π1

and π2, respectively, that both lead to the same node w where α holds. We show
that this extends the expressive power of PDL beyond that of CFMs.

To show this result more easily, we also allow atomic propositions of the form
(a, b) with a, b ∈ {0, 1}; they are evaluated over an MSC M = (V, ≤, λ) together
with a mapping c : V → {0, 1}2. Then (M, c), v |= (a, b) iff c(v) = (a, b). Let
P = {0, 1} be the set of processes. For m ≥ 1, we first fix an MSC Mm =
(Vm, ≤, λ) for the remaining arguments: On process 0, it executes the sequence
(0!1)m((0?1)(0!1))ω. The sequence of events on process 1 is (1?0) ((1?0) (1!0))ω

(cf. Fig. 1). The send-events on process 0 are named in {0, 1, . . . , m − 1} × ω as

Propositional Dynamic Logic for Message-Passing Systems 313

(3, 0)

(2, 0)

(1, 0)

(0, 0)

(3, 1)

(2, 1)

(1, 1)

(0, 1)

(3, 2)

Fig. 1. MSC M4 and the mapping f

indicated in Fig. 1. Let M denote the set of pairs (Vm, c) with c : Vm → {0, 1}2

such that c(i, j) = 0 iff i = 0.
Then one can construct a local formula α such that, for any (M, c) ∈ M,

we have (M, c) |= Aα iff c(i, j) = c(i, j + i) for all suitable pairs (i, j). Now
suppose A = (C, 2, (Ap)p∈P , F) to be a CFM that accepts all labeled MSCs
(Mm, c) ∈ M satisfying c(i, j) = c(i, j + i) for all suitable (i, j). Then A also
accepts some labeled MSC (M, c) ∈ M that violates this condition. It follows:

Theorem 5.1. There exists a local formula α of iPDL such that the set of MSCs
satisfying Aα cannot be accepted by a CFM.

6 Open Questions

Since the semantics of every PDL formula ϕ is the behavior of a CFM, it is
equivalent with some formula from existential monadic second-order logic [4,2].
Since PDL is closed under negation, it is a proper fragment of existential monadic
second order logic. Because of quantification over paths, it cannot be captured
by first-order logic. We do not know if first-order logic is captured by PDL nor
do we have any precise description of its expressive power.

Since the logic iPDL, i.e., PDL with intersection, can be translated effectively
into MSO, the model checking problem for CFMs and existentially B-bounded
MSCs is decidable for iPDL [10]. However, the complexity of MSO model check-
ing is non-elementary. Therefore, we would like to know if we can do any better
for iPDL.

In PDL, we can express properties of the past and of the future of an event
by taking either a backward- or a forward-path in the graph of the MSC. We

314 B. Bollig, D. Kuske, and I. Meinecke

are not allowed to speak about a zig-zag-path where e.g. a mixed use of proc
and proc−1 would be possible. It is an open question whether formulas of such
a “mixed PDL” could be transformed to CFMs and what the complexity of the
model checking would be.

References

1. Alur, R., Peled, D., Penczek, W.: Model-checking of causality properties. In: LICS
1995. Proceedings of the 10th Annual IEEE Symposium on Logic in Computer
Science, Washington, DC, USA, pp. 90–100. IEEE Computer Society Press, Los
Alamitos (1995)

2. Bollig, B., Kuske, D.: Distributed Muller automata and logics. Research Report
LSV-06-11, Laboratoire Spécification et Vérification, ENS Cachan, France (2006)

3. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing
systems. Research Report LSV-07-22, Laboratoire Spécification et Vérification,
ENS Cachan, France (2007), http://www.lsv.ens-cachan.fr/Publis/RAPPORTS
LSV/PDF/rr-lsv-2007-22.pdf

4. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to
EMSO logic. Theoretical Computer Science 358(2-3), 150–172 (2006)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 995–1072, ch. 16, Elsevier Publ. Co., Amster-
dam (1990)

8. Fischer, M.J., Ladner, R.E.: Propositional Dynamic Logic of regular programs. J.
Comput. System Sci. 18(2), 194–211 (1979)

9. Gastin, P., Kuske, D.: Satisfiability and model checking for MSO-definable tem-
poral logics are in PSPACE. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003.
LNCS, vol. 2761, pp. 222–236. Springer, Heidelberg (2003)

10. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Information and Com-
putation 204, 920–956 (2006)

11. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
model-checking and realizability. In: Widmayer, P., Triguero, F., Morales, R., Hen-
nessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp.
657–668. Springer, Heidelberg (2002)

12. Henriksen, J.G., Thiagarajan, P.S.: A product version of dynamic linear time tem-
poral logic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 45–58. Springer, Heidelberg (1997)

13. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Ann. Pure
Appl. Logic 96(1-3), 187–207 (1999)

14. ITU-TS Recommendation Z.120: Message Sequence Chart 1996 (MSC96) (1996)
15. Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. In: Hariharan,

R., Mukund, M., Vinay, V. (eds.) FST TCS 2001. LNCS, vol. 2245, pp. 256–267.
Springer, Heidelberg (2001)

16. Matz, O., Thomas, W.: The monadic quantifier alternation hierarchy over graphs is
infinite. In: LICS 1997, pp. 236–244. IEEE Computer Society Press, Los Alamitos
(1997)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2007-22.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2007-22.pdf

Propositional Dynamic Logic for Message-Passing Systems 315

17. Meenakshi, B., Ramanujam, R.: Reasoning about message passing in finite state
environments. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 487–498. Springer, Heidelberg (2000)

18. Meenakshi, B., Ramanujam, R.: Reasoning about layered message passing systems.
Computer Languages, Systems, and Structures 30(3-4), 529–554 (2004)

19. Peled, D.: Specification and verification of message sequence charts. In: Formal
Techniques for Distributed System Development, FORTE/PSTV 2000. IFIP Con-
ference Proceedings, vol. 183, pp. 139–154. Kluwer Academic Publishers, Dordrecht
(2000)

20. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994)

Better Algorithms and Bounds for Directed

Maximum Leaf Problems

Noga Alon1, Fedor V. Fomin2, Gregory Gutin3, Michael Krivelevich1,
and Saket Saurabh2,4

1 Department of Mathematics, Tel Aviv University
Tel Aviv 69978, Israel

{nogaa,krivelev}@post.tau.ac.il
2 Department of Informatics, University of Bergen

POB 7803, 5020 Bergen, Norway
{fedor.fomin,saket}@ii.uib.no

3 Department of Computer Science, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

gutin@cs.rhul.ac.uk
4 The Institute of Mathematical Sciences

Chennai-600 017, India
saket@imsc.res.in

Abstract. The Directed Maximum Leaf Out-Branching problem
is to find an out-branching (i.e. a rooted oriented spanning tree) in a
given digraph with the maximum number of leaves. In this paper, we
improve known parameterized algorithms and combinatorial bounds on
the number of leaves in out-branchings. We show that

– every strongly connected digraph D of order n with minimum in-
degree at least 3 has an out-branching with at least (n/4)1/3 − 1
leaves;

– if a strongly connected digraph D does not contain an out-branching
with k leaves, then the pathwidth of its underlying graph is O(k log k);

– it can be decided in time 2O(k log2 k) · nO(1) whether a strongly con-
nected digraph on n vertices has an out-branching with at least k
leaves.

All improvements use properties of extremal structures obtained
after applying local search and properties of some out-branching
decompositions.

1 Introduction

Given a digraph D, a subdigraph T of D is an out-tree if T is an oriented tree
with only one vertex s of in-degree zero (called the root) and if T is a span-
ning out-tree, i.e. V (T) = V (D), then T is called an out-branching of D. The
vertices of T of out-degree zero are called leaves. The Directed Maximum

Leaf Out-Branching (DMLOB) problem is to find an out-branching in a
given digraph with the maximum number of leaves. This problem is a natural
generalization of the well studied Maximum Leaf Spanning Tree problem on
connected undirected graphs [5,7,10,11,12,14,15,20,22]. Unlike its undirected

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 316–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Better Algorithms and Bounds for Directed Maximum Leaf Problems 317

counterpart which has attracted a lot of attention in all algorithmic paradigms
like approximation algorithms [14,20,22], parameterized algorithms [5,10,12], ex-
act exponential time algorithms [11] and also combinatorial studies [7,15,16,19],
the Directed Maximum Leaf Out-Branching problem has largely been ne-
glected until recently. Apart from [2] mentioned below, the only other paper is
the very recent paper [9] that describes an O(

√
opt)-approximation algorithms

for DMLOB.
In [2] we initiated algorithmic and combinatorial study of DMLOB and ob-

tained, as the main result of the paper, the first fixed parameter tractable al-
gorithms for the problem on strongly connected digraphs and acyclic digraphs
based on various combinatorial lemmas. In this paper we continue our investiga-
tion of DMLOB and obtain several improved parameterized algorithms for the
problem as well as combinatorial results regarding the number of leaves possible
in an out-branching of a digraph based on new approaches and ideas which are in-
teresting on their own and could be useful for solving other problems on digraphs.

In parameterized algorithms, for decision problems with input size n, and a
parameter k, the goal is to design an algorithm with runtime f(k)nO(1), where
f is a function of k alone. (For DMLOB such a parameter is the number of
leaves in the out-tree.) Problems having such an algorithm are said to be fixed
parameter tractable (FPT). The book by Downey and Fellows [8] provides an
introduction to the topic of parameterized complexity. For recent developments
see the books by Flum and Grohe [13] and by Niedermeier [21].

The parameterized version of DMLOB is defined as follows: Given a digraph
D and a positive integral parameter k, does there exist an out-branching with at
least k leaves? We denote the parameterized versions of DMLOB by k-DMLOB.
If in the above definition we do not insist on an out-branching and ask whether
there exists an out-tree with at least k leaves, we get parameterized Directed

Maximum Leaf Out-Tree problem (denoted k-DMLOT).
In this paper we obtain the following new algorithmic and combinatorial re-

sults on k-DMLOB for strongly connected digraphs and acyclic digraphs. Before
we go any further we remark that the algorithmic results presented here also
hold for all digraphs if we consider k-DMLOT rather than k-DMLOB. However,
we mainly restrict ourselves to k-DMLOB for clarity and the harder challenges
it poses, and we briefly consider k-DMLOT only in the last section.

Faster Algorithm. We design a new algorithm which decides in time 2O(k log2 k)·
nO(1) whether a strongly connected digraph on n vertices has an out-branching
with at least k leaves (Corollary 2). On acyclic graphs we can solve the problem
even faster, in time 2O(k log k) ·nO(1) (Corollary 1). These are significant improve-
ments over running time 2O(k2 log k) ·nO(1) for both classes of digraphs obtained in
[2]. The improvements do not result from a careful tuning of the algorithm from
[2] but from several novel ideas. In particular, we use local search and specific tree
partition arguments. While local search is a widely used technique in heuristics
and approximation algorithms (see, e.g., [1]) we are not aware of its applications
in parameterized complexity. We find it to be of independent interest.

318 N. Alon et al.

Combinatorial bounds. Kleitman and West [16] and Linial and Sturtevant [19]
showed that every connected undirected graph G on n vertices with minimum
degree at least 3 has a spanning tree with at least n/4+2 leaves. In [2] we proved
an analogue of this result for directed graphs: every strongly connected digraph
D of order n with minimum in-degree at least 3 has an out-branching with at
least (n/2)1/5 − 1 leaves. In this paper (Theorem 4), we improve this bound to
(n/4)1/3 − 1. We do not know whether the last bound is tight, however we show
that there are strongly connected digraphs with minimum in-degree 3 in which
every out-branching has at most O(

√
n) leaves (Theorem 6). Another parallel

between the worlds of directed and undirected graphs established in this paper
(and used intensively in the algorithmic part) is the relation between the number
of leaves in a maximum leaf out-branching in a digraph D and the pathwidth
of its underlying graph. It is easy to check (see, e.g., [4]), that every connected
undirected graph of pathwidth at least k, contains a spanning tree with at least
k leaves. We show (Theorem 8) that if a strongly connected digraph D does not
contain an out-branching with k leaves, then the pathwidth of its underlying
graph is O(k log k).

2 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc
set of D, respectively. An oriented graph is a digraph with no directed 2-cycle.
Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph induced
on V ′. The underlying undirected graph UN(D) of D is obtained from D by
omitting all orientations of arcs and by deleting one edge from each resulting
pair of parallel edges. The connectivity components of D are the subdigraphs of
D induced by the vertices of components of UN(D). A digraph D is strongly
connected if, for every pair x, y of vertices there are directed paths from x to
y and from y to x. A maximal strongly connected subdigraph of D is called a
strong component. A vertex u of D is an in-neighbor (out-neighbor) of a vertex v
if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v))
of a vertex v is the number of its in-neighbors (out-neighbors).

We denote by �(D) the maximum number of leaves in an out-tree of a digraph
D and by �s(D) we denote the maximum possible number of leaves in an out-
branching of a digraph D. When D has no out-branching, we write �s(D) = 0.
The following simple result gives necessary and sufficient conditions for a digraph
to have an out-branching. This assertion allows us to check whether �s(D) > 0
in time O(|V (D)| + |A(D)|).

Proposition 1 ([3]). A digraph D has an out-branching if and only if D has a
unique strong component with no incoming arcs.

Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward
arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.

Better Algorithms and Bounds for Directed Maximum Leaf Problems 319

A tree decomposition of an (undirected) graph G is a pair (X, U) where U is a
tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection
of subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G.

If in the definitions of a tree decomposition and treewidth we restrict U to
be a tree with all vertices of degree at most 2 (i.e., a path) then we have the
definitions of path decomposition and pathwidth. We use the notation tw(G)
and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex separa-
tors with respect to a linear ordering of the vertices. Let G be a graph and let
σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]}
and denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting
vs(G, σ) = maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the results of
Kirousis and Papadimitriou [18] on interval width of a graph, see also [17].

Proposition 2 ([17,18]). For any graph G, vs(G) = pw(G).

3 Locally Optimal Out-Trees

Our improved parameterized algorithms are based on finding locally optimal
out-branchings. Given a digraph, D and an out-branching T , we call a vertex
leaf, link and branch if its out-degree in T is 0, 1 and ≥ 2 respectively. Let S+

≥2(T)
be the set of branch vertices, S+

1 (T) the set of link vertices and L(T) the set of
leaves in the tree T . Let P2(T) be the set of maximal paths consisting of link
vertices. By p(v) we denote the parent of a vertex v in T ; p(v) is the unique
in-neighbor of v. We call a pair of vertices u and v siblings if they do not belong
to the same path from the root r in T . We start with the following well known
and easy to observe facts.

Fact 1. |S+
≥2(T)| ≤ |L(T)| − 1.

Fact 2. |P2(T)| ≤ 2|L(T)| − 1.

Now we define the notion of local exchange which is intensively used in our
proofs.

320 N. Alon et al.

Definition 3. �-Arc Exchange (�-AE) optimal out-branching: An out-
branching T of a directed graph D with k leaves is �-AE optimal if for all arc
subsets F ⊆ A(T) and X ⊆ A(D) − A(T) of size �, (A(T) \ F) ∪ X is either
not an out-branching, or an out-branching with ≤ k leaves. In other words, T
is �-AE optimal if it can’t be turned into an out-branching with more leaves by
exchanging � arcs.

Let us remark, that for every fixed �, an �-AE optimal out-branching can be ob-
tained in polynomial time. In our proofs we use only 1-AE optimal out-branchings.
We need the following simple properties of 1-AE optimal out-branchings.

Lemma 1. Let T be an 1-AE optimal out-branching rooted at r in a digraph D.
Then the following holds:

(a) For every pair of siblings u, v ∈ V (T) \ L with d+
T (p(v)) = 1, there is no arc

e = (u, v) ∈ A(D) \ A(T);
(b) For every pair of vertices u, v /∈ L, d+

T (p(v)) = 1, which are on the same
path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \ A(T) (here dist(r, u) is the distance to u in T from the root r);

(c) There is no arc (v, r), v /∈ L such that the directed cycle formed by the
(r, v)-path and the arc (v, r) contains a vertex x such that d+

T (p(x)) = 1.

4 Combinatorial Bounds

We start with a lemma that allows us to obtain lower bounds on �s(D).

Lemma 2. Let D be a oriented graph of order n in which every vertex is of
in-degree 2 and let D have an out-branching. If D has no out-tree with k leaves,
then n ≤ 4k3.

Proof. Let us assume that D has no out-tree with k leaves. Consider an out-
branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of T .

We will bound the number n of vertices in T as follows. Every vertex of T is
either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already
have bounds on the number of leaf and branch vertices as well as the number
of maximal paths consisting of link vertices. So to get an upper bound on n in
terms of k, it suffices to bound the length of each maximal path consisting of
link vertices. Let us consider such a path P and let x, y be the first and last
vertices of P , respectively.

The vertices of V (T) \ V (P) can be partitioned into four classes as follows:

(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;
(b) descendant vertices : the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;
(c) sink vertices: the vertices which are leaves but not descendant vertices;
(d) special vertices: none-of-the-above vertices.

Let P ′ = P −x, let z be the out-neighbor of y on T and let Tz be the subtree
of T rooted at z. By Lemma 1, there are no arcs from special or ancestor vertices

Better Algorithms and Bounds for Directed Maximum Leaf Problems 321

to the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There
are two possibilities for u: (i) u �∈ V (P ′), (ii) u ∈ V (P ′) and uv is backward for
P ′ (there are no forward arcs for P ′ since T is 1-AE optimal). Note that every
vertex of type (i) is either a descendant vertex or a sink. Observe also that the
backward arcs for P ′ form a vertex-disjoint collection of out-trees with roots at
vertices that are not terminal vertices of backward arcs for P ′. These roots are
terminal vertices of arcs in which first vertices are descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′

which have in-neighbors that are descendant vertices and sinks, respectively. Let
the out-tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt}
be denoted by T (w) and let l(w) denote the number of leaves in T (w). Observe
that the following is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} on Tz. This out-
tree has at least

∑s
i=1 l(ui) leaves and, thus,

∑s
i=1 l(ui) ≤ k − 1. Let us denote

the subtree of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the in-neighbors
of {v1, . . . , vt} on T − V (Tx). Then we have following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.
Consider a path R = v0v1 . . . vr formed by backward arcs. Observe that the

arcs {vivi+1 : 0 ≤ i ≤ r − 1} ∪ {vjv
+
j : 1 ≤ j ≤ r} form an out-tree with r

leaves, where v+
j is the out-neighbor of vj on P. Thus, there is no path of back-

ward arcs of length more than k − 1. Every out-tree T (w), w ∈ {u1, . . . , us} has
l(w) leaves and, thus, its arcs can be decomposed into l(w) paths, each of length
at most k − 1. Now we can bound the number of arcs in all the trees T (w),
w ∈ {u1, . . . , us}, as follows:

∑s
i=1 l(ui)(k − 1) ≤ (k − 1)2. We can similarly

bound the number of arcs in all the trees T (w), w ∈ {v1, . . . , vs} by (k − 1)2.
Recall that the vertices of P ′ can be either terminal vertices of backward arcs
for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}. Observe that s + t ≤ 2(k − 1) since∑s

i=1 l(ui) ≤ k − 1 and
∑t

i=1 l(vi) ≤ k − 1.
Thus, the number of vertices in P is bounded from above by 1 + 2(k − 1) +

2(k − 1)2. Therefore,

n = |L(T)| + |S+
≥2(T)| + |S+

1 (T)|

= |L(T)| + |S+
≥2(T)| +

∑

P∈P2(T)

|V (P)|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)
< 4k3.

Thus, we conclude that n ≤ 4k3. 	

322 N. Alon et al.

Theorem 4. Let D be a strongly connected digraph with n vertices.

(a) If D is an oriented graph with minimum in-degree at least 2, then �s(D) ≥
(n/4)1/3 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then �s(D) ≥
(n/4)1/3 − 1.

Proof. Since D is strongly connected, we have �(D) = �s(D) > 0. Let T be an
1-AE optimal out-branching of D with maximum number of leaves. (a) Delete
some arcs from A(D) \ A(T), if needed, such that the in-degree of each vertex
of D becomes 2. Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from Lemma
2 and the fact that �(D) = �s(D).

(b) Let P be the path formed in the proof of Lemma 2. (Note that A(P) ⊆
A(T).) Delete every double arc of P , in case there are any, and delete some more
arcs from A(D) \ A(T), if needed, to ensure that the in-degree of each vertex of
D becomes 2. It is not difficult to see that the proof of Lemma 2 remains valid
for the new digraph D. Now the inequality �s(D) ≥ (n/4)1/3 − 1 follows from
Lemma 2 and the fact that �(D) = �s(D). 	

Remark 5. It is easy to see that Theorem 4 holds also for acyclic digraphs D
with �s(D) > 0.

While we do not know whether the bounds of Theorem 4 are tight, we can show
that no linear bounds are possible. The following result is formulated for Part
(b) of Theorem 4, but a similar result holds for Part (a) as well.

Theorem 6. For each t ≥ 6 there is a strongly connected digraph Ht of order
n = t2 + 1 with minimum in-degree 3 such that 0 < �s(Ht) = O(t).

Proof. Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t − 3}

}

⋃{
ui

ju
i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t − 2}

}

⋃{
ui

ju
i
q | i ∈ [t], t − 3 ≤ j �= q ≤ t

}
,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < �s(Ht) = O(t). 	

5 Decomposition Algorithms

By Proposition 1, an acyclic digraph D has an out-branching if and only if D
possesses a single vertex of in-degree zero.

Theorem 7. Let D be an acyclic digraph with a single vertex of in-degree zero.
Then either �s(D) ≥ k or the underlying undirected graph of D is of pathwidth
at most 4k and we can obtain this path decomposition in polynomial time.

Better Algorithms and Bounds for Directed Maximum Leaf Problems 323

Proof. Assume that �s(D) ≤ k − 1. Consider a 1-AE optimal out-branching T
of D. Notice that |L(T)| ≤ k − 1. Now remove all the leaves and branch vertices
from the tree T . The remaining vertices form maximal directed paths consisting
of link vertices. Delete the first vertices of all paths. As a result we obtain a
collection Q of directed paths. Let H = ∪P∈QP . We will show that every arc uv
with u, v ∈ V (H) is in H.

Let P ′ ∈ Q. As in the proof of Lemma 2, we see that there are no forward arcs
for P ′. Since D is acyclic, there are no backward arcs for P ′. Suppose uv is an
arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′ are distinct paths from
Q. As in the proof of Lemma 2, we see that u is either a sink or a descendent
vertex for P ′ in T . Since R′ contains no sinks of T , u is a descendent vertex,
which is impossible as D is acyclic. Thus, we have proved that pw(UN(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path decom-
position of UN(D) by adding all the vertices of L(T) ∪ S+

≥2(T) ∪ F (T), where
F (T) is the set of first vertices of maximal directed paths consisting of link ver-
tices of T , to each of the bags of a path decomposition of H of width 1. Observe
that the pathwidth of this decomposition is bounded from above by

|L(T)| + |S+
≥2(T)| + |F (T)| + 1 ≤ (k − 1) + (k − 2) + (2k − 3) + 1 ≤ 4k − 5.

The bounds on the various sets in the inequality above follows from Facts 1
and 2. This proves the theorem. 	

Corollary 1. For acyclic digraphs, the problem k-DMLOB can solved in time
2O(k log k) · nO(1).

Proof. The proof of Theorem 7 can be easily turned into a polynomial time
algorithm to either build an out-branching of D with at least k leaves or to show
that pw(UN(D)) ≤ 4k and provide the corresponding path decomposition. A
simple dynamic programming over the path decomposition gives us an algorithm
of running time 2O(k log k) · nO(1). 	

The following simple lemma is well known, see, e.g., [6].

Lemma 3. Let T = (V, E) be an undirected tree and let w : V → R
+∪{0} be a

weight function on its vertices. There exists a vertex v ∈ T such that the weight
of every subtree T ′ of T − v is at most w(T)/2, where w(T) =

∑
v∈V w(v).

Let D be a strongly connected digraph with �s(D) = λ and let T be an out-
branching of D with λ leaves. Consider the following decomposition of T (called
a β-decomposition) which will be useful in the proof of Theorem 8.

Assign weight 1 to all leaves of T and weight 0 to all non-leaves of T . By
Lemma 3, T has a vertex v such that each component of T − v has at most
λ/2 + 1 leaves (if v is not the root and its in-neighbor v− in T is a link vertex,
then v− becomes a new leaf). Let T1, T2, . . . , Ts be the components of T − v
and let l1, l2, . . . , ls be the numbers of leaves in the components. Notice that
λ ≤

∑s
i=1 li ≤ λ + 1 (we may get a new leaf). We may assume that ls ≤ ls−1 ≤

324 N. Alon et al.

· · · ≤ l1 ≤ λ/2 + 1. Let j be the first index such that
∑j

i=1 li ≥ λ
2 + 1. Consider

two cases: (a) lj ≤ (λ + 2)/4 and (b) lj > (λ + 2)/4. In Case (a), we have

λ + 2
2

≤
j∑

i=1

li ≤ 3(λ + 2)
4

and
λ − 6

4
≤

s∑

i=j+1

li ≤ λ

2
.

In Case (b), we have j = 2 and

λ + 2
4

≤ l1 ≤ λ + 2
2

and
λ − 2

2
≤

s∑

i=2

li ≤ 3λ + 2
4

.

Let p = j in Case (a) and p = 1 in Case (b). Add to D and T a copy v′ of v
(with the same in- and out-neighbors). Then the number of leaves in each of the
out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1+o(1))/4 and 3λ(1+o(1))/4. Observe that the vertices of T ′ have
at most λ + 1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ + 1
out-neighbors in T ′ (we add 1 to λ due to the fact that v ‘belongs’ to both T ′

and T ′′).
Similarly to deriving T ′ and T ′′ from T , we can obtain two out-trees from T ′

and two out-trees from T ′′ in which the numbers of leaves are approximately
between a quarter and three quarters of the number of leaves in T ′ and T ′′,
respectively. Observe that after O(log λ) ‘dividing’ steps, we will end up with
O(λ) out-trees with just one leaf, i.e., directed paths. These paths contain O(λ)
copies of vertices of D (such as v′ above). After deleting the copies, we obtain a
collection of O(λ) disjoint directed paths covering V (D).

Theorem 8. Let D be a strongly connected digraph. Then either �s(D) ≥ k or
the underlying undirected graph of D is of pathwidth O(k log k).

Proof. We may assume that �s(D) < k. Let T be be a 1-AE optimal out-
branching. Consider a β-decomposition of T . The decomposition process can
be viewed as a tree T rooted in a node (associated with) T . The children of T in
T are nodes (associated with) T ′ and T ′′; the leaves of T are the directed paths
of the decomposition. The first layer of T is the node T , the second layer are
T ′ and T ′′, the third layer are the children of T ′ and T ′′, etc. In what follows,
we do not distinguish between a node Q of T and the tree associated with the
node. Assume that T has t layers. Notice that the last layer consists of (some)
leaves of T and that t = O(log k), which was proved above (k ≤ λ − 1).

Let Q be a node of T at layer j. We will prove that

pw(UN(D[V (Q)])) < 2(t − j + 2.5)k (1)

Since t = O(log k), (1) for j = 1 implies that the underlying undirected graph
of D is of pathwidth O(k log k).

Better Algorithms and Bounds for Directed Maximum Leaf Problems 325

We first prove (1) for j = t when Q is a path from the decomposition. Let
W = (L(T) ∪ S+

≥2(T) ∪ F (T)) ∩ V (Q), where F (T) is the set of first vertices of
maximal paths of T consisting of link vertices. As in the proof of Theorem 7, it
follows from Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from
D[V (Q)] all arcs in which at least one end-vertex is in W and which are not arcs
of Q. As in the proof of Theorem 7, it follows from Lemma 1 and 1-AE opti-
mality of T that there are no forward arcs for Q in R. Let Q = v1v2 . . . vq. For
every j ∈ [q], let Vj = {vi : i ∈ [j]}. If for some j the set Vj contained k vertices,
say {v′1, v

′
2, · · · , v′k}, having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D

would contain an out-tree with k leaves formed by the path vj+1vj+2 . . . vq to-
gether with a backward arc terminating at v′i from a vertex on the path for each
1 ≤ i ≤ k, a contradiction. Thus vs(UN(D2[P])) ≤ k. By Proposition 2, the
pathwidth of UN(R) is at most k. Let (X1, X2, . . . , Xs) be a path decomposition
of UN(R) of width at most k. Then (X1 ∪ W, X2 ∪ W, . . . , Xs ∪ W) is a path
decomposition of UN(D[V (Q)]) of width less than k + 4k. Thus,

pw(UN(D[V (Q)])) < 5k (2)

Now assume that we have proved (1) for j = i and show it for j = i − 1.
Let Q be a node of layer i − 1. If Q is a leaf of T , we are done by (2). So, we
may assume that Q has children Q′ and Q′′ which are nodes of layer i. In the
β-decomposition of T given before this theorem, we saw that the vertices of T ′

have at most λ+1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ+1
out-neighbors in T ′. Similarly, we can see that (in the β-decomposition of this
proof) the vertices of Q′ have at most k out-neighbors in Q′′ and the vertices
of Q′′ have at most k out-neighbors in Q′ (since k ≤ λ − 1). Let Y denote the
set of the above-mentioned out-neighbors on Q′ and Q′′; |Y | ≤ 2k. Delete from
D[V (Q′)∪V (Q′′)] all arcs in which at least one end-vertex is in Y and which do
not belong to Q′ ∪ Q′′

Let G denote the obtained digraph. Observe that G is disconnected and
G[V (Q′)] and G[V (Q′′)] are components of G. Thus, pw(UN(G)) ≤ b, where

b = max{pw(UN(G[V (Q′)])), pw(UN(G[V (Q′′)]))} < 2(t − i + 4.5)k (3)

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then
(Z1 ∪ Y, Z2 ∪ Y, . . . , Zr ∪ Y) is a path decomposition of UN(D[V (Q′) ∪ V (Q′′)])
of width at most b + 2k < 2(t − i + 2.5)k. 	

Similar to the proof of Corollary 1, we obtain the following:

Corollary 2. For a strongly connected digraph D, the problem k-DMLOB can
be solved in time 2O(k log2 k) · nO(1).

6 Discussion and Open Problems

In this paper, we continued the algorithmic and combinatorial investigation of
the Directed Maximum Leaf Out-Branching problem. In particular, we

326 N. Alon et al.

showed that for every strongly connected digraph D of order n and with min-
imum in-degree at least 3, �s(D) = Ω(n1/3). The most interesting open com-
binatorial question here is whether this bound is tight. It would be even more
interesting to find the maximum number r such that �s(D) = Ω(nr) for every
strongly connected digraph D of order n and with minimum in-degree at least
3. It follows from our results that 1

3 ≤ r ≤ 1
2 .

We also provided an algorithm of time complexity 2O(k log2 k) · nO(1) which
solves k-DMLOB for a strongly connected digraph D. The algorithm is based
on a combinatorial bound on the pathwidth of the underlying undirected graph
of D. Unfortunately, this technique does not work on all digraphs. It remains an
algorithmic challenge to establish the parameterized complexity of k-DMLOB
on all digraphs.

Notice that �(D) ≥ �s(D) for each digraph D. Let L be the family of digraphs
D for which either �s(D) = 0 or �s(D) = �(D). The following assertion shows that
L includes a large number digraphs including all strongly connected digraphs and
acyclic digraphs (and, also, the well-studied classes of semicomplete multipartite
digraphs and quasi-transitive digraphs, see [3] for the definitions).

Proposition 3 ([2]). Suppose that a digraph D satisfies the following property:
for every pair R and Q of distinct strong components of D, if there is an arc
from R to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Let B be the family of digraphs that contain out-branchings. The results of this
paper proved for strongly connected digraphs can be extended to the class L∩B
of digraphs since in the proofs we use only the following property of strongly
connected digraphs D: �s(D) = �(D) > 0.

For a digraph D and a vertex v, let Dv denote the subdigraph of D in-
duced by all vertices reachable from v. Using the 2O(k log2 k) ·nO(1) algorithm for
k-DMLOB on digraphs in L ∩ B and the facts that (i) Dv ∈ L ∩ B for each
digraph D and vertex v and (ii) �(D) = max{�s(Dv)|v ∈ V (D)} (for details, see
[2]), we can obtain an 2O(k log2 k) ·nO(1) algorithm for k-DMLOT on all digraphs.
For acyclic digraphs, the running time can be reduced to 2O(k log k) · nO(1).

Acknowledgements. Research of N. Alon and M. Krivelevich was supported
in part by USA-Israeli BSF grants and by grants from the Israel Science Foun-
dation. Research of F. Fomin was supported in part by the Norwegian Research
Council. Research of G. Gutin was supported in part by EPSRC.

References

1. Aarts, E., Lenstra, J.K.: Local search in combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons
Ltd, Chichester (1997)

2. Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized
Algorithms for Directed Maximum Leaf Problems. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362.
Springer, Heidelberg (2007)

Better Algorithms and Bounds for Directed Maximum Leaf Problems 327

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer, Heidelberg (2000)

4. Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a
forest. J. Comb. Theory Series B 52, 274–283 (1991)

5. Bonsma, P.S., Brueggermann, T., Woeginger, G.J.: A faster FPT algorithm for
finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

6. Chung, F.R.K.: Separator theorems and their applications. In: Paths, flows, and
VLSI-layout (Bonn, 1988). Algorithms Combin, vol. 9, pp. 17–34. Springer, Berlin
(1990)

7. Ding, G., Johnson, Th., Seymour, P.: Spanning trees with many leaves. Journal of
Graph Theory 37, 189–197 (2001)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf span-
ning arborescence problem. Manuscript (2007)

10. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-
Time Extremal Structure I. In: Proc. ACiD, pp. 1–41 (2005)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving Connected Dominating Set Faster
Than 2n. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 152–163. Springer, Heidelberg (2006)

12. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinated kernels and
catalytic reductions: An improved FPT algorithm for max leaf spanning tree and
other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974,
pp. 240–251. Springer, Heidelberg (2000)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

14. Galbiati, G., Morzenti, A., Maffioli, F.: On the approximability of some maximum
spanning tree problems. Theoretical Computer Science 181, 107–118 (1997)

15. Griggs, J.R., Wu, M.: Spanning trees in graphs of minimum degree four or five.
Discrete Mathematics 104, 167–183 (1992)

16. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM Journal on
Discrete Mathematics 4, 99–106 (1991)

17. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42, 345–350 (1992)

18. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Discrete Math-
ematics 55, 181–184 (1985)

19. Linial, N., Sturtevant, D.: Unpublished result (1987)
20. Lu, H.-I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear

time. Journal of Algorithms 29, 132–141 (1998)
21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)
22. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with the max-

imum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

Faster Algorithms for All-Pairs Small Stretch

Distances in Weighted Graphs

Telikepalli Kavitha

Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

Abstract. Let G = (V, E) be a weighted undirected graph, with non-
negative edge weights. We consider the problem of efficiently computing
approximate distances between all pairs of vertices in G. While many
efficient algorithms are known for this problem in unweighted graphs, not
many results are known for this problem in weighted graphs. Zwick [15]
showed that for any fixed ε > 0, stretch (1+ε) distances between all pairs
of vertices in a weighted directed graph on n vertices can be computed
in Õ(nω) time assuming that edge weights in G are not too large, where
ω < 2.376 is the exponent of matrix multiplication and n is the number
of vertices in G. It is known that finding distances of stretch less than 2
between all pairs of vertices in G is at least as hard as Boolean matrix
multiplication of two n×n matrices. It is also known that all-pairs stretch
3 distances can be computed in Õ(n2) time and all-pairs stretch 7/3
distances can be computed in Õ(n7/3) time. Here we consider efficient
algorithms for the problem of computing all-pairs stretch (2+ε) distances
in G, for any 0 < ε < 1.

We show that all pairs stretch (2+ε) distances for any fixed ε > 0 in G
can be computed in expected time O(n9/4) assuming that edge weights
in G are not too large. This algorithm uses a fast rectangular matrix
multiplication subroutine. We also present a combinatorial algorithm
(that is, it does not use fast matrix multiplication) with expected running
time O(n9/4) for computing all-pairs stretch 5/2 distances in G.

1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most fundamental
algorithmic graph problems. Efficient algorithms for the APSP problem are very
important in several applications. The complexity of the fastest known algorithm
for the APSP problem in a graph with m edges, n vertices and real non-negative
edge weights is O(mn + n2 log log n) [13]. Thus this algorithm has a running
time of Θ(n3) when m = Θ(n2). The best upper bound currently known [5]
on the worst case time complexity of this problem (in terms of n) is close to
O(n3/ log2 n), which is marginally subcubic. An almost cubic running time is
inefficient for several applications, and this has motivated faster algorithms to
compute approximate solutions for the APSP problem.

Let G = (V, E) be an undirected graph with non-negative edge weights. A
path in G between u, v ∈ V is said to be of stretch t if its length is at most

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 328–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 329

t · δ(u, v) where δ(u, v) is the distance between u and v in G. In this paper we
are interested in computing small stretch paths/distances between all pairs of
vertices. Zwick [15] showed that for any ε > 0, stretch 1 + ε distances between
all pairs of vertices in a weighted directed graph on n vertices can be computed
in time Õ(nω/ε · log(W/ε)), where ω < 2.376 is the exponent of matrix multi-
plication and W is the largest edge weight in the graph, after the edge weights
are scaled so that the smallest non-zero edge weight in the graph is 1. It is also
known that finding paths of stretch less than 2 between all pairs of vertices in
an undirected graph on n vertices is at least as hard as Boolean matrix multipli-
cation of two n×n matrices. Given an undirected weighted graph on n vertices,
computing all-pairs stretch 3 distances in Õ(n2) time and all-pairs stretch 7/3
distances in Õ(n7/3) time is known [7] (these algorithms use only combinatorial
techniques, i.e., fast matrix multiplication subroutines are not used). Researchers
have been trying to explore the possible trade-off between stretch and running
time for the problem of computing all-pairs stretch t distances for t ∈ [2, 3).

1.1 Our Main Results

In this paper we consider faster algorithms for the problem of computing all-
pairs stretch t distances for 2 < t < 3 in a weighted undirected graph G on n
vertices. We first present a combinatorial algorithm STRETCH5/2 and show the
following result. (For any pair of vertices u, v in G, let δ(u, v) denote the distance
between u and v in G.)

Theorem 1. Algorithm STRETCH5/2(G) runs in expected time O(n9/4), where
n is the number of vertices in the input graph G and constructs an n × n table
d such that: δ(u, v) ≤ d[u, v] ≤ 5/2 · δ(u, v).

We then augment STRETCH5/2(G) with a fast rectangular matrix multiplication
subroutine. This yields algorithm STRETCH2+ε(G) and we show the following
result.

Theorem 2. Given any ε > 0, algorithm STRETCH2+ε(G) constructs an n × n
table d such that δ(u, v) ≤ d[u, v] ≤ (2 + ε)δ(u, v) in expected time O(n9/4)+
Õ(n2.243(log2 W)/ε2), where n is the number of vertices in the input graph G and
W is the largest edge weight after scaling the edge weights so that the smallest
non-zero edge weight is 1.

Thus when all edge weights in G are polynomial in n and ε > 0 is a constant,
STRETCH2+ε(G) computes all-pairs stretch 2 + ε distances in expected time
O(n9/4) since Õ(n2.243) is o(n9/4).

Motivation. During the last 10-15 years, many new combinatorial algorithms
[2,6,1,8,7,14,3,9] were designed for the all-pairs approximate shortest paths prob-
lem in order to achieve faster running times in weighted and unweighted graphs.
In weighted graphs, the current fastest randomized combinatorial algorithms
(from [4]) for computing all-pairs stretch t distances for t < 3 in G with m
edges and n vertices are: computing all-pairs stretch 2 distances in expected

330 T. Kavitha

Õ(m
√

n + n2) time and computing all-pairs stretch 7/3 distances in expected
Õ(m2/3n + n2) time. These algorithms are improvements of the following deter-
ministic algorithms: an Õ(n3/2m1/2) algorithm for stretch 2 distances and an
Õ(n7/3) algorithm for stretch 7/3 distances by Cohen and Zwick [7]. However
when m = Θ(n2), there is no improvement in the running time. There is an al-
gorithm [4] with expected running time Õ(n2) for computing approximate (u, v)
distances for all pairs (u, v), where the distance returned is at most 2δ(u, v)+
maximum weight of an edge on a u-v shortest path. However, note that we can-
not claim that the stretch here is at most 3 − ε for any fixed ε > 0. Thus there
was no o(n7/3) algorithm known for computing all-pairs stretch (3− ε) distances
for any constant ε > 0. We try to fill this gap in this paper.

Our techniques. Our algorithms construct a sequence of sets: V = S0 ⊇ S1 ⊇
S2 ⊇ S3. Vertices in Si run Dijkstra’s algorithm in a specific subgraph Gi+1 of
G, where the density of Gi+1 is inversely proportional to the cardinality of Si.
Then these sets Si cooperate with each other. The step where each vertex in the
set Si runs Dijkstra’s algorithm in a subgraph Gi+1 bears a lot of similarity with
schemes in [7] for computing all-pairs small stretch distances. The new idea here
is the cooperation between the sets Si - this cooperation forms a crucial step of
our algorithm and that is what ensures a small stretch.

In our analysis of algorithm STRETCH5/2(G) we actually get a bound of 7/3
on the stretch in all cases, except one where we get a stretch of 5/2. The stretch
in this algorithm can be improved to 2 + ε by using a subroutine for witnessing
a Boolean product matrix. This subroutine for witnessing a Boolean product
matrix is implemented using fast rectangular matrix multiplication.

Related results. An active area of research in algorithms that report all-pairs
small stretch distances is in designing compact data structures, to answer dis-
tance queries. Instead of storing an n × n look-up table, these algorithms use
o(n2) space. More specifically, for any integer k ≥ 1, the data structure uses
O(kn1+1/k) space and it answers any distance query with stretch 2k−1, in O(k)
time [14]. It was shown in [14] that any such data structure with stretch t < 3
must use Θ(n2) space on at least one input graph. Hence, in algorithms that
compute all-pairs stretch 3 − ε distances for ε > 0, what one seeks to optimize
is the running time of the algorithm, since the space requirement is Θ(n2).

2 Preliminaries

We will work with certain subsets S1, S2, S3 of V , where V = S0 ⊇ S1 ⊇ S2 ⊇
S3 ⊇ S4 = ∅. For each vertex u ∈ V and for i = 1, 2, 3, define δ(u, Si) as the
distance between u and the vertex in Si that is nearest to u. Let si(u) ∈ Si be
the vertex in Si that is nearest to u. That is, δ(u, Si) = δ(u, si(u)) ≤ δ(u, x) for
all x ∈ Si. In case there is more than one vertex in Si with distance δ(u, Si) to u,
then break the tie arbitrarily to define si(u). Note that since S4 = ∅, we define
δ(u, S4) = ∞.

Now we need to define certain neighborhoods around a vertex u.

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 331

Definition 1 (from [14]). For any vertex u and for i = 1, 2, 3, define balli(u)
as:

balli(u) = {v ∈ V : δ(u, v) < δ(u, Si)}.

That is, balli(u) is the set of all vertices v that are strictly closer to u than the
nearest vertex in Si is to u.

The graphs of interest to us in our algorithms are the graphs Gi = (V, Ei) for
i = 1, 2, 3, where

Ei = {(u, v) ∈ E : v ∈ balli(u)}.

Note that Gi, for i = 1, 2, 3, are undirected graphs. Each Gi is a subgraph of
G, where each vertex x ∈ V keeps edges to only those of its neighbors that
lie in balli(x). Note that constructing these graphs Gi is easy. In G, connect a
dummy vertex s∗ to all the vertices of the set Si and assign weight zero to all
these edges. Now run Dijkstra’s shortest paths algorithm with source s∗ in G.
The distance returned between s∗ and u is the distance δ(u, Si), for any u ∈ V .
The vertex si(u) is the successor of s∗ in the shortest s∗-u path in this graph.
To form the edge set Ei of Gi, each u looks at its adjacency list and retains only
those neighbors v where w(u, v) < δ(u, Si), where w(u, v) is the weight of the
edge (u, v). We have E1 ⊆ E2 ⊆ E3 ⊆ E = E4.

Let us also make the following simplifying assumption in the input graph:
we assume that all edge weights are positive. If the input graph had edges with
weight zero, then we will contract each such edge - this will reduce the number of
vertices and it is simple to see that we can easily extend the all-pairs small stretch
distances table for the reduced graph to the all-pairs small stretch distances table
for the entire graph. Henceforth all edge weights are positive.

The following claims, which are simple to show, are stated in the form of
Proposition 1 and Proposition 2. They will be used repeatedly in the paper.

Proposition 1. For Si ⊆ V , (i ∈ {1, 2, 3}) the following assertions are true.

1. For any two vertices u, v ∈ V , if v ∈ balli(u), then the subgraph Gi = (V, Ei)
preserves the exact distance between u and v.

2. For every u ∈ V , the subgraph (V, Ei ∪E(si(u))) preserves the exact distance
between u and si(u), where E(si(u)) is the set of edges incident on si(u).

Proposition 2. If the set Si ⊆ V is formed by selecting each vertex indepen-
dently with probability q, then the expected size of the set Ei is O(n/q).

We now define the set bunchi(u). For any vertex u ∈ V and i = 1, 2, 3, the set
bunchi(u) ⊆ Si is defined as follows: bunchi(u) = {x ∈ Si| δ(u, x) < δ(u, Si+1)}∪
{si(u)}. That is, bunch3(u) = S3 since δ(u, S4) = ∞, while bunch2(u) consists
of s2(u) and all the vertices in S2 that belong to ball3(u) and bunch1(u) consists
of s1(u) and all the vertices in S1 that belong to ball2(u). The following result
about the expected size of bunchi(u) and the complexity of computing the set
bunchi(u) was shown in [14].

332 T. Kavitha

Lemma 1. [14] Given a graph G = (V, E), let the set Si+1 be formed by picking
each vertex of a set Si ⊆ V independently with probability q. Then
(i) the expected size of bunchi(u) is at most 1/q for each u, and
(ii) the expected time to compute the sets bunchi(u), summed over all u ∈ V , is
O(m/q).

Another concept that we use is the notion of overlap of balli(u) and balli(v). We
define this term below and Fig. 1 illustrates this.

Definition 2. Let u, v ∈ V . For any i = 1, 2, 3, we say that balli(u) and balli(v)
overlap if δ(u, Si) + δ(v, Si) > δ(u, v).

uu vv SP (u, v)SP (u, v)

si(u)si(u)
si(v)si(v)

Fig. 1. In the figure on the left, balli(u) and balli(v) do not overlap; whereas on the
right, they overlap

Constructing the sets S1, S2, S3. We will use the following sampling scheme in
our algorithm STRETCH5/2(G): let Si, for i = 1, 2, 3, be obtained by sampling
vertices in Si−1 with probability n−1/4. Note that the expected size of Si is
n1−i/4, it follows from Proposition 2 that the expected size of Ei is O(n1+i/4).

3 All-Pairs Stretch 5/2 Distances

Let G = (V, E) be an undirected graph with a weight function w : E → Q
+.

Our algorithm for computing small stretch distances runs Steps 1-5 given below
for 2 iterations and as the algorithm evolves, distance estimates computed till
then will be stored in an n × n table d. The table d is initialized as: d[u, u] = 0
and d[u, v] = w(u, v) for all (u, v) ∈ E. Otherwise d[u, v] = ∞.

A basic step that we use in our algorithm is the following: a vertex v runs
Dijkstra’s algorithm in a subgraph G′ that is augmented with all pairs (v, x).
That is, (v, x) need not be an edge, however pairs (v, x) with weight d[v, x] for
all x ∈ V are added to the edge set of G′, so that the source vertex v can use
the distance estimates that it has acquired already, in order to find better paths
to other vertices.

We first construct the sets V ⊇ S1 ⊇ S2 ⊇ S3 using our sampling scheme,
and build the graphs Gi = (V, Ei), where Ei = {(u, v) ∈ E : v ∈ balli(u)} and
also construct the sets bunchi(u), for i = 1, 2, 3 (see Section 2 for more details).

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 333

The Algorithm STRETCH5/2(G)

– Initialize the table d as described above.
– Each vertex v ∈ S3 runs Dijkstra’s algorithm in the entire graph G and the

table d gets updated accordingly.
** Run Steps 1-5 for 2 iterations and return the table d.

1. Each vertex u runs Dijkstra’s single source shortest paths algorithm in
the graph G1 = (V, E1) that is augmented with pairs (u, x) for all x ∈ V
with weight d[u, x].

(Dijkstra’s algorithm will update the entries in the row corresponding
to u in the table d.)

– Each u now updates entries corresponding to the rows of all vertices
s, in the table d, where s ∈ bunch1(u) ∪ bunch2(u). That is, if for
any y ∈ V and s ∈ bunch1(u) ∪ bunch2(u) we have d[s, u] + d[u, y] <
d[s, y], then we set d[s, y] = d[s, u] + d[u, y].

2. Each vertex s1 ∈ S1 runs Dijkstra’s algorithm in the graph G2 = (V, E2)
that is augmented with all pairs (s1, x) with weight d[s1, x].

– Each s1 ∈ S1 updates entries corresponding to the rows of all vertices
in S2 in the table d. That is, if for any y ∈ V and s2 ∈ S2 we have
d[s2, s1] + d[s1, y] < d[s2, y], then we set d[s2, y] = d[s2, s1] + d[s1, y].

3. Each vertex s2 ∈ S2 runs Dijkstra’s algorithm in the graph G3 = (V, E3)
augmented with all pairs (s2, x) with weight d[s2, x].

– Each s2 ∈ S2 updates entries corresponding to the rows of all vertices
in S1 in the table d. That is, if for any y ∈ V and s1 ∈ S1 we have
d[s1, s2] + d[s2, y] < d[s1, y], then we set d[s1, y] = d[s1, s2] + d[s2, y].

4. For every (u, v) store in d[u, v] the minimum of d[u, v], d[u, s] + d[s, v],
where s ∈ ∪3

i=1bunchi(u).
5. Make the table d symmetric: that is, store in d[u, v] the minimum of

d[u, v] and d[v, u].

Running Time Analysis. The expected size of Si is n1−i/4 for i = 1, 2, 3 and the
expected size of Ei, the set of edges in Gi, is O(n1+i/4) (by Proposition 2). For
each i ∈ {1, 2, 3} the expected size of bunchi(u) for any u ∈ V is O(n1/4) (by
Lemma 1(i)) and the time to compute all the sets bunchi(u) is O(mn1/4) (by
Lemma 1(ii)). These facts lead to the following lemma.

Lemma 2. The expected running time of STRETCH5/2(G) is O(n9/4).

3.1 Correctness of the Algorithm STRETCH5/2(G)

Lemma 3. For each pair (u, v) ∈ V ×V , we have: δ(u, v) ≤ d[u, v] ≤ 5/2·δ(u, v),
where d is the table returned by the algorithm STRETCH5/2(G) and δ(u, v) is the
distance between u and v in G.

334 T. Kavitha

Proof. For every u, v since d[u, v] is the length of some path in G between u and
v, we always have δ(u, v) ≤ d[u, v]. The hard part of the lemma is showing the
upper bound on d[u, v]. For any pair of vertices u and v, let SP (u, v) denote a
shortest path between u and v in G. Let us first show the following claim.

Claim 1. For any i ∈ {1, 2, 3}, if all the edges in SP (u, v) are present in Gi+1 =
(V, Ei+1) and balli(u) and balli(v) do not overlap, then d[u, v] ≤ 2δ(u, v).

Proof. It is given that all the edges in SP (u, v) are present in Ei+1. So all the
edges in the path1 si(u) � u � v obtained by concatenating SP (si(u), u) and
SP (u, v) are present in Ei+1 ∪E(si(u)) (by Proposition 1), where E(si(u)) is the
set of edges incident on si(u). Similarly, all the edges in the path si(v) � v � u
are present in Ei+1 ∪ E(si(v)). Since every vertex x ∈ Si performs Dijkstra
in the graph Gi+1 augmented with E(x), we have d[si(u), v] ≤ δ(si(u), u) +
δ(u, v) and d[si(v), u] ≤ δ(si(v), v)+δ(u, v). Also, because balli(u) and balli(v) do
not overlap, we have δ(si(u), u)+ δ(si(v), v) ≤ δ(u, v). Combining these inequal-
ities, we have min{δ(u, si(u)) + d[si(u), v], δ(v, si(v)) + d[si(v), u]} ≤ 2δ(u, v).
Step 4 in our algorithm ensures that: d[u, v] ≤ min{δ(u, si(u)) + d[si(u), v],
δ(v, si(v)) + d[si(v), u]}. Thus d[u, v] ≤ 2δ(u, v). �

Claim 1 leads to the following corollary since E4 = E, the edge set of G, and E
obviously contains all the edges in SP (u, v).

Corollary 1. If ball3(u) and ball3(v) do not overlap, then d[u, v] ≤ 2δ(u, v).

Now let us consider the case when ball1(u) and ball1(v) overlap.

Claim 2. If ball1(u) and ball1(v) overlap, then d[u, v] = δ(u, v).

Proof. We are given that ball1(u) and ball1(v) overlap. So δ(u, v) < δ(u, s1(u))+
δ(v, s1(v)) and we can partition the path SP (u, v) as: SP (u, v) = u � a → b �
v, where all the vertices in u � a belong to ball1(u) and all the vertices in b � v
belong to ball1(v). Since the graph G1 has the edge set {(x, y) ∈ E, y ∈ ball1(x)},
the only edge in SP (u, v) that might possibly be missing in the graph G1 is
the edge (a, b) (refer Fig. 2). In the first iteration of the ** loop, in Step 1

u v
a b

s1(u)

s1(v)

Fig. 2. ball1(u) and ball1(v) overlap

1 Note that we use the symbols x � y and x → y for illustrative purposes, the paths
and edges here are undirected.

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 335

(refer Algorithm STRETCH5/2(G)), the vertex b would perform Dijkstra in G1

augmented with the edge (a, b). Since the path a � u is present in G1, in this
step, the vertex b would learn of its distance to u, i.e., d[b, u] = δ(u, b). Since
the table d is made symmetric in Step 5, d[u, b] = δ(u, b) at the end of the first
iteration of the ** loop.

In the second iteration of the ** loop, u would augment the “edge” (u, b)
with weight d[u, b] = δ(u, b) to G1 and since all the edges in b � v are present
in G1, we have the path u → b � v in the augmented G1. Thus u determines
d[u, v] = δ(u, v). This proves the statement of Claim 2. �
We shall assume henceforth that ball3(u) and ball3(v) overlap and ball1(u) and
ball1(v) do not overlap (refer Corollary 1 and Claim 2). That leaves us with two
further cases, as to whether ball2(u) and ball2(v) overlap or not. We shall call
them Case 1 and Case 2.

Case 1: ball2(u) and ball2(v) do not overlap.
If all the edges in SP (u, v) are present in G3 = (V, E3), then it follows from
Claim 1 that d[u, v] ≤ 2δ(u, v). So let us assume that some of the edges of
SP (u, v) are not present in G3 = (V, E3).

The graph G3 has the edge set E3 = {(x, y) ∈ E, y ∈ ball3(x)}. Since
ball3(u) and ball3(v) overlap, the only way that some of the edges in SP (u, v)
are not present in E3 is that exactly one edge in SP (u, v) is missing from
E3. This edge is between the last vertex a (from the side of u) in SP (u, v)
that is in ball3(u) and the first vertex b in SP (u, v) that is in ball3(v) (refer
Fig. 3). Every other vertex and its successor in SP (u, v) would either both
be in ball3(u) or both be in ball3(v) and such edges have to be present
in G3.

u v
a b

s3(u)

s3(v)

Fig. 3. ball3(u) and ball3(v) overlap but the edge (a, b) is not present in G3

By Step 4 we know that d[u, v] is at most the minimum of δ(u, s3)+δ(s3, v)
distances, where s3 ∈ S3. Hence we have the following bound on d[u, v].

d[u, v] ≤ δ(u, s3(a)) + δ(s3(a), v) (1)
≤ δ(u, v) + 2δ(a, s3(a)) (2)
≤ δ(u, v) + 2w(a, b). (3)

Inequality (3) follows from inequality (2) because the edge (a, b) is missing
from ball3(a). We shall show that we also have the following inequalities.

d[u, v] ≤ δ(u, v) + 2δ(u, a) + 2δ(u, s2(u)) and (4)
d[u, v] ≤ δ(u, v) + 2δ(v, b) + 2δ(v, s2(v)). (5)

336 T. Kavitha

Adding inequalities (3), (4), and (5), we get the following inequality:

3d[u, v] ≤ 5δ(u, v) + 2δ(u, s2(u)) + 2δ(v, s2(v))
≤ 7δ(u, v)

since δ(u, s2(u)) + δ(v, s2(v)) ≤ δ(u, v) because ball2(u) and ball2(v) do not
overlap (by the definition of Case 1). Thus we have d[u, v] ≤ 7/3 · δ(u, v). So
all that is left here is to prove inequalities (4) and (5).

If s2(u) /∈ bunch2(a), then we have δ(a, s3(a)) ≤ δ(a, s2(u)) ≤ δ(a, u) +
δ(u, s2(u)). Substituting this in inequality (2), we get inequality (4). So let
us assume that s2(u) ∈ bunch2(a). Then in the second iteration of the
** loop, in Step 1, the vertex a updates the entry d[s2(u), b] to at most
d[s2(u), a] + w(a, b) since s2(u) ∈ bunch2(a). We already have d[s2(u), a] ≤
δ(s2(u), u) + δ(u, a) since the path s2(u) � u � a is in the augmented
G3. Thus after Step 1 in the second iteration of the ** loop, we have
d[s2(u), b] ≤ δ(s2(u), a) + w(a, b). In Step 3, s2(u) performs Dijkstra in G3

augmented with the “edge” (s2(u), b) with weight at most d[s2(u), b]. Since
all the edges of SP (b, v) are in G3, we have d[s2(u), v] ≤ δ(s2(u), u)+δ(u, v).
Since d[u, v] ≤ δ(u, s2(u))+d[s2(u), v], we get d[u, v] ≤ 2δ(u, s2(u))+δ(u, v).
This implies inequality (4). The proof of inequality (5) is analogous to the
proof of inequality (4). This finishes Case 1.

Case 2: ball2(u) and ball2(v) overlap.
This case is further split into 2 cases: Case(i), where all the edges in SP (u, v)
are present in G3 = (V, E3) but not all these edges are in G2 = (V, E2) and
Case (ii), where some of the edges in SP (u, v) are not present in G3 =
(V, E3). Due to lack of space, we omit the analysis of Case 2 here and refer
the reader to the full version of the paper [11].

This finishes the proof of Lemma 3. �

Lemma 3 and Lemma 2 yield Theorem 1, stated in Section 1. Note that in the
proof of Lemma 3, we show a stretch of at most 7/3 in all cases, except in
Case(ii) of Case 2, where we show a stretch of 5/2.

4 All-Pairs Stretch (2 + ε) Distances

Let ε > 0 be any given parameter. In this section we present our algorithm
STRETCH2+ε(G) which takes as input an undirected graph G = (V, E) with a
weight function w : E → Q

+ and computes an n × n table d that stores all-
pairs stretch (2 + ε) distances. In algorithm STRETCH2+ε(G) we augment the
algorithm STRETCH5/2 of the previous section with some more computation so
that in the new algorithm we get a stretch of at most 2 + ε. Recall that we
assumed that all edge weights are positive. Let us now scale the edge weights,
if necessary, so that the smallest edge weight is 1 and let W be the largest
edge weight.

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 337

We will use our earlier sampling method to obtain the sets V = S0 ⊇ S1 ⊇
S2 ⊇ S3 ⊇ S4 = ∅, except that we wish to always bound the size of S1 by
O(n3/4) here. This bound on |S1| will be used in our running time analysis.
Hence, after sampling each vertex of V independently with probability n−1/4 to
construct the set S1, if the size of S1 is larger than 2n3/4, then we discard this
sampling and sample afresh once again. The expected number of such trials till
we construct a set S1 of size O(n3/4) is O(1). The set S2, as earlier, is obtained
by sampling vertices in S1 with probability n−1/4 and the set S3 is obtained by
sampling vertices in S2 with probability n−1/4.

The Algorithm STRETCH2+ε(G)

1. Call algorithm STRETCH5/2(G). An n × n table d is returned.
2. Build the sequence of matrices M1, M2, . . . , Mk, where k = �log1+ε/2(5/2 ·

nW)�. Each Mi is a 0-1 matrix of dimension n×|S1| which is defined as: for
each u ∈ V and x ∈ S1

Mi[u, x] = 1 iff (1 + ε/2)i−1 ≤ d[u, x] ≤ (1 + ε/2)i.

The value d[u, x] is looked-up from the table d returned by STRETCH5/2(G)
in Step 1.

3. For each (i, j) ∈ {1, . . . , k} × {1, . . . , k} do:
– compute the n×n “Boolean product witness matrix” Wij corresponding

to the Boolean product matrix MiM
T
j . That is, for each (u, v) ∈ V × V :

Wij [u, v] =

{
s for some s such that Mi[u, s] = 1 and Mj[s, v] = 1
0 if there is no such s.

That is, if MiM
T
j [u, v] = 1, then the entry Wij [u, v] = s is a witness for

MiM
T
j [u, v] being 1.

4. For each pair (u, v) ∈ V × V do:
– for each (i, j) ∈ {1, . . . , k} × {1, . . . , k} do:

If Wij(u, v) �= 0 (call it x) and d[u, x]+d[x, v] < d[u, v] then set d[u, v] =
d[u, x] + d[x, v].

5. Return the table d.

The problem of computing a Boolean product witness matrix is well-studied
and [12] contains the description and analysis of such an algorithm. In the above
algorithm the step whose time complexity is the most difficult to analyze is
Step 3. We know that |S1| is O(n3/4). It can be shown (see [12] for the details)
that the algorithm for computing Wij has expected running time Õ(C(n)), where
C(n) is the time taken to multiply an n × n3/4 matrix with an n3/4 × n matrix.
Here we will use the following result.

Proposition 3 (Huang and Pan ([10] Section 8.2)). Multiplying an n×nβ

matrix with an nβ × n matrix for 0.294 ≤ β ≤ 1 takes time O(nα), where
α = 2(1−β)+(β−0.294)ω

0.706 , and ω < 2.376 is the best exponent of multiplying two
n × n matrices.

338 T. Kavitha

Substituting β = 3/4 in Proposition 3 yields C(n) is O(n2.243). So computing
Wij takes expected Õ(n2.243) time. The entire expected running time of Step 3
is Õ(k2 · n2.243), where k = O(log nW/ε), W is the largest edge weight. It is
reasonable to assume that all edge weights are polynomial in n, since we always
assumed that arithmetic on these values takes unit time. Then the expected
running time of this step then is Õ(n2.243/ε2), which is O(n9/4) if ε is a constant.
The call to STRETCH5/2(G) takes expected O(n9/4) time and thus the expected
running time of the algorithm STRETCH2+ε(G) is Õ(n2.243 log W/ε2) + O(n9/4)
which is O(n9/4) when edge weights are polynomial in n and ε > 0 is a constant.

4.1 Correctness of the Algorithm STRETCH2+ε(G)

The following lemma shows the correctness of our algorithm.

Lemma 4. For every u, v ∈ V , the estimate d[u, v] computed by the algorithm
STRETCH2+ε(G) satisfies: δ(u, v) ≤ d[u, v] ≤ (2 + ε)δ(u, v).

Proof. Since d[u, v] is always the length of some path in G between u and v, we
have δ(u, v) ≤ d[u, v]. Now we show the harder part, that is, the upper bound
claimed on d[u, v]. Recall from Claim 2 that if ball1(u) and ball1(v) overlap, then
d[u, v] = δ(u, v). So let us assume henceforth that ball1(u) and ball1(v) do not
overlap. We can show the following claim. (Due to lack of space, we omit the
proof of Claim 3 here and refer the reader to [11].)

Claim 3. If ball1(u) and ball1(v) do not overlap, then some vertex s ∈ S1 sat-
isfies d[s, u] + d[s, v] ≤ 2δ(u, v).

The above claim immediately shows a stretch of 2 + ε of the distance estimate
d computed. If s = u or s = v (which might happen if u or v is in S1) then
the above claim implies that d[u, v] ≤ 2δ(u, v) which is a stretch of just 2 of
the distance estimate computed. Hence let us assume that s is neither u nor
v. So 1 ≤ δ(s, u) ≤ nW which implies that 1 ≤ d[s, u] ≤ 5/2nW . Since k has
been chosen such that (1 + ε/2)k ≤ 5/2nW , it follows that there exist i, j where
1 ≤ i, j ≤ k such that (1 + ε/2)i−1 ≤ d[s, u] ≤ (1 + ε/2)i and (1 + ε/2)j−1 ≤
d[s, v] ≤ (1 + ε/2)j. Thus Boolean product witness matrix for MiM

T
j would

compute the above witness s ∈ S1 or some other s′ ∈ S1 which has to satisfy
(1 + ε/2)i−1 ≤ d[s′, u] < (1 + ε/2)i and (1 + ε/2)j−1 ≤ d[s′, v] < (1 + ε/2)j. This
implies that

d[u, s′] + d[s′, v] ≤ (1 + ε/2)(d[u, s] + d[s, v])
≤ (2 + ε)δ(u, v).

Step 4 ensures that d[u, v] ≤ d[u, s′] + d[s′, v] which shows a stretch of at most
2 + ε of the distance estimate computed. �

Lemma 4 and the bound on the running time of this algorithm shown in the
previous section complete the proof of Theorem 2 stated in Section 1.

Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs 339

5 Conclusions

In this paper we gave a combinatorial algorithm with expected running time
O(n9/4) to compute all-pairs stretch 5/2 distances in a weighted undirected graph
on n vertices. We then improved this algorithm, with the help of a subroutine for
witnessing a Boolean product matrix, to compute all-pairs stretch 2+ε distances
for any ε > 0. The expected running time of the improved algorithm is O(n9/4)
assuming that all edge weights are polynomial in n and ε is a constant. An open
question is to obtain faster algorithms for these problems.

Acknowledgments. I thank Surender Baswana for his helpful comments and the
referees for their detailed reviews and comments.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diame-
ter and shortest paths(without matrix multiplication). SIAM Journal on Comput-
ing 28, 1167–1181 (1999)

2. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of
sparse neighborhood covers. SIAM Journal on Computing 28, 263–277 (1998)

3. Baswana, S., Goyal, V., Sen, S.: All-pairs nearly 2-approximate shortest paths
in O(n2 polylog n) time. In: 22nd Annual Symposium on Theoretical Aspect of
Computer Science, pp. 666–679 (2005)

4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: 47th IEEE Symposium on Foundations of Com-
puter Science, pp. 591–602 (2006)

5. Chan, T.: More algorithms for all-pairs shortest paths in weighted graphs. In:
Proceedings of 39th Annual ACM Symposium on Theory of Computing (STOC),
pp. 590–598 (2007)

6. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM Journal on Computing 28, 210–236 (1998)

7. Cohen, E., Zwick, U.: All-pairs small stretch paths. Journal of Algorithms 38, 335–
353 (2001)

8. Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. Siam Journal on
Computing 29, 1740–1759 (2000)

9. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms
(TALG) 1, 282–323 (2005)

10. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications.
Journal of Complexity 14, 257–299 (1998)

11. K avitha, T.: Faster Algorithms for All-Pairs Small Stretch Distances in Weighted
Graphs (Full version), http://drona.csa.iisc.ernet.in/∼kavitha/fst07.pdf

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

13. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science 312, 47–74 (2004)

14. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of Association of
Computing Machinery 52, 1–24 (2005)

15. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix
multiplication. Journal of Association of Computing Machinery 49, 289–317 (2002)

http://drona.csa.iisc.ernet.in/~kavitha/fst07.pdf

Covering Graphs with Few

Complete Bipartite Subgraphs

Herbert Fleischner1, Egbert Mujuni2,�, Daniel Paulusma3,��,
and Stefan Szeider3,���

1 Department of Computer Science, Vienna Technical University
A-1040 Vienna, Austria

fleisch@dbai.tuwien.ac.at
2 Mathematics Department, University of Dar es Salaam

PO Box 35062, Dar es Salaam, Tanzania
emujuni@maths.udsm.ac.tz

3 Department of Computer Science, Durham University
Durham DH1 3LE, United Kingdom

{daniel.paulusma,stefan.szeider}@durham.ac.uk

Abstract. Given a graph and an integer k, the biclique cover problem
asks whether the edge-set of the given graph can be covered with at
most k bicliques (complete bipartite subgraphs); the biclique vertex-cover
problem asks whether the vertex-set of the given graph can be covered
with at most k bicliques. Both problems are known to be NP-complete
even if the given graph is bipartite. In this paper we investigate these two
problems in the framework of parameterized complexity: do the problems
become easier if k is assumed to be small? We show that, considering
k as the parameter, the first problem is fixed-parameter tractable, while
the second one is not fixed-parameter tractable unless P = NP.

1 Introduction

The problem of covering the edges of a graph with at most k bicliques (Biclique

Cover) arises in many areas such as automata and language theory, graphs com-
pression, artificial intelligence, biology, and flow theory [1,3]. A related problem
is Biclique Vertex-Cover where it is asked to cover the vertices of a graph
with at most k bicliques. Applications of Biclique Vertex-Cover include data
mining, e-commerce, information retrieval and network analysis [11]. Both are
computationally hard problems: Biclique Cover is NP-complete and remains
NP-hard for chordal bipartite graphs [15,13]. Very recently, Heydari et al. [11]
showed that Biclique Vertex-Cover is NP-complete for bipartite graphs.

In this paper we investigate the questions of whether the problems Biclique

Cover and Biclique Vertex-Cover (and variants) become easier if the given
� Research supported by International Science Programme (ISP) of Sweden, un-

der the project “The Eastern African Universities Mathematics Programme
(EAUMP)”.

�� Research supported by the EPSRC, project EP/D053633/1.
��� Research supported by the EPSRC, project EP/E001394/1.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 340–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Covering Graphs with Few Complete Bipartite Subgraphs 341

upper bound on the number of bicliques in the cover is assumed to be small.
We undertake this investigation in the framework of parameterized complexity
as developed by Downey and Fellows [6]; we give some basic background of
parameterized complexity in Section 2.1. As the parameter we take the upper
bound k on the number of bicliques in the cover. In principle, the problems
under consideration can fall into any of the following three categories.

1. For every fixed k the problem can be solved in polynomial time where the
order of the polynomial is independent of k; in this case we say that the
problem is fixed-parameter tractable.

2. For every fixed k the problem can be solved in polynomial time but the order
of the polynomial grows with k.

3. For some fixed k the problem is NP-hard.

Problems that fall into the second category can be further categorized by means
of the complexity classes W[1], W[2], . . . , XP (see Section 2.1).

New Results
Our results show that the problems under consideration fall into all three of the
above categories, spanning a wide range of parameterized complexities.

1. The problem Biclique Cover is fixed-parameter tractable.

We show this result by kernelization, that is, we give an algorithm that reduces
an instance of Biclique Cover in polynomial time into an equivalent instance
where the number of vertices is bounded in terms of the parameter k.

2. For k ≤ 2 the problem Biclique Vertex-Cover can be solved in polyno-
mial time for bipartite graphs.

The bound k ≤ 2 is best possible:

3. For every fixed k ≥ 3 the problem Biclique Vertex-Cover is NP-complete
and remains NP-hard for bipartite graphs.

We establish this result by a reduction from an NP-hard variant of the list-
coloring problem.

In view if the NP-hardness it makes sense to study the more restricted problem
b-Biclique Vertex-Cover where the bicliques in the cover are bicliques of the
from Kr,s with min(r, s) ≤ b. Indeed, this restriction moves the problem from
the third to the second of the above categories:

4. For every fixed b ≥ 1 the problem b-Biclique Vertex-Cover is W[2]-
complete and remains W[2]-hard for bipartite graphs.

2 Preliminaries

2.1 Parameterized Complexity

We give some basic background on parameterized complexity; for a detailed dis-
cussion we refer the reader to other sources [6,14]. In parameterized complexity

342 H. Fleischner et al.

theory, we consider the problem input as consisting of two parts; that is, a pair
(I, k), where I is the main part and k (usually an integer given in unary) is the
parameter. We say a problem is fixed parameter tractable if an instance (I, k)
can be solved in time O(f(k)nc), where f denotes a computable function and c
denotes a constant that is independent of the parameter k. Therefore, such an
algorithm may provide an efficient solution to the problem if the parameter is
reasonably small. We denote by FPT the class of all fixed-parameter tractable
decision problems.

Let P be a parameterized problem. A reduction to a problem kernel (or
kernelization) means to replace an instance (I, k) of P with a reduced instance
(I ′, k′) of P (called problem kernel) such that (i) k′ ≤ k and |I ′| ≤ g(k) for some
computable function g; (ii) the reduction from (I, k) to (I ′, k′) is computable
in polynomial time; (iii) (I, k) ∈ P if and only if (I ′, k′) ∈ P . It is well known
that a parameterized problem is fixed-parameter tractable if and only if it is
kernelizable [10,12,14].

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that a parameterized problem is not fixed-parameter tractable. This complete-
ness theory is based on a hierarchy of complexity classes W[1], W[2], . . . , XP.
Each class is the equivalence class of certain parameterized satisfiability prob-
lems under fpt-reductions. An fpt-reduction from problem P to problem P ′ is
an algorithm that computes for every instance (I, k) of P an instance (I ′, k′)
of P ′ in time f(k)|I|c such that k′ ≤ g(k) and (I, k) ∈ P if and only if
(I ′, k′) ∈ P ′, where f, g are computable functions and c is a constant. Clearly,
if P and P ′ are parameterized problems and if P ′ belongs to some complexity
class W , and if there is an fpt-reduction from P to P ′, then P also belongs to
W . The class XP consists of parameterized decision problems P such that for
each instance (I, k), it can be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ P ,
where f, g are computable functions depending only k. That is, XP consists
of parameterized decision problems which can be solved in polynomial time if
the parameter is considered as a constant. The above classes form the chain
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP where all inclusions are conjectured to be
proper; FPT �= XP is known [6,7].

2.2 Graphs and Covers

For graph theoretic terminology not defined in this paper, we refer the reader
to standard text books [2,5]. In this paper we consider connected simple graphs
G = (V, E). The set of neighbors of a vertex v is denoted by N(v), and we set
N(T) =

⋃
v∈T N(v) for T ⊂ V . If V ′ ⊆ V , we denote by G[V ′] the subgraph of

G induced by V ′. We write G = ((V1, V2), E) for a bipartite graph G = (V, E)
having the vertex bipartition V = V1 ∪ V2. A biclique of graph G is a complete
connected bipartite subgraph of G. Note that a biclique is not necessarily vertex
induced. A biclique K = ((U1, U2), E) is non-trivial if it contains more than one
vertex (that is, if both U1 and U2 are non-empty). A biclique K = ((U1, U2), E)
is a star centered at a vertex u if U1 = {u} or U2 = {u}.

Covering Graphs with Few Complete Bipartite Subgraphs 343

Definition 1. Let G be a graph. A set S of subgraphs of G is a cover of G if
every edge of G is contained in at least one of the subgraphs in S. The set S
is a vertex-cover of G if every vertex of G is contained in at least one of the
subgraphs in S. If all subgraphs in S are bicliques, then we speak of a biclique
cover or biclique vertex-cover, respectively.

We now give formal definitions of the problems we are investigating.

Biclique Cover

Instance: A graph G = (V, E) and a positive integer k.
Parameter: The integer k.
Question: Does G have a biclique cover of size at most k?

Biclique Vertex-Cover

Instance: A graph G and positive integer k.
Parameter: The integer k.
Question: Does G have a biclique vertex-cover of size at most k?

Remark 2. Let biclique partition denote the variant of Biclique Vertex-

Cover where the bicliques in the cover are required to be mutually vertex-
disjoint. The (non-parameterized version) of biclique partition for bipartite
graphs was considered by Heydari et al. [11]. It is easy to see that one can always
make the bicliques of a biclique vertex-cover disjoint without increasing the size
of the cover. Hence the problems Biclique Vertex-Cover and biclique

partition are equivalent.

3 Biclique Covers

As mentioned in the introduction, the decision problem corresponding to Bi-

clique Cover is NP-complete even for bipartite graphs [15]. In this section we
establish fixed-parameter tractability.

We start with simple reduction rules that can be easily applied to simplify an
instance of the problem.

Rule 1. Given an instance (G, k) of Biclique Cover and a vertex v ∈ V (G)
of degree 0, then (G, k) is a yes-instance if and only if (G − v, k) is a yes-
instance.

Rule 2. Given an instance (G, k) of Biclique Cover and a vertex v ∈ V (G)
of degree 1. Let w be the neighbor of v. Then (G, k) is a yes-instance if and
only if (G − {v, w}, k − 1) is a yes-instance.

Rule 3. Given an instance (G, k) of Biclique Cover and a pair of non-
adjacent vertices u, v such that N(u) = N(v), then (G, k) is a yes-instance
if and only if (G − {v}, k) is a yes-instance.

Clearly, the following is true.

Lemma 3. Rules 1-3 are correct and can be applied in polynomial time.

We say that an instance (G, k) of Biclique Cover is reduced (with respect to
Rules 1-3) if these rules cannot be applied.

344 H. Fleischner et al.

Theorem 4 (Kernelization). If (G, k) is a reduced yes-instance of Biclique

Cover then G has at most 22k vertices. Furthermore, if G is bipartite, then it
has at most 2k+1 vertices.

To establish the above theorem we need the following lemma.

Lemma 5. Let k be a positive integer and G a complete graph on m > 2k

vertices. Then every biclique cover of G has more than k elements.

Proof. Let ρ(G) denote the cardinality of a smallest biclique cover of G. We
proceed by induction on k. The lemma clearly holds for k = 1 since in that
case G contains a triangle and so ρ(G) > 1. Now let k ≥ 1 and assume that
the lemma is true for all l ≤ k. Let G be a complete graph with m > 2k+1

vertices. Let S be a biclique cover of G with |S| = ρ(G). Choose a biclique
B = ((U, V), EB) ∈ S. We assume, w.l.o.g., that |U | ≥ |V |; hence |U | > 2k.
Define

S′ := S − {B},

S′′ := { B′ = ((U ′, V ′), EB′) : B′ ∈ S′ ∧ U �⊆ U ′ ∧ U �⊆ V ′ },

SU := { B′′ − V : B′′ ∈ S′′ }.

Since U is an independent set in B and G is complete, there must be a biclique
B′ = ((U ′, V ′), EB′) ∈ S′ and x, y ∈ U such that x ∈ U ′, y ∈ V ′ . Therefore,

S′′ �= ∅, SU �= ∅.

Note that S′ covers the edges of G[U] since E(B) ∩ E(G[U]) = ∅. Thus, SU is a
biclique cover of G[U]. Therefore, since G[U] is a complete graph and |U | > 2k

we have

ρ(G) = |S| = |S′| + 1 ≥ |S′′| + 1 = |SU | + 1 ≥ ρ(G[U]) + 1 > k + 1;

the last inequality holding by induction. The result now follows. �

Proof (of Theorem 4). Suppose the instance (G, k) of Biclique Cover is re-
duced and G has a biclique cover {C1, . . . , Cl} of size l ≤ k. We will argue
similarly as Gramm et al. [8]. We assign to each vertex v ∈ V (G) a binary vec-
tor �bv of length l where the i-th component bv,i = 1 if and only if v is contained
in the biclique Ci. Since (G, k) is reduced, each vertex belongs to at least one
biclique. Consider an arbitrary but fixed binary vector �b of length l. Let Vb be
the set of vertices of G such that �bu = �b for all u ∈ Vb. Suppose Vb contains
non-adjacent distinct vertices x, y. Since �bx = �by, it follows that x and y belong
to the same bicliques. Having supposed xy /∈ E(G) it follows that x, y belong
to the same class in the vertex bipartition of Ci whenever bx,i = by,i = 1, which
implies that NG(x) = NG(y) since C covers G. Since (G, k) is reduced, we have
obtained a contradiction. Thus we conclude xy ∈ E(G) if x, y ∈ Vb and x �= y.
This implies that G[Vb] is a complete subgraph. Consequently, if G is bipartite,

Covering Graphs with Few Complete Bipartite Subgraphs 345

then |Vb| ≤ 2. We claim that |Vb| ≤ 2l holds in the general non-bipartite case.
Suppose |Vb| > 2l. Then by Lemma 5, the edges of G[Vb] must be covered by at
least l + 1 bicliques, contradicting the assumption that G has a biclique cover
with l elements. Therefore, for a fixed binary vector of length l, there are at
most 2l vertices of G which are associated with this vector. Since there are 2l

binary vectors of length l, we conclude that G has at most 2l · 2l vertices, and
at most 2l+1 vertices if G is bipartite. �

The following is a direct consequence of Lemma 3 and Theorem 4.

Corollary 6. Biclique Cover is fixed-parameter tractable.

Remark 7. As can be seen from the proof of Theorem 4, Rule 2 has no impact
there (i.e., Theorem 4 remains true if we restrict the reductions to applying
Rules 1 and 3 only). However, we included Rule 2 because it may be used to
reduce the size of the input graph.

4 Biclique Vertex-Covers

4.1 NP-Hardness

We now proceed to show that Biclique Vertex-Cover is NP-hard for fixed
k ≥ 3, even if the given graph is bipartite. We present a polynomial-time
reduction from the following problem.

List-Coloring

Instance: A graph G = (V, E) and a mapping L that assigns to every
v ∈ V a list L(v) of colors allowed for v.
Question: Is there a proper coloring c of V (G) such that c(v) ∈ L(v) for
each v ∈ V ?

If such a coloring c exists, then we call c an L-coloring of G, and we say that G is
L-colorable. If the number of available colors k = |

⋃
v∈V L(v)| is fixed, then the

problem is called k-List-Coloring. This problem is known to be NP-complete
for bipartite graphs and k ≥ 3 [9].

Our reduction proceeds as follows. Let (G, L) be an instance of k-List-

Coloring where G = ((U, V), E) is a bipartite graph. We assume that⋃
v∈V L(v) = {1, 2, . . . , k}. We construct a graph H as follows:

1. Let G be the bipartite complement of G; i.e., V (G) = V (G) = U ∪ V and
E(G) = { uv : u ∈ U, v ∈ V, uv /∈ E(G) }.

2. For ui, vi /∈ V (G), let (ui, vi), i = 1, . . . , k, be k disjoint copies of K1,1.
3. Now take G and the k copies of K1,1. For every x ∈ U and i ∈ {1, . . . , k},

if i ∈ L(x) add an edge xvi. For every y ∈ V and i ∈ {1, . . . , k}, if i ∈ L(y)
add an edge yui. Call the resulting graph H . Thus, H is a bipartite graph
containing G as a proper subgraph (note that V (H) = (U ∪ { ui : 1 ≤ i ≤
k }) ∪ (V ∪ { vi : 1 ≤ i ≤ k })).

346 H. Fleischner et al.

Clearly H can be constructed in polynomial time and |V (H)| = |V (G)| + 2k.
Furthermore, the following can be established easily.

Lemma 8. G is L-colorable if and only if V (H) can be covered by k bicliques.

For every fixed k the problem Biclique Vertex-Cover belongs to NP. Since,
as mentioned above, k-List-Coloring is NP-complete in bipartite graphs for
k ≥ 3, the above reduction yields following result.

Theorem 9. Biclique Vertex-Cover is NP-complete for fixed k ≥ 3. This
also holds if only bipartite graphs are considered.

Corollary 10. Biclique Vertex-Cover is not fixed-parameter tractable un-
less P = NP.

Remark 11. Theorem 9 implies that Biclique Vertex-Cover is complete
for the parameterized complexity class para-NP which was introduced by Flum
and Grohe [7].

4.2 Polynomial Cases

Next we study the question whether k ≥ 3 is an optimal bound for the NP-hard-
ness of Biclique Vertex-Cover. The case k = 1 is trivially solvable in poly-
nomial time, as a graph G has a biclique vertex-cover consisting of a single
biclique if and only if the complement graph Ḡ is disconnected. The case k = 2
is still open. However, we can establish polynomial-time results for a special
graph class that includes all bipartite graphs.

For this purpose we transform Biclique Vertex-Cover for k = 2 into an
equivalent problem involving graph homomorphisms. We need the following
definitions. Let G, H be two simple graphs. A mapping h : V (G) → V (H) is a
homomorphism from G to the reflexive closure of H if for every edge uv ∈ E(G)
we have either h(u) = h(v) or h(u)h(v) ∈ E(H). The homomorphism h is vertex-
surjective if for each c ∈ V (H) there is some v ∈ V (G) with h(v) = c. Let Ck

denote the cycle on k vertices c1, . . . , ck where ci and cj are adjacent if and only
if |i − j| ≡ 1(mod k). We make the following observation, which is easy to see.

Observation 12. A graph G has a biclique vertex-cover consisting of two
non-trivial vertex-disjoint bicliques if and only if there is a vertex-surjective ho-
momorphism from the complement graph Ḡ to the reflexive closure of C4.

A dominating edge of a graph G is an edge xy with N(x) ∪ N(y) = V (G).

Lemma 13. We can check in polynomial time whether a given graph that has a
dominating edge allows a vertex-surjective homomorphism to the reflexive closure
of C4.

Proof. Let F = (V, E) be a graph with dominating edge xy. Clearly, {x, y}
will be mapped to two different vertices of C4 by any vertex-surjective
homomorphism h from F to the reflexive closure of C4.

Covering Graphs with Few Complete Bipartite Subgraphs 347

Suppose such a homomorphism h exists. If h maps a vertex v to ci, we say
that v has color i. Then we may, w.l.o.g., assume that x has got color 1 and
y has got color 2. We will show how we can check in polynomial time whether
this precoloring of F can be extended to a full coloring of F that corresponds
to a vertex-surjective homomorphism from F to the reflexive closure of C4.
Obviously, such a coloring uses exactly four different colors 1,2,3,4 such that
neither color pair (1, 3) nor (2, 4) is used on the endvertices of an edge.

The following terminology is useful. We call a set U ⊆ V colored if every
vertex in U has received a color. In a precoloring, we denote the set of all colored
neighbors of a vertex u by N c(u), and we call a colored set U j-chromatic if
the number of different colors in U equals j.

We proceed as follows. First we guess an uncolored vertex s not adjacent to
x that we assign color 3 and an uncolored vertex t not adjacent to y that we
assign color 4. Note that the number of guesses is bounded by O(|V (F)|2). We
apply the following rule as long as possible: if there exists an uncolored vertex
u with 3-chromatic N c(u) then u can only get one possible color, which we then
assign to u. Afterwards we check if there exists a vertex w with a 4-chromatic
colored neighbor set. If so, then pair (s, t) was a wrong guess, because we
cannot assign an appropriate color to w. We then guess another pair (s′, t′)
that we assign color 3, 4 respectively, and so on.

Suppose that for a particular pair (s, t) we have applied the above rule as
long as possible and such a vertex w (with 4-chromatic N c(w)) does not exist.
Since xy is a dominating edge, we can partition the uncolored vertices of F
into the following sets: sets Ui,j consisting of vertices adjacent to vertices with
color i and j for (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} and sets Ui consisting
of vertices only adjacent to color i for i = 1, 2. Then we extend the precoloring
of F by assigning color 1 to the vertices in U1,2 ∪ U1,4 ∪ U2,4 ∪ U1 ∪ U2 and color
2 to the vertices in U1,3 ∪ U2,3. This proves Lemma 13. �
Theorem 1. Biclique Vertex-Cover for fixed k = 2 can be solved in poly-
nomial time for the class of graphs that do not contain a pair of nonadjacent
vertices with a common neighbor. In particular, Biclique Vertex-Cover for
fixed k = 2 can be solved in polynomial time for bipartite graphs.

Proof. The first statement immediately follows from Observation 12 and
Lemma 13. So, let G be a bipartite graph with bipartition classes A, B. If
NG(a) = B for some a ∈ A and NG(b) = A for some b ∈ B, then we are imme-
diately done. Suppose G has two nonadjacent vertices x ∈ A and y ∈ B. Then
xy is a dominating edge in Ḡ. Again we apply Observation 12 together with
Lemma 13. �
Remark 14. A homomorphism f from a graph G to a graph H is called edge-
surjective or a compaction if for each xy ∈ E(H) there is some uv ∈ E(G) with
f(u)f(v) = xy. The problem that asks whether there exists a compaction from
a given graph to the reflexive closure of C4 is known to be NP-complete [16].

Remark 15. Of related interest is the concept of H-partitions as studied by
Dantas et al. [4]. Let H be a fixed graph with four vertices h1, . . . , h4. An

348 H. Fleischner et al.

H-partition of a graph G = (V, E) is a partition of V into four nonempty sets
X1, . . . , X4 such that whenever hihj is an edge of H , then G contains the biclique
K = ((Xi, Xj), Ek). H-partition denotes the problem of deciding whether a
given graph admits an H-partition. Evidently, Biclique Vertex-Cover for
k = 2 is equivalent to the problem 2K2-partition where 2K2 denotes the graph
on four vertices with two independent edges. H = 2K2 is the only case for which
the complexity of H-partition is not known (cf.[4]). All other cases are known
to be solvable in polynomial time.

4.3 Bounding One Side of the Bicliques

In the following we study the question of whether Biclique Vertex-Cover

becomes easier when the number of vertices in one of the two classes of the
vertex bipartition of bicliques is bounded. For a complete bipartite Kr,s, define
β(Kr,s) = min{r, s}. Clearly β(K) = 1 if and only if K is a star. A b-bounded
biclique is a biclique K such that β(K) ≤ b. A b-biclique vertex-cover of a graph
G is a set of b-bounded bicliques of G such that each vertex of G is contained in
one of these bicliques.

Let b be a fixed positive integer. We consider the following parameterized
problem.

b-Biclique Vertex-Cover

Instance: A graph G and a positive integer k.
Parameter: The integer k.
Question: Does there exist a b-biclique vertex-cover S of G such that
|S| ≤ k?

It is not difficult to see that b-Biclique Vertex-Cover is in XP. The
analysis of a straightforward search algorithm gives the following observation.

Observation 16. Given a graph G with n vertices and an integer k we can
check in time O(Mb,knbk) whether G has a b-biclique vertex-cover of size at
most k. Here Mb,k denotes the number of integer solutions of the equation

i1 + . . . + ib = k, 0 ≤ ij ≤ k, j = 1, . . . , b.

The following parameterized hitting set problem is W[2]-complete [6].

Hitting Set

Instance: A set S = {s1, . . . , sn}, a collection C = {C1, . . . , Cm}, where
Ci ⊆ S, i = 1, . . . , m, and a positive integer k.
Parameter: The integer k.
Question: Does there exist a subset H ⊆ S with |H | ≤ k, such that
H ∩ Ci �= ∅ for i = 1, . . . , m?

The following result follows from the two lemmas below.

Theorem 17. b-Biclique Vertex-Cover is W[2]-complete for every b ≥ 1.
This also holds if only bipartite graphs are considered.

Lemma 18. There is an fpt-reduction from Hitting Set to b-Biclique

Vertex-Cover for bipartite graphs.

Covering Graphs with Few Complete Bipartite Subgraphs 349

Proof. Let I = ((S, C), k) be an instance of Hitting Set, where S =
{s1, . . . , sn} and C = {C1, . . . , Cm}. We transform I into an instance of
b-Biclique Vertex-Cover as follows: First construct a bipartite graph
G = ((U, V), E) by setting U = {u1, . . . , un}, V = {v1, . . . , vm} and letting
uivj ∈ E(G) if and only if si ∈ Cj . Now add two new vertices z and z′ to
G, such that z is adjacent to every ui and z′ is adjacent to z only. Finally,
for each vertex vj add bk new vertices vj1 , . . . , vjbk

and add edges such that
N(vjd

) := N(vj), d = 1, . . . , bk. Call the resulting graph G′. Clearly, G′ is
bipartite. Let U ′, V ′ be the bipartition of V (G′), where z ∈ V ′ and z′ ∈ U ′ ⊃ U .

We show that (S, C) has a hitting set of size at most k if and only if G′ has
a b-biclique vertex-cover of size at most k + 1.

Let H be a hitting set of (S, C) with |H | ≤ k. We assume, w.l.o.g., that H
is minimal. Set U∗ := { ui : si ∈ H }. Clearly, U∗ ⊆ U ⊂ U ′. We construct
recursively a star vertex-cover S of G′ such that the centers of the stars in S
are the elements of U∗ ∪ {z}, as follows. Set U∗∗ := U∗ and S := ∅. Repeat the
following procedure as long as U∗∗ is not empty.

– Choose a vertex u ∈ U∗∗.
– Define Ku := NG′(u) ∪ {u}. Ku induces a star centered at u in G′. Set

S := S ∪ {G′[Ku]}.
– Set U∗∗ := U∗∗ − {u}.

The final S is obtained by adding the star which consists of z and the elements
of U ′ − U∗.

The vertices of G′ have the following properties with respect to the elements
of S. (1) Every vertex v ∈ V ′ belongs to a star centered at a vertex u ∈ U∗,
since U∗ corresponds to the hitting set H . (2) Every vertex of u ∈ U∗ belongs
to the star centered at u. (3) The vertices in U ′−U∗ belong to the star centered
at z. Thus, S is a star cover of G′ with |S| = |H | + 1 ≤ k + 1.

Conversely, suppose that G′ has a b-biclique vertex-cover T of size at most
k + 1. We assume, w.l.o.g., that T contains a star K0 centered at the vertex
z. Let T ′ := T − {K0}. For a biclique K = ((X ′, Y ′), EK) ∈ T ′ we assume,
w.l.o.g., that X ′ ⊆ U ′ and Y ′ ⊆ V ′. Define

T ′ :=
⋃

K=((X′,Y ′),EK)∈T ′

{ X ′ : |X ′| ≤ b }.

We claim that NG(T ′) = V . Suppose to the contrary that there is a vertex
vj ∈ V − NG(T ′). Consider the set Vj = {vj , vj1 , . . . , vjbk

}. Since vj /∈ NG(T ′)
we have Vj ∩ NG′(T ′) = ∅ because NG(vj) = NG′(vj) = NG′(vjd

), d = 1, . . . , bk.
Thus, for each biclique K = ((X ′′, Y ′′), EK) ∈ T ′ containing an element v ∈ Vj ,
it follows that |X ′′| > b and |Y ′′| ≤ b. Thus |T ′| ≥ k + 1 since |Vj | > bk, a
contradiction. Therefore, we obtain a set T ⊆ U that corresponds to a hitting
set of (S, C) of size at most k by including in T precisely one vertex in T ′ ∩ X ′

for each K = ((X ′, Y ′), EK) ∈ T ′. �
Let G be a graph. A set D ⊆ V (G) is a dominating set of G if every vertex of
G is either in D or has a neighbor in D. The following parameterized problem
is know to be W[2]-complete [6].

350 H. Fleischner et al.

Dominating Set

Instance: A graph G and a positive integer k.
Parameter: The integer k.
Question: Does there exist a dominating set of G of size at most k?

Lemma 19. There is an fpt-reduction from b-Biclique Vertex-Cover to
Dominating Set.

Proof. Consider an instance (G, k) of b-Biclique Vertex-Cover. For a set
S ⊆ V (G) let S′ ⊆ V (G) denote the set of common neighbors of vertices in S,
i.e., S′ =

⋂
v∈S N(v). Furthermore, let S denote the set of subsets S ⊆ V (G)

such that with 1 ≤ |S| ≤ b and S′ �= ∅.
We construct a graph H = (V ′, E′) as follows. V ′ consists of two new vertices

z, z′ and a vertex vS for every S ∈ S. E′ consists of the edge zz′ and all edges
vSw for w ∈ S ∪S′ ∪{z}, S ∈ S. Note that H can be constructed in polynomial
time as |S| = O(nb) where n = |V (G)|.

It is easy to verify that G has a b-biclique vertex-cover of size at most k if and
only if H has a dominating set of size at most k + 1. �

5 Final Remarks

We have classified the parameterized complexity of the problems Biclique

Cover and Biclique Vertex-Cover: the former is fixed-parameter tractable,
the latter is not fixed-parameter tractable unless P = NP. It would be interest-
ing to improve our algorithm for Biclique Cover. In particular, it would be
interesting to improve on the 22k kernel or to show that under plausible complex-
ity theoretic assumptions a kernelization to a kernel of size polynomial in k is not
possible. Our results for the second problem, Biclique Vertex-Cover, are
negative. It would be interesting to identify special graph classes for which the
problem becomes fixed-parameter tractable, and to determine the complexity of
Biclique Vertex-Cover for fixed k = 2.

Acknowledgment

The authors thank Mike Fellows for helpful discussions.

References

1. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite domino-free graphs. Discr. Appl.
Math. 86(2-3), 125–144 (1998)

2. Chartrand, G., Lesniak, L.: Graphs & digraphs, 4th edn. Chapman & Hall/CRC,
Boca Raton, FL (2005)

3. Cornaz, D., Fonlupt, J.: Chromatic characterization of biclique covers. Discrete
Math. 306(5), 495–507 (2006)

Covering Graphs with Few Complete Bipartite Subgraphs 351

4. Dantas, S., de Figueiredo, C.M., Gravier, S., Klein, S.: Finding H-partitions effi-
ciently. RAIRO - Theoretical Informatics and Applications 39(1), 133–144 (2005)

5. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173.
Springer, New York (2000)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs in Com-
puter Science, Springer, Heidelberg (1999)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical
Computer Science. An EATCS Series, vol. XIV, Springer, Heidelberg (2006)

8. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction, exact, and
heuristic algorithms for clique cover. In: Proc. ALENEX 2006, SIAM, pp. 86–94
(2006)

9. Gravier, S., Kobler, D., Kubiak, W.: Complexity of list coloring problems with a
fixed total number of colors. Discr. Appl. Math. 117(1-3), 65–79 (2002)

10. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(2), 31–45 (2007)

11. Heydari, M.H., Morales, L., Shields Jr., C.O., Sudborough, I.H.: Computing cross
associations for attack graphs and other applications. In: HICSS-40 2007. 40th
Hawaii International International Conference on Systems Science, Waikoloa, Big
Island, HI, USA, January 3-6, 2007, p. 270 (2007)

12. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-
parameter algorithms. The Computer Journal (in press, 2007) doi:10.1093/comjnl/
bxm040

13. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete
Math. 149(1-3), 159–187 (1996)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, Oxford University Press, Oxford (2006)

15. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Nederl.
Akad. Wetensch. Proc. Ser. A 80, Indag. Math. 39(5), 406–424 (1977)

16. Vikas, N.: Computational complexity of compaction to reflexive cycles. SIAM J.
Comput. 32(1), 253–280 (2002/03)

Safely Composing Security Protocols�

Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune

LORIA, CNRS & INRIA, project Cassis, Nancy, France

Abstract. Security protocols are small programs that are executed in
hostile environments. Many results and tools have been developed to
formally analyze the security of a protocol. However even when a protocol
has been proved secure, there is absolutely no guarantee if the protocol is
executed in an environment where other protocols, possibly sharing some
common identities and keys like public keys or long-term symmetric keys,
are executed.

In this paper, we show that whenever a protocol is secure, it remains
secure even in an environment where arbitrary protocols are executed,
provided each encryption contains some tag identifying each protocol,
like e.g. the name of the protocol.

1 Introduction

Security protocols are small programs that aim at securing communications over
a public network like the Internet. Considering the increasing size of networks
and their dependence on cryptographic protocols, a high level of assurance is
needed in the correctness of such protocols. The design of such protocols is dif-
ficult and error-prone; many attacks have been discovered even several years
after the publication of a protocol. Consequently, there has been a growing in-
terest in applying formal methods for validating cryptographic protocols and
many results have been obtained. The main advantage of the formal approach
is its relative simplicity which makes it amenable to automated analysis. For
example, the secrecy preservation is co-NP-complete for a bounded number of
sessions [19], and decidable for an unbounded number of sessions under some
additional restrictions (e.g. [2,5,20]). Many tools have also been developed to
automatically verify cryptographic protocols (e.g. [4]).

However even when a protocol has been proved secure for an unbounded
number of sessions, against a fully active adversary that can intercept, block
and send new messages, there is absolutely no guarantee if the protocol is exe-
cuted in an environment where other protocols, possibly sharing some common
identities and keys like public keys or long-term symmetric keys, are executed.
This is however very likely to happen since a user connected to the Internet for
example, usually uses simultaneously several protocols with the same identity.
The interaction with the other protocols may dramatically damage the security
of a protocol. Consider for example the two following naive protocols.

� This work has been partly supported by the RNTL project POSÉ and the ARA
SSIA Formacrypt.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 352–363, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Safely Composing Security Protocols 353

P1 : A → B : {s}pub(B)
P2 : A → B : {Na}pub(B)

B → A : Na

In protocol P1, the agent A simply sends a secret s encrypted under B’s public
key. In protocol P2, the agent sends some fresh nonce to B encrypted under B’s
public key. The agent B acknowledges A’s message by forwarding A’s nonce.
While P1 executed alone easily guarantees the secrecy of s, even against an
active adversary, the secrecy of s is no more guaranteed when the protocol P2 is
executed. Indeed, an adversary may use the protocol P2 as an oracle to decrypt
any message. More realistic examples illustrating interactions between protocols
can be found in e.g. [15].

The purpose of this paper is to investigate sufficient and rather tight condi-
tions for a protocol to be safely used in an environment where other protocols
may be executed as well. Our main contribution is to show that whenever a pro-
tocol is proved secure when it is executed alone, its security is not compromised
by the interactions with any other protocol, provided each protocol is given an
identifier (e.g. the protocol’s name) that should appear in any encrypted mes-
sage. Continuing our example, let us consider the two slightly modified protocols.

P ′1 : A → B : {1, s}pub(B)
P ′2 : A → B : {2, Na}pub(B)

B → A : Na

Applying our result, we immediately deduce that P ′1 can be safely executed
together with P ′2, without compromising the secrecy of s.

The idea of adding an identifier in encrypted messages is not novel. This rule
is in the same spirit as those proposed in the paper of Abadi and Needham on
prudent engineering practice for cryptographic protocols [1] (principle 10). The
use of unique protocol identifiers is also recommended in [15,7] and has also
been used in the design of fail-stop protocols [13]. However, to the best of our
knowledge, it has never been proved that it is sufficient for securely executing
several protocols in the same environment. Note that some other results also
use tags for different purposes. For instance, Blanchet uses tags to exhibit a
decidable class [5] but his tagging policy is stronger since any two encrypted
subterm in a protocol have to contain different tags.

A result closely related to ours is the one of Guttman and Thayer [14]. They
show that two protocols can be safely executed together without damaging in-
teractions, as soon as the protocols are “independent”. The independence hy-
pothesis requires in particular that the set of encrypted messages that the two
protocols handle should be different. As in our case, this can be ensured by
giving each protocol a distinguishing value that should be included in the set
of encrypted messages that the protocol handles. However, the major difference
with our result is that this hypothesis has to hold on any valid execution of the
protocol. In particular, considering again the protocol P ′2, an agent should not
accept a message of the form {2, {1, m}k}pub(B) while he might not be able to
decrypt the inside encryption and detect that it contains the wrong identifier.
Another result has been recently obtained by Andova et al. for a broader class of
composition operations and security properties [3]. In both cases, their result do

354 V. Cortier, J. Delaitre, and S. Delaune

not allow one to conclude when no typing hypothesis is assumed (that is, when
agents are not required to check the type of each component of a message) or
for protocols with cyphertext forwarding, that is, when agents have to forward
unknown message components. Datta et al. (e.g. [12]) have also studied secure
protocol composition in a more broader sense: protocols can be composed in
parallel, sequentially or protocols may use other protocols as components. How-
ever, they do not provide any syntactic conditions for a protocol P to be safely
executed in parallel with other protocols. For any protocol P ′ that might be exe-
cuted in parallel, they have to prove that the two protocols P and P ′ satisfy each
other invariants. Their approach is thus rather designed for component-based de-
sign of protocols. Our work is also related to those of Canetti et al. who, using a
different approach, study universal composability of protocols [6]. They however
require stronger security properties for their protocols to be composable.

Due to lack of space, proofs are omitted. They can be found in [10].

2 Models for Security Protocols

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically,
we consider the signature F = {enc, enca, sign, 〈 〉, pub, priv} together with ari-
ties of the form ar(f) = 2 for the four first symbols and ar(f) = 1 for the two last
ones. The symbol 〈 〉 represents the pairing function. The terms enc(m, k) and
enca(m, k) represent respectively the message m encrypted with the symmetric
(resp. asymmetric) key k. The term sign(m, k) represents the message m signed
by the key k. The terms pub(a) and priv(a) represent respectively the public
and private keys of an agent a. We fix an infinite set of names N = {a, b . . .}
among which we distinguish two particular names init and stop; and an infinite
set of variables X = {x, y . . .}. The set of Terms is defined inductively by

t ::= term
| x variable x
| a name a
| f(a) application of symbol f ∈ {pub, priv} on a name
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

As usual, we write vars(t) (resp. names(t)) for the set of variables (resp.
names) occurring in t. A term is ground if and only if it has no variables. We
write St(t) for the set of subterms of a term t. For example, let t = enc(〈a, b〉), k),
we have that St(t) = {t, 〈a, b〉, a, b, k}. This notion is extended as expected
to sets of terms. Extended names are names or terms of the form pub(a),
priv(a). The set of Extended names associated to a term t, denoted n(t), is
n(t) = names(t) ∪ {pub(t), priv(t) | pub(t) or priv(t) ∈ St(t)}. For example, we
have that n(enc(a, pub(b))) = {a, b, pub(b), priv(b)}. Substitutions are written
σ = {x1 �→ t1, . . . , xn �→ tn} with dom(σ) = {x1, . . . , xn}. The substitution σ is
closed if and only if all the ti are ground. The application of a substitution σ to
a term t is written σ(t) or tσ.

Safely Composing Security Protocols 355

T � u T � v

T � 〈u, v〉

T � u T � v

T � enc(u, v)

T � u T � v

T � enca(u, v)

T � u T � v

T � sign(u, v)

T � 〈u, v〉

T � u

T � 〈u, v〉

T � v

T � enc(u, v) T � v

T � u

T � enca(u, pub(v)) T � priv(v)

T � u

T � sign(u, priv(v))
(optional)

T � u

u ∈ T
T � u

Fig. 1. Intruder deduction system

2.2 Intruder Capabilities

The ability of the intruder is modelled by a deduction system described in
Figure 1 and corresponds to the usual Dolev-Yao rules. The first line describes the
composition rules. The two last lines describe the decomposition rules and the ax-
iom. Intuitively, these deduction rules say that an intruder can compose messages
by pairing, encrypting and signing messages provided he has the corresponding
keys. Conversely, it can decompose messages by projecting or decrypting pro-
vided it has the decryption keys. For signatures, the intruder is also able to verify
whether a signature sign(m, k) and a message m match (provided she has the
verification key), but this does not give her any new message. That is why this
capability is not represented in the deduction system. We also consider an op-
tional rule that expresses that an intruder can retrieve the whole message from
its signature. This property may or may not hold depending on the signature
scheme, and that is why this rule is optional. Our results hold in both cases (that
is, when the deduction relation � is defined with or without this rule).

A term u is deducible from a set of terms T , denoted by T � u if there exists
a proof, i.e. a tree such that the root is T � u, the leaves are of the form T � v
with v ∈ T (axiom rule) and every intermediate node is an instance of one of
the rules of the deduction system. For instance, the term 〈k1, k2〉 is deducible
from the set T1 = {enc(k1, k2), k2}.

2.3 Protocols

We consider protocols specified in a language similar to the one of [19] allow-
ing parties to exchange messages built from identities and randomly generated
nonces using public key, symmetric encryption and digital signatures. The in-
dividual behavior of each protocol participant is defined by a role describing a
sequence of message receptions/transmissions, and a k-party protocol is given
by k such roles.

Definition 1 (Roles and protocols). The set Roles of roles for protocol par-
ticipants is the set of sequences of the form (rcv1, N1, snd1) · · · (rcv�, N�, snd�)

356 V. Cortier, J. Delaitre, and S. Delaune

where each element, called rule, satisfies (rcvi, Ni, sndi) ∈ Terms × 2X × Terms,
and for any variable, x ∈ vars(sndi) implies x ∈

⋃
1≤j≤i Nj ∪ vars(rcvj).

The length of a role is the number of elements in its sequence. A k-party
protocol is a mapping Π : [k] → Roles, where [k] = {1, 2, . . . , k}.

The last condition ensures that each variable which appears in a sent term is
either a nonce or has been introduced in a previously received message. The
set of variables, names or extended names of a protocol is defined as expected,
considering all the terms occurring in the role’s specification.

The jth role of a protocol Π is denoted by (rcvj
1

Nj
1→ sndj

1) · · · (rcvj
kj

Nj
kj→ sndj

kj
).

It specifies the messages to be sent/received by the party executing the role: at
step i, the jth party expects to receive a message conformed to rcvj

i , instantiate
the variables of N j

i with fresh names and returns the message sndj
i . We assume

the sets N j
i to be pairwise disjoint. The special names init and stop will be used

to specify that no message is expected or sent.
The composition of two protocols Π1 and Π2, denoted by Π1 | Π2 is simply

the protocol obtained by the union of the roles of Π1 and Π2. If Π1 : [k1] → Roles
and Π2 : [k2] → Roles, then Π = Π1 | Π2 : [k1 + k2] → Roles with Π(i) = Π1(i)
for any 1 ≤ i ≤ k1 and Π(k1 + i) = Π2(i) for any 1 ≤ i ≤ k2 .

Example 1. Consider the famous Needham-Schroeder protocol [18].

A → B : {Na, A}pub(B)

B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)

The agent A sends to B his name and a fresh nonce (a randomly generated
value) encrypted with the public key of B. The agent B answers by copying A’s
nonce and adds a fresh nonce NB, encrypted by A’s public key. The agent A
acknowledges by forwarding B’s nonce encrypted by B’s public key. For instance,
let a, b, and c be three agent names. The role Π(1) corresponding to the first
participant played by a talking to c is:

(init
{X}→ enca(〈X, a〉, pub(c))), (enca(〈X, x〉, pub(a)) ∅→ enca(x, pub(c))).

The role Π(2) corresponding to the second participant played by b with a is:

(enca(〈y, a〉, pub(b))
{Y }→ enca(〈y, Y 〉, pub(a))), (enca(Y, pub(b)) ∅→ stop).

Note that, since our definition of role is not parametric, we have also to consider
a role corresponding to the first participant played by a talking to b for example.
If more agent identities need to be considered, then the corresponding roles
should be added to the protocol. It has been shown however that two agents are
sufficient (one honest and one dishonest) for proving security properties [8].

Clearly, not all protocols written using the syntax above are meaningful. In
particular, some of them might not be executable. A precise definition of ex-
ecutability is not relevant for our result. We use instead a weaker hypothesis

Safely Composing Security Protocols 357

(see Section 3). In particular, our combination result also holds for non exe-
cutable protocols that satisfy our hypothesis.

2.4 Constraint Systems

Constraint systems are quite common (see e.g. [19,9,11]) in modeling security
protocols. They are used to specify secrecy preservation of security protocols
under a particular, finite scenario. We recall here their formalism and we show in
the next section that the secrecy preservation problem for an unbounded number
of sessions can be specified using (infinite) families of constraint systems.

Definition 2 (constraint system). A constraint system C is either ⊥ or a
finite sequence of expressions (Ti � ui)1≤i≤n, called constraints, where each Ti

is a non empty set of terms, called the left-hand side of the constraint and each ui

is a term, called the right-hand side of the constraint, such that:

– Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;
– if x ∈ vars(Ti) for some i then there exists j < i such that x ∈ vars(uj).

A solution of C is a closed substitution θ such that for every (T � u) ∈ C, we
have that Tθ � uθ. The empty constraint system is always satisfiable whereas ⊥
denotes an unsatisfiable system.

A constraint system C is usually denoted as a conjunction of constraints C =∧
1≤i≤n(Ti � ui) with Ti ⊆ Ti+1, for all 1 ≤ i < n. The second condition in

Definition 2 says that each time a variable occurs first in some right-hand side,
it must not have occurred before in some left-hand side. The left-hand side of a
constraint system usually represents the messages sent on the network.

2.5 Secrecy

We define the general secrecy preservation problem for an unbounded number
of sessions, using infinite families of constraint systems. A role may be executed
in several sessions, using different nonces at each session. Moreover, since the
adversary may block, redirect and send new messages, all the sessions might be
interleaved in many ways. This is captured by the notion of scenario.

Definition 3 (scenario). A scenario for a protocol Π : [k] → Roles is a se-
quence sc = (r1, s1) · · · (rn, sn) such that 1 ≤ ri ≤ k, si ∈ N, the number of
identical occurrences of a pair (r, s) is smaller than the length of the role r, and
whenever si = sj then ri = rj.

The numbers ri and si represent respectively the involved role and the session
number. An occurrence of (r, s) in sc means that the role r of session s executes
its next receive-send action. The condition on the number of occurrences of a pair
ensures that such an action is indeed available. The last condition ensures that
a session number is not reused on other roles. We say that (r, s) ∈ sc if (r, s)
is an element of the sequence sc. Let Π = Π1 | Π2 be a protocol obtained by

358 V. Cortier, J. Delaitre, and S. Delaune

composition of Π1 and Π2 and let sc be a scenario for Π . The scenario sc|Π1 is
simply the sequence obtained from sc by removing any element (r, s) where r is
a role of Π2. Given a scenario, we can define a sequence of rules that corresponds
to the sequence of expected and sent messages.

Definition 4. Given a scenario sc = (r1, s1) · · · (rn, sn) for a k-party proto-
col Π, the sequence of rules (u1, v1) · · · (un, vn) associated to sc is defined as

follows. Let Π(j) = (rcvj
1

Nj
1→ sndj

1) · · · (rcvj
kj

Nj
kj→ sndj

kj
) for 1 ≤ j ≤ k. Let pi =

#{(rj , sj) ∈ sc | j ≤ i, rj = ri}, i.e. the number of previous occurrences in sc of
the role ri. We have pi ≤ kri and (ui, vi) = (rcvri

pi
σri,si , sndri

pi
σri,si), where

– dom(σr,s) =
⋃

1≤i≤kr
(N r

i ∪ vars(rcvr
i)), i.e. variables occurring in Π(r),

– σr,s(x) = nx,s if x ∈
⋃

1≤i≤kr
N r

i , where nx,s is a name.
– σr,s(x) = xs otherwise, where xs is a variable.

We assume that names (resp. variables) with different indexes are pairwise dif-
ferent and also different from the names (resp. variables) occurring in Π.

We say that a protocol preserves the secrecy of a data if it preserves its secrecy
for any scenario. In particular, the secrecy of the data must be preserved for any
possible instances of its fresh values (e.g. nonces and keys).

Definition 5 (secrecy). A protocol Π preserves the secrecy of a term m for the
initial knowledge T0 if for any scenario sc for Π, for any role number 1 ≤ i ≤ k,
for any session number si ∈ N that either corresponds to role i, that is (i, si) ∈ sc
or does not appear in the scenario, that is ∀j, (j, si) /∈ sc, the following constraint
system is not satisfiable

T ′0 � u1 ∧
∧

1≤i<n

(T ′0 ∪ {v1, . . . , vi} � ui+1) ∧ (T ′0 ∪ {v1, . . . , vn} � mσ1,s1 · · · σk,sk
)

where T ′0 = T0 ∪{init} and (u1, v1) · · · (un, vn) is the sequence of rules associated
to sc and σr,s is the substitution defined in Definition 4.

The initial knowledge typically contains the names and the public keys of all
agents and the private keys of all dishonest agents.

Example 2. Consider again the Needham-Schroeder protocol. Let Π(1) and
Π(2) the two roles introduced in Example 1. This protocol is well-known to be
insecure w.r.t. m = Y and T0 = {priv(c), pub(c), a, b, pub(a), pub(b)} (see [16]
for a complete description of the attack). Let s1 and s2 be two session numbers
(s1 �= s2) and consider sc = (1, s1) (2, s2) (1, s1) (2, s2). The system C associated
to T0, sc and mσ1,s1σ2,s2 = nY,s2 (according to Definition 5) is given below.

C :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T0, init � init

T1
def= T0, init, enca(〈nX,s1 , a〉, pub(c)) � enca(〈ys2 , a〉, pub(b))
T2

def= T1, enca(〈ys2 , nY,s2〉, pub(a)) � enca(〈nX,s1 , xs1 〉, pub(a))
T2, enca(xs1 , pub(c)) � enca(nY,s2 , pub(b))
T2, enca(xs1 , pub(c)) � nY,s2

The substitution σ = {ys2 �→ nX,s1 , xs1 �→ nY,s2} is a solution of C.

Safely Composing Security Protocols 359

3 Composition Result

3.1 Hypothesis

Even if a protocol is secure for an unbounded number of sessions, its security
may collapse if the protocol is executed in an environment where other protocols
sharing some common keys are executed. We have seen a first example in the
introduction. To avoid a cyphertext from a protocol Π1 to be decrypted in an
another protocol Π2, we introduce the notion of well-tagged protocol.

Definition 6 (well-tag, α-tag). Let α be a term. We say that a term t is
α-tagged if for every t′ ∈ St(t) of the form t′ = enc(t1, t2), t′ = enca(t1, t2), or
t′ = sign(t1, t2), we have t1 = 〈α, t′1〉 for some term t′1. A term is said well-
tagged if it is α-tagged for some term α.

A protocol Π is α-tagged is any term occurring in the role of the protocol is
α-tagged. A protocol is said well-tagged if it is α-tagged for some term α.

Requiring that a protocol is well-tagged can be very easily achieved in practice:
it is sufficient for example to add the name of the protocol in each encrypted
term. Moreover, note that (as opposite to [14]) this does not require that the
agents check that nested encrypted terms are correctly tagged. For example,
let Π be a protocol with one role as follows:

Π(1) = (enca(〈α, x〉, pub(a)) → enca(〈α, x〉, pub(b))).

The protocol Π is α-tagged and still the message enca(〈α, enc(a, k)〉, pub(a))
(which is not α-tagged) would be accepted by the agent playing the role.

Tagging protocols is not sufficient, indeed critical long-term keys should not be
revealed in clear. Consider for example the following two well-tagged protocols

P3 : A → B : {α, s}kab
P4 : A → B : kab

The security of protocol P3 is again compromised by the execution of P4.
Thus we will require that long-term keys (except possibly the public ones) do
not occur in plaintext in the protocol.

Definition 7 (plaintext). The set plaintext(t) of plaintext of a term t is the
set of extended names and variables, that is recursively defined as follows.

plaintext(u) = {u} if u is a variable or a name
plaintext(f(u)) = {f(u)} for f ∈ {pub, priv}
plaintext(〈u1, u2〉) = plaintext(u1) ∪ plaintext(u2)
plaintext(f(u1, u2)) = plaintext(u1) for f ∈ {enc, enca, sign}

This notation is extended to set of terms and protocols as expected.

Some weird protocols may still reveal critical keys in a hidden way. Consider for
example the following one role (α-tagged) protocol.

Π(1) = (init → enc(〈α, a〉, kab)), (enc(〈α, a〉, x) → x)

360 V. Cortier, J. Delaitre, and S. Delaune

While the long-term key kab does not appear in plaintext, the key kab is revealed
after simply one normal execution of the role. This protocol is however not
realistic since an unknown value cannot be learned (and sent) if it does not
appear previously in plaintext. Thus we will further require (Condition 2 of
Theorem 1) that a variable occurring in plaintext in a sent message, has to
previously occur in plaintext in a received message.

3.2 Composition Theorem

We show that two well-tagged protocols can be safely composed as soon as they
use different tags and that critical long-term keys do not appear in plaintext.

Theorem 1. Let Π1 and Π2 be two well-tagged protocols such that Π1 is α-
tagged and Π2 is β-tagged with α �= β. Let T0 (intuitively the initial knowledge
of the intruder) be a set of extended names. Let KC = (n(Π1) ∪ n(Π2)) � T0 be
the set of critical extended names. Let m be a term constructed from Π1 such
that m is α-tagged and vars(m) ⊆ vars(Π1). Moreover, we assume that

1. critical extended names do not appear in plaintext, that is

KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role (rcv1
N1→ snd1) · · · (rcvk

Nk→ sndk) of Π1 or Π2, for any variable
x ∈ plaintext(sndi), we have x ∈

⋃
1≤j≤i Nj ∪ {plaintext(rcvj)}.

Then Π1 preserves the secrecy of m for the initial knowledge T0 if and only
if Π1 | Π2 preserves the secrecy of m for T0.

We have seen in Section 3.1 that conditions 1 and 2 are necessary conditions.
Moreover, condition 2 will be satisfied by any realistic (executable) protocol. We
require that terms from Π1 and Π2 are tagged with distinct tags for simplicity.
The key condition is actually that for any encrypted (or signed) subterm t1 of Π1

and for any encrypted (or signed) subterm t2 of Π2, the terms t1 and t2 cannot
be unified.

Theorem 1 is proved by contradiction. Assume that Π1 | Π2 does not preserve
the secrecy of m for T0. It means that there exists a scenario sc for Π1 | Π2 such
that the constraint system associated to sc, T0 and m is satisfiable. Proposition 1
ensures that in this case, there exists a scenario sc′ for Π1 such that the constraint
system associated to sc′, T0 and m is satisfiable, which means that Π1 does not
preserve the secrecy of m for some initial knowledge T0, contradiction.

Proposition 1. Let Π1 = [k1] → Roles, Π2 = [k2] → Roles, T0 and m defined
as in Theorem 1 and satisfying the conditions 1 and 2. Let k = k1 + k2 and sc
be a scenario for Π1 | Π2. For any role number 1 ≤ i ≤ k, let si ∈ N such that
(i, si) ∈ sc or ∀j, (j, si) �∈ sc. Let C be the constraint system associated to sc, T0

and mσ1,s1 · · · σk,sk
. Let sc′ = sc|Π1 and C′ be the constraint system associated

to sc′, T0 and mσ1,s1 · · · σk1,sk1
. If C is satisfiable, then C′ is also satisfiable.

Safely Composing Security Protocols 361

4 Proof of Our Combination Result

To prove our result, we first refine an existing decision procedure for solving con-
straint systems. Several decision procedures already exist [17,9,11,19] for solving
constraint systems. Some of them [17,9,11] are based on a set of simplification rules
allowing a general constraint system to be reduced to some simpler one, called
solved, on which satisfiability can be easily decided. A constraint system is said
solved [11] if it is different from ⊥ and if each of its constraints is of the form T � x,
where x is a variable. Note that the empty constraint system is solved. Solved con-
straint systems are particularly simple since they always have a solution. Indeed,
let T1 be the smallest (w.r.t. inclusion) left hand side of a constraint. From the def-
inition of a constraint system we have that T1 is non empty and has no variable.
Let t ∈ T1. Then the substitution τ defined by xτ = t for every variable x is a so-
lution since T � xθ for any constraint T � x of the solved constraint system.

The simplification rules we consider are the following ones:

R1 : C ∧ T � u � C if T ∪ {x | T ′ � x ∈ C, T ′ � T } � u
R2 : C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ=mgu(t, u) where t∈St(T), t �=u,

and t, u are neither variables nor pairs
R3 : C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ=mgu(t1, t2), t1, t2 ∈St(T), t1 �= t2,

and t1, t2 are neither variables nor pairs
R4 : C ∧ T � u � ⊥ if vars(T, u)=∅ and T ��u
R5 : C∧T �f(u, v) � C∧T �u∧T �v for f ∈ {〈〉, enc, enca, sign}

All the rules are indexed by a substitution (when there is no index then the
identity substitution is implicitly considered). We write C �∗σ C′ if there are
C1, . . . , Cn such that C �σ0 C1 �σ1 . . . �σn C′ and σ = σ0σ1 . . . σn. Our rules
are the same than in [11] except that we forbid unification of terms headed
by 〈 〉. Correction and termination are still ensured by [11] and we show that
they still form a complete decision procedure. Intuitively, unification between
pairs is useless since pairs can be decomposed in order to perform unification
on its components. Then, it is possible to build again the pair if necessary. Note
that this is not always possible for encryption since the key used to decrypt or
encrypt may be unknown by the attacker. Proving that forbidding unification
between pairs still leads to a complete decision procedure required in particular
to introduce a new notion of minimality for tree proofs for deduction. Note that
this result is of independent interest. Indeed, we provide a more efficient decision
procedure for solving constraint systems, thus for deciding secrecy for a bounded
number of sessions. Of course, the theoretical complexity remains the same (NP).

Theorem 2. Let C be an unsolved constraint system.
1. (Correctness) If C �∗σ C′ for some constraint system C′ and some substitu-

tion σ and if θ is a solution of C′ then σθ is a solution of C.
2. (Completeness) If θ is a solution of C, then there exist a solved constraint

system C′ and substitutions σ, θ′ such that θ = σθ′, C �∗σ C′ and θ′ is a
solution of C′.

3. (Termination) There is no infinite chain C �σ1 C1 . . . �σn Cn.

362 V. Cortier, J. Delaitre, and S. Delaune

Proposition 1 is then proved in three main steps. First, Theorem 2 serves as a
key result for proving that if C is satisfiable, then there exists a solution θ where
messages from Π1 and Π2 are not mixed up. This is obtained by observing that
the simplification rules enable us to build θ step by step through unification of
subterms of Π1 and Π2. Now, since unification between pairs is forbidden, the
rules R2 and R3 only involve subterms that convey the same tag, i.e subterms
issued from the same protocol. Second, conditions 1 and 2 ensure that for any
solution θ of C, the critical extended names of KC do not appear in plaintext
in Cθ. Third, thanks to the two previous steps, we prove that β-tagged terms (in-
tuitively messages from Π2) are not useful for deducing α-tagged terms. For this,
we establish that T � u implies T � u where · is a function that keep the terms
issued from Π1 unchanged and projects the terms issued from Π2 on the special
name init. The proof is done by induction on the proof tree witnessing T � u. It
requires in particular the introduction of a new locality lemma for deduction of
ground terms. Then, we deduce that, removing from C all constraints inherited
from Π2 and all β-tagged terms, we obtain a satisfiable constraint C′ that is
associated to a scenario of Π1.

5 Conclusion

In this paper, we have shown how to safely compose secure protocols by tagging
encryption, focusing on secrecy properties. Whenever a protocol preserves the
secrecy of some data s, it still preserves s secrecy when other tagged protocols are
executed in the same environment. We plan to consider the protocol composition
problem for larger classes of security properties. In particular, we believe that
our result can be extended to authentication-like properties.

More broadly, we foresee composition results in a more general way. In this
paper, protocols are composed in the sense that they can be executed in the
same environment. We plan to develop composition results where protocols can
use other protocols as sub-programs. For example, a protocol could use a secure
channel, letting the implementation of the secure channel underspecified. This
secure channel could be then possibly implemented by any protocol establishing
session keys.

Acknowledgment. We wish to thank J. Guttman for his helpful comments on a
preliminary version of this work.

References

1. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic proto-
cols. IEEE Trans. Software Eng. 22(1), 6–15 (1996)

2. Amadio, R., Charatonik, W.: On name generation and set-based analysis in the
Dolev-Yao model. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CON-
CUR 2002. LNCS, vol. 2421, pp. 499–514. Springer, Heidelberg (2002)

Safely Composing Security Protocols 363

3. Andova, S., Cremers, C., Steen, K.G., Mauw, S., lsnes, S.M., Radomirović, S.: Suf-
ficient conditions for composing security protocols. Information and Computation
(to appear, 2007)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: CSFW 2001. Proc. 14th Computer Security Foundations Workshop, pp. 82–96.
IEEE Computer Society Press, Los Alamitos (2001)

5. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging enforces
termination. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS,
vol. 2620, Springer, Heidelberg (2003)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. Proc. 42nd Annual Symposium on Foundations of Com-
puter Science, Las Vegas (Nevada, USA), pp. 136–145. IEEE Computer Society
Press, Los Alamitos (2001)

7. Canetti, R., Meadows, C., Syverson, P.F.: Environmental requirements for authen-
tication protocols. In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa,
A. (eds.) ISSS 2002. LNCS, vol. 2609, pp. 339–355. Springer, Heidelberg (2003)

8. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci-
ence of Computer Programming 50(1-3), 51–71 (2004)

9. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive or. In: LICS 2003. Proc. 18th Annual Sym-
posium on Logic in Comp. Science, pp. 271–280. IEEE Computer Society Press,
Los Alamitos (2003)

10. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. Research
Report 6234, INRIA, p. 26(2007)

11. Cortier, V., Zalinescu, E.: Deciding key cycles for security protocols. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 317–331.
Springer, Heidelberg (2006)

12. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electr. Notes Theor. Comput. Sci. 172, 311–358 (2007)

13. Gong, L., Syverson, P.: Fail-stop protocols: An approach to designing secure pro-
tocols. In: Proc. 5th Inter. Working Conference on Dependable Computing for
Critical Applications, pp. 44–55 (1995)

14. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: CSFW 2000. Proc. 13th Computer Security Foundations Workshop, pp. 24–34.
IEEE Computer Society Press, Los Alamitos (2000)

15. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol
attack. In: Christianson, B., Lomas, M. (eds.) Security Protocols. LNCS, vol. 1361,
pp. 91–104. Springer, Heidelberg (1998)

16. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

17. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: CCS 2001. Proc. 8th ACM Conference on Computer and
Communications Security, pp. 166–175. ACM Press, New York (2001)

18. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Communication of the ACM 21(12), 993–999 (1978)

19. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
and composed keys is NP-complete. Theoretical Comp. Sc. 299, 451–475 (2003)

20. Seidl, H., Verma, K.N.: Flat and one-variable clauses: Complexity of verifying
cryptographic protocols with single blind copying. In: Baader, F., Voronkov, A.
(eds.) LPAR 2004. LNCS (LNAI), vol. 3452, Springer, Heidelberg (2005)

Computationally Sound Typing for

Non-interference: The Case of Deterministic
Encryption

Judicaël Courant, Cristian Ene, and Yassine Lakhnech

VERIMAG - University Joseph Fourier - CNRS - INPG
2, av. de Vignates, 38610 Gières - France

name@imag.fr

Abstract. Type systems for secure information flow aim to prevent a
program from leaking information from variables that hold secret data to
variables that hold public data. In this work we present a type system to
address deterministic encryption. The intuition that encrypting a secret
yields a public value, that can be stored in a public variable, is faithful for
probabilistic encryption but erroneous for deterministic encryption. We
prove the computational soundness of our type system in the concrete
security framework.

1 Introduction

The notion of non-interference has been introduced in [3], with the aim of cap-
turing unwanted information flow in programs. Non-interference assumes a sep-
aration between secret (high, private) variables and public (low) variables and
requires that executing the program in two initial states that coincide on the
public variables leads to final states that coincide on the public variables. In
Dennings’ seminal paper [2], an expression is classified H if it contains a secret
variable; otherwise, it is classified L. The paper introduces two basic principles to
avoid information flow: first, to prevent explicit flow, a H expression may not be
assigned to a L variable; second, to prevent implicit flows, an H guarded condi-
tional or loop may not affect L variables. Later, Volpano, Smith, and Irvine [13]
casted these principles as a type system and showed that they suffice to en-
sure non-interference. Since this early work, information flow analysis has been
extended to deal with other issues such as nontermination, concurrency, nonde-
terminism, and exceptions; see [9] for a survey. In many applications, however,
it is desirable to allow information to flow from secret to public variables in a
controlled way. This is called declassification in the literature. In a useful sur-
vey, Sabelfeld & Sands [10] classify declassification techniques according to the
following dimensions: “what”, “who”, “where” and “when”.

In this paper, we are interested in cryptography-based declassification, where
encrypted secret data can be published without leaking information about the
secrets. The non-interference setting has been extended in [12] to cope with one-
way functions and in [5, 6, 11] to cope with probabilistic encryption. We consider

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 364–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computationally Sound Typing for Non-interference 365

length-preserving deterministic encryption, i.e., block ciphers. These are widely
used in practice (DES, AES, Idea, etc.). Non-interference type systems developed
for probabilistic encryption are not applicable for deterministic encryption. To il-
lustrate some of the subtleties of deterministic encryption, let us consider the fol-
lowing examples where l, l′, l′′ are public variables and h, h′ are secret variables,
νl assigns a value sampled from the uniform distribution to the variable l, + is a
bijective operator and Enc(k, e) denotes the encryption of e with the symmetric
key k. We assume that the encryption function Enc(k, ·) is a pseudo-random
permutation. A simple program is the following: l := Enc(k, h); l′ := Enc(k, h′).
The equality Enc(k, h) = Enc(k, h′) is almost never true in case of probabilistic
encryption, independently whether h = h′. Hence, this program does not leak
information in case of probabilistic encryption. This is not true in the case of
deterministic encryption as we have h = h′ if and only if l = l′ at program termi-
nation. Indeed, deterministic encryption is not repetition concealing in contrast
to probabilistic encryption. Consider now, the program νl; l′ := Enc(k, l + h),
where the value of l is randomly sampled. It does not leak information, even if
the attacker is given the value of l. Yet, we have to be careful concerning how the
value of l is used. Indeed, the execution of the command l′′ := Enc(k, l + h′) at
the end of this program would leak information. However, the following slightly
modified program : νl; l′ := Enc(k, l + h); l′′ := Enc(k, l′ + h′) does not leak in-
formation. Notice that this version corresponds to a simplified block encryption,
using the CBC mode: (l, l′, l′′) can be seen as the cipher text obtained by en-
crypting the secret (h, h′). Let us consider an example that shows the subtelties
that may arise when deterministic encryption is used.

Example 1. In this example (inspired from [11]), ‘+” is the bitwise-xor operation
over blocks of p bits; the other operations are: “|” the bitwise-or operation, “�”
the shift-left operation and “=” the test for equality. Consider the following
command, where h is a private variable and l, m, l1, l2 and lr are public variables.

l := 0p; m := 0p−11;
whilep 1 do l1 := Enc(k, h|m); l2 := Enc(k, h);

if (l1 = l2) then l := l|m else skip fi ;
m := m � 1 od

Since encryption is deterministic, this command completely leaks the value of
h: it copies h into l. Consider now the following modified command.

l := 0p; m := 0p−11;
whilep 1 do νlr; l1 := Enc(k, (h|m) + lr); l2 := Enc(k, h + lr);

if (l1 = l2) then l := l|m else skip fi ;
m := m � 1 od

As the same “random lr” is reused in the second encryption, the obtained
code is insecure: it still copies h into l. However, if we re-sample lr in the second
encryption, the command becomes secure.

366 J. Courant, C. Ene, and Y. Lakhnech

l := 0p; m := 0p−11;
whilep 1 do νlr; l1 := Enc(k, (h|m) + lr); νlr; l2 := Enc(k, h + lr);

if (l1 = l2) then l := l|m else skip fi ;
m := m � 1 od

1.1 Contributions

In this paper, we design a type system for information flow for an imperative
language that includes block ciphers and show its soundness under the assump-
tion that the encryption scheme is a pseudo-random permutation. Our soundness
proof is carried in the concrete (exact) security framework that aims at providing
concrete estimates about the security of the considered system.

This is to our knowledge the first time that a type system for non-interference
is proven correct in the concrete security framework. One can distinguish three
security proof settings: first, the symbolic setting, also called formal and Dolev-
Yao, where cryptographic primitives are operators on formal expressions (terms)
and security proofs are reachability or observational equivalence proofs; second,
the computational setting where cryptographic primitives are algorithms and
security proofs are asymptotic based on poly-time reductions; third, the con-
crete security setting where proofs are also by reduction but no asymptotics are
involved and reductions are as efficient as possible.

1.2 Related Work

A few works on information flow study computationally sound type systems for
non-interference. Peeter Laud has pioneered the area of computationally secure
information flow analysis in the presence of encryption. In his first works [4, 5]
the analysis was in the form of static analysis and encryption is probabilistic. In
more recent work [6] co-authored with Varmo Vene, he presents a type system
for information flow in presence of probabilistic encryption. Geoffrey Smith and
Rafael Alṕızar present in [11] a computationally sound type system for prob-
abilistic encryption. In this work, as in ours, the generation and manipulation
of keys is not considered. The main difference, however, to our work is that the
above cited works assume probabilistic encryption. Volpano in [12] considers one-
way functions. His definition of non-interference is, however, weaker than ours
as it essentially means that a well-typed program that leaks information can be
used to invert the one-way function. But this does not imply that no information
about secret data is learned. Malacaria presents in [7] an information-theoretic
definition of non-interference applied to imperative languages with random as-
signment, and gives an algorithm to approximate the information leaked in a
loop. It is easy to prove that for programs that do not use encryption our defi-
nition is stronger that his definition. Extending his technique for programs that
use encryption does not seem to be immediate.

1.3 Paper Structure

In section 2 we introduce some preliminaries including some terminology con-
cerning probabilities, indistinguishability and pseudo-random permutations. In

Computationally Sound Typing for Non-interference 367

section 3, we present the syntax and semantics for an imperative language build
that includes random assignment and deterministic encryption. In section 4 we
introduce a type system for randomized expressions, and justify its computa-
tional soundness. In section 5, we give a type system for the language presented
in section 3 and we prove its computational soundness. The soundness of the
type system for this language is proved by two successive reductions: first to a
language where the encryption function is interpreted as a random permutation,
and then to language where there is no encryption function. Finally, we conclude,
and give some possible extensions.

2 Preliminaries

A finite probability distribution D = (U , Pr) over U is a finite non-empty set U
equipped with a function Pr : U → [0, 1] such that

∑
u∈U Pr[u] = 1. Distr(U)

is the set of distributions on U . The probability of an event A ⊆ U is Pr[A] =∑
u∈A Pr[u]. A property P over U can be seen as the event {x ∈ U | P (x)}.

The uniform distribution on U is such that Pr[u] = 1
|U| , for any u ∈ U . [x1

r←
X1; . . . xn

r← Xn : e(x1, . . . , xn)] denotes the distribution Y such that Pr[Y =
e] =

∑
x1,...,xn|e(x1,...,xn)=e Pr[X1 = x1] . . .Pr[Xn = xn] (thus [: u] is Dirac’s

point mass δu) and Pr[x1
r← X1; . . . xn

r← Xn : P (x1, . . . , xn)] denotes the prob-
ability of the event P over the distribution [x1

r← X1; . . . xn
r← Xn : (x1, . . . , xn)].

Computational indistinguishability Given two distributions D and D′, and
an algorithm A, we define the advantage of A in distinguishing D and D′ as
Adv(A, D, D′) = | Pr[x r← D : A(x) = 1] − Pr[x r← D′ : A(x) = 1]| (Informally,
this advantage quantifies the success of an adversary trying to guess whether
some x has been drawn from D or from D′ and output its guess as a boolean 0/1.)
Two distributions D and D′ are (t, ε)-indistinguishable, denoted by D ∼(t,ε) D′,
if Adv(A, D, D′) ≤ ε, for any adversary A running in time bounded by t.

A function f from a set A to the Distr(B) can be canonically extended to a
function f̂ from Distr(A) to Distr(B) as follows: f̂(X) = [a r← X ; b r← f(a) : b].
We shall tacitly identify f : A → Distr(B) with its canonical extension f̂ .

A block cipher is a family of permutations Π : Keys(Π) × U → U , where
Keys(Π) is the key space of Π , and for any k ∈ Keys(Π), Π(k, ·) is a permuta-
tion onto U . We use Enc(k, ·) (resp. Dec(k, ·)) instead of Π(k, ·) (resp. Π−1(k, ·)).
Pseudo-randomness. The usual security notion for ciphers (cf.[8]), states that an
adversary accessing an oracle Ob — either O0, a random permutation, or O1,
the encryption function — has a bounded advantage to guess which one it has
been given (or equivalently the value of b). Formally, consider the following ex-
periments parameterized by b, where Perm is the set of all permutations on U :

Experiment PRPb(A) :
k

r← Keys(Π); P
r← Perm;

O0 = P; O1 = Enc(k, ·);
b′ ← AOb()

368 J. Courant, C. Ene, and Y. Lakhnech

The PRP advantage of A is defined as

Adv
prp
Π (A) = | Pr[PRP1(A) = 1] − Pr[PRP0(A) = 1]|.

An encryption scheme Π is a (t, ε)-pseudo-random permutation, denoted (t, ε)-
PRP, if for any adversary A running in time t, Adv

prp
Π (A) ≤ ε.

3 An Imperative Language with Random Assignment
and Deterministic Encryption

In this section, we present a simple while-language extended with a random
assignment command and deterministic encryption. We then present in following
section type systems for its underlying expressions and commands.

3.1 Expressions

We consider a signature with a sort S, a countable set of constant symbols de-
noted by n, n0, n1, · · · and two binary function symbols + : S × S → S and
g : S × S → S. We restrict the presentation to two function symbols for sim-
plicity. We consider an interpretation for this signature given by a structure
(U , I(·), I+(·, ·), Ig(·, ·)) such that:

1. U = {0, 1}p, where p is an integer. We use u
r← U as an alternative notation

for u
r← D, where D is the uniform probability distribution on U .

2. I(·) is a deterministic algorithm that takes as input a constant symbol n
and computes an element I(n) in U .

3. I+(u, v) is the bitwise exclusive or of u and v. (Actually, this can be gen-
eralized to any deterministic algorithm such that [u r← U : I+(u, v)] and
[u r← U : I+(v, u)] coincide with the uniform distribution on U .)

4. Ig(·, ·) is a deterministic algorithm that given two elements of U , computes
an element in U . We denote the function λ(u, v) · Ig(u, v) by I(g).

The set Exp of expressions is given by the following BNF, where metavariable
x ranges over a countable set Var of identifiers (variables):

e ::= x | n | e1 + e2 | g(e1, e2)

A memory (or state) is a mapping that associates to each variable a value in
U . The set of memories is denoted by Σ. Given a memory σ, we can associate a
value I(e)σ ∈ U to each expression e in the usual way.

3.2 Commands

The syntax of the eWhile language we consider is defined in Figure 1.
The loop construct is indexed with an integer number n that specifies the

maximal number of permitted unfolding of the loop statement. In other words,

Computationally Sound Typing for Non-interference 369

c :: = x := e | x := Enc(k, e) | skip | νx | if e then c1 else c2 fi |
whilen e do c od | c1; c2

Fig. 1. Language syntax of eWhile

a loop statement either terminates because the loop condition becomes false
or because the limit n is reached. The reason for adding this is that we are
only interested in commands whose running time is bounded. The command
x := Enc(k, e) encrypts the value of e with the key k and stores the result in x.

To a command c, we associate as meaning a function from states to distri-
butions on states: [[c]] : Σ → Distr(Σ). The equations defining [[c]] are given in
Figure 2. In the sequel, we will assume given a function �(c) that bounds the
running time of the program c.

[[x := e]](σ) = [: σ[I(e)σ/x]] [[c1; c2]] = [̂[c2]] ◦ [[c1]]

[[νx]](σ) = [u
r← U ; σ′ := σ[u/x] : σ′] [[skip]](σ) = [: σ]

[[x := Enc(k, e)]](σ) = [: σ[Enc(k, I(e)σ)/x]]
[[if e then c1 else c2 fi]](σ) = if (I(e))σ = 1 then [[c1]](σ) else [[c2]](σ) fi

[[whilen e do c od]](σ) =

⎧
⎨

⎩

[[if e then c;whilen−1 e do c od else skip fi]](σ)
if n > 0

[: σ]; otherwise

Fig. 2. Language semantics of eWhile

4 Typing Expressions

The expressions introduced so far are deterministic in the sense that the value
of an expression is determined once σ is fixed. In order to reason about expres-
sions involving random nonces, we introduce randomized expressions defined as
follows: re ::= e | νx · re. For x = (x1, · · · , xn), we write νx · e instead of
νx1 · · · νxn · e. Consider a randomized expression re and let σ be a memory. We
define [[re]] : Σ → Distr(U × Σ) as follows:

1. [[e]](σ) = [: (I(e)σ, σ)] and
2. [[νx · re]](σ) = [u r← U ; σ′ := σ[u/x]; (v, σ′′) r← [[re]](σ′) : (v, σ′′)].

Henceforth, let �(re) be an upper-bound on the time needed to evaluate
[[re]](σ), for any σ. Given an expression re, let fvar(re) denote the set of variables
that occur free in re, i.e. fvar(νx1 · · · νxn · e) = var (e) \ {x1, · · · , xn}. In the
following, we write x#re to mean x /∈ fvar(re), and x1, . . . , xn#re1, . . . , rek to
mean xi#rej for all (i, j) and xi 	= xj for all (i, j).

4.1 Typing Expressions

The set TypeExp of expression types consists of pairs (τs, τr) with τs ∈ {L, H}
and τr ∈ {
, Lr, Hr}. Intuitively, τs is the security type; while τr is the

370 J. Courant, C. Ene, and Y. Lakhnech

L � H Hr � Lr � � τ � τ

τs � τ ′
s, τr � τ ′

r

(τs, τr) � (τ ′
s, τ

′
r)

τ1 � τ2, τ2 � τ3

τ1 � τ3 (H,Hr) � (L, Lr)

Subtyping rules

Γ (x) = τs

Γ � x : (τs, �)
(var)

Γ (x) = τs

Γ � νx · x : (τs, τ
r
s)

(R-var)

−
Γ � n : (L, �)

(int)
Γ � re : τ, τ � τ ′

Γ � re : τ ′ (Subt)

Γ � νx1 · e1 : (τs, τr)
Γ � νx2 · e2 : (τs, τ

′
r)

xi#rej , xj , for i �= j

Γ � νx1 · νx2 · (e1 + e2) : (τs, τr � τ ′
r)

(+)

Γ � νx1 · e1 : (τs, �)
Γ � νx2 · e2 : (τs, �)
xi#rej , xj , for i �= j

Γ � νx1 · νx2 · g(e1, e2) : (τs, �)
(exp)

Typing rules

Γ � re : τ
Γ � νx · re : τ

(ν-Intr)
Γ � νy · νx · re : τ

Γ � νx · νy · re : τ
(ν-Comm)

Structural rules

Fig. 3. Typing rules for Expressions

randomness type. That is,
 means that the expression can be deterministic
or randomized; Hr means that it is randomized and contains a “random seed”
that is secret; and Lr means that it is randomized and the “random seed” might
be public. For instance, consider the expression hr + l with hr a secret variable
whose value is random and l a public variable. Then, it will be typed (H, Hr)
as the random seed hr is secret. On the other hand, lr + l will be typed (L, Lr)
as it does not depend on a secret variable and the random seed is public. Why
should we type these expressions differently? The reason is that the expression
(hr + l) + h can be typed public (low) but the expression (lr + l) + h must be
typed secret (high).

A type environment maps each variable in Var to a security type in {L, H}.
Our type judgements are of the form Γ � e : τ , where e ∈ Exp and τ ∈
TypeExp. We give our typing and sub-typing rules in Figure 3. A few intu-
ition: the sub-typing rule (H, Hr) � (L, Lr) says that an expression that is
randomized with a secret “random seed”, can be downgraded (and in this case,
its randomness is made public); the rule (+) takes into account the good prop-
erties of +, if one of the arguments is randomized (and the random seed is not
reused), then their sum is randomized too.

Example 2. Let Γ be a type environment such that Γ (hr) = Γ (h) = H . Then,
we have:

Computationally Sound Typing for Non-interference 371

Γ (hr) = H

Γ � νhr · hr : (H,Hr)
(R-var)

Γ (h) = H

Γ � h : (H,�)
(var)

Γ � νhr · (hr + h) : (H,Hr)
(+)

Γ � νhr · (hr + h) : (L, Lr)
(Sixth subtyping rule)

Soundness of the Type System. We now undertake the endeavor to show that
expressions typed (L, Lr) do not leak information. In order to rigorously define
information leakage, we first introduce Γ -equivalent distributions.

Definition 1. Let X be a distribution on Σ and Γ a type environment. Let
Γ−1(L) = {x | Γ (x) = L} be the set of low variables and assume that this set
is finite. We denote by Γ (X) the distribution [σ r← X : σ|Γ −1(L)]. Moreover,
we write X =Γ Y , if Γ (X) = Γ (Y), and X ∼Γ

(t,ε) Y , if Γ (X) ∼(t,ε) Γ (Y).
Similarly, for a distribution X on U × Σ, we denote by Γ (X) the distribution
[(v, σ) r← X : (v, σ|Γ −1(L))].

The following theorem expresses soundness of our type system for expressions.

Theorem 1. Let re be an expression, Γ be a type environment and let X, Y ∈
Distr(Σ) arbitrary distributions.

– If X =Γ Y and Γ � re : (L,
), then [[re]](X) =Γ [[re]](Y).
– If X ∼Γ

(t,ε) Y and Γ � re : (L,
), then [[re]](X) ∼Γ
(t−�(re),ε) [[re]](Y).

5 A Type System for Commands

5.1 The Typing System

In this section, we present a computationally sound type system for the eWhile
language of Section 3.2 . We consider programs where applications of Enc have
been annotated by r, in case its argument has type (τ, τr), and by
, in case it
has type (τ,
). Recall the following examples from Section 1:

1. ν�r; � := Encr(k, h + �r); �′ := Enc�(k, h′ + �r),
2. ν�r; �′ := Encr(k, h + �r); �′′ := Encr(k, h′ + �′).

The first program is not secure since h = h′ iff � = �′. The problem here is
that the same random value assigned to �r is used twice. The second program is
secure since the value assigned to �′ after the first assignment is indistinguishable
from a randomly sampled value. This is due to the properties of the encryption
function that we assume to be a pseudo-random permutation. Thus, in order
to have a sound type system, we need to forbid the reuse of the same sampled
value in two different encryptions; and in order to have a not too restrictive type
system, we need to record the variables that are assigned pseudo-random values
as a result of the encryption function. This motivates the introduction of the
functions F , resp. G, used to compute the propagation of the set of variables
that should not be used inside calls of Enc annotated with
, resp. that can

372 J. Courant, C. Ene, and Y. Lakhnech

be used as random seeds. Informally, variables in the latter set all follow the
uniform distribution, and are all independent together and from all variables
but the ones in the former set.

F(skip)(F) = F
F(νx)(F) = F \ {x}
F(x := e)(F) = F \ {x} if fvar(e) ∩ F = ∅
F(x := e)(F) = F ∪ {x} otherwise
F(x := Encr(k, e))(F) = F ∪ fvar(e) \ {x}
F(x := Enc�(k, e))(F) = F
F(c1; c2)(F) = F(c2)(F(c1)(F))
F(if e then c1 else c2 fi)(F) = F(c1)(F) ∪ F(c2)(F)
F(whilen e do c od)(F) = F(c)∞(F)
where F(c)∞(F) is defined as

⋂
{M | F(c)(M) ⊆ M and F ⊆ M}.

G(skip)(G) = G
G(νx)(G) = G ∪ {x}
G(x := e)(G) = G \ ({x} ∪ fvar(e))
G(x := Encr(k, e))(G) = (G \ fvar(e)) ∪ {x}
G(x := Enc�(k, e))(G) = G \ ({x} ∪ fvar(e))
G(c1; c2)(G) = G(c2)(G(c1)(G))
G(if e then c1 else c2 fi)(G) = G(c1)(G \ fvar(e)) ∩ G(c2)(G \ fvar(e))
G(whilen e do c od)(G) = G(c)∞(G \ fvar(e))
where G(c)∞(G) is defined as

⋃
{M | M ⊆ G(c)(M) and M ⊆ G}.

Our type judgements have the form Γ, F, G � c : τ, where τ ∈ {L, H} is a
security type. The intuitive meaning is the following: in the environment Γ ,
where the variables in G are assigned random values, and the variables in F are
forbidden, c (detectably) affects only variables of type greater than or equal to
τ ; after its execution, variables in G(c)(G) have random values, and variables
in F(c)(F) are forbidden. We give the typing and subtyping rules in Figure 4.
Our type system ensures that encryption downgrades the security level only in
case of random expressions. In other words, Enc�(k, h) has the security level
H, and hence, cannot be stored into a low variable, while Encr(k, h + lr) has
security level L, because lr is a random value that is not used elsewhere. It might
appear surprising that the Rule (Enc�), which does not allow downgrading, is
more restrictive than Rule (Encr). To understand this consider the command
ν�r; � := Encr(k, h + �r); �′ := Enc�(k, �r). Leaking the encryption of the low
variable �r allows to check whether h = 0, and hence, should be forbidden.

Example 3. This example shows that our system is able to show the security of
a cipher block chaining implementation. For simplicity reasons (and because we
do not consider arrays yet) we illustrate the case of encrypting two blocks.

νl0;
l1 := Enc(k, l0 + h1);
l2 := Enc(k, l1 + h2);

Computationally Sound Typing for Non-interference 373

Γ, F, G � νx : Γ (x)
nu-var

Γ, F, G � skip : H
skip

Γ � νG · e : (Γ (x),�)

Γ, F, G � x := e : Γ (x)
ass

Γ, F, G � c : τ
G ⊆ G′ F ′ ⊆ F τ ′ � τ

Γ, F ′, G′ � c : τ ′ weak

Γ � νG · e : (Γ (x),�)
fvar(νG · e) ∩ F = ∅

Γ, F, G � x := Enc�(k, e) : Γ (x)
Enc� Γ � νG · e : (H,Lr)

Γ, F, G � x := Encr(k, e) : Γ (x)
Encr

Γ, F, G \ fvar(e) � c1 : τ
Γ, F, G \ fvar(e) � c2 : τ
Γ � νG · e : (τ, �)
fvar(νG · e) ∩ F = ∅

Γ, F, G � if e then c1 else c2 fi : τ
if

Γ, F(c)∞(F),G(c)∞(G) � c : τ
Γ � νG(c)∞(G) · e : (τ, �)
fvar(νG(c)∞(G) · e) ∩ F(c)∞(F) = ∅

Γ, F, G � whilen e do c od : τ
while

Γ, F1, G1 � c1 : τ Γ, F(c1)(F1), G(c1)(G1) � c2 : τ

Γ, F1, G1 � c1; c2 : τ
seq

Fig. 4. Type systems for commands in eWhile

Let Γ be a type environment such that Γ (h0) = Γ (h1) = H and Γ (l0) =
Γ (l1) = Γ (l2) = L. This program can be typed in our system as follows:

Γ, ∅, ∅ � νl0 : L

Γ (l0) = L

Γ � νl0 · l0 : (L, Lr)
(R-var)

Γ � νl0 · (l0 + h1) : (H, Lr)
(+)

Γ, ∅, {l0} � l1 := Enc(k, l0 + h1) : L
(ass)

Γ(l1) = L

Γ � νl1 · l1 : (L, Lr)
(R-var)

Γ � νl1 · (l1 + h2) : (H, Lr)
(+)

Γ, {l0, h1}, {l1} � l2 := Enc(k, l1 + h2) : L
(ass)

Γ, ∅, {l0} � l1 := Enc(k, l0 + h1); l2 := Enc(k, l1 + h2) : L
(seq)

Γ, ∅, ∅ � νl0; l1 := Enc(k, l0 + h1); l2 := Enc(k, l1 + h2) : L
(seq)

5.2 Soundness of the Typing System of eWhile

In this section, we state the soundness of the type system of the eWhile language
and sketch its proof. The detailed proof is given in [1].

Let T (c) denote an upper bound on the number of Encr and Enc� calls that
can be executed during any run of c. Notice that because the running time of c
is bounded such a bound exists. Then, we can state the following theorem:

Theorem 2. Let c be a program, let Γ be a type environment and let Π be an
encryption scheme. Moreover, let X and Y be two distributions.

If Π is (t′, ε′)-PRP, X ∼Γ
(t,ε) Y and Γ, ∅, ∅ � c : τ then [[c]](X) ∼Γ

(t′′,ε′′) [[c]](Y)

with t′′ = min(t −�(c), t′ −�(c)) and ε′′ = ε + 2ε′ + 2T (c)2

|U| .

Proof (Sketch). Let rWhile denote the set of programs without any call to
Enc(k, ·) and pWhile denote the set of programs where the encryption function
Enc(k, ·) is interpreted as a random permutation. The main idea of the soundness
proof is as follows. Consider a command c with Γ, ∅, ∅ � c : τ . Then, let [[c]]π

denote its interpretation in pWhile and let cr obtained from c by replacing

374 J. Courant, C. Ene, and Y. Lakhnech

x := Encr(k, e) by νx and x := Enc�(k, e) by g(e). Then, we can prove the
following statements:

Proposition 1. For any distribution Z, we have

1. [[c]]π(Z) ∼(t′−�(c),ε′) [[c]](Z) and

2. [[c]]π(Z) and [[cr]](Z) are T (c)2

|U| -statistically close.

We can also prove the following soundness result of our type system for rWhile:

Proposition 2. Let c be a command in rWhile, let Γ be a type environment
and let X, Y ∈ Distr(Σ) be arbitrary distributions.

If X ∼Γ
(t,ε) Y and Γ, ∅, ∅ � c : τ then [[c]](X) ∼Γ

(t−�(c),ε) [[c]](Y).

From Propositions 1 and 2, we obtain the theorem by transitivity.

Proof Sketch of Proposition 1. Let us consider the first item. Let A be an ad-
versary trying to distinguish [[c]](Z) and [[c]]π(Z). We construct an adversary B
against the encryption scheme Π , that runs in time t′+�(c) and whose advan-
tage is the same as A’s advantage. The adversary B runs an experiment for A
against [[c]](Z) and [[c]]π(Z) using his oracles. First, B executes the command c
using its encryption oracle. That is, whenever a command x := Enc(k, e) is to be
executed in the command c, B computes the value of e and calls its encryption
oracle. After termination of the command c in some state σ, B runs A on σ and
gives the same answer as A. Formally:

Adversary BOb

b
r← {0, 1}; σ

r← [[c]]Ob(Z); A(σ).

Now it is clear that Adv
prp
Π (B) = Adv(A, [[c]](Z), [[c]]π(Z)). Moreover, the run-

ning time of B is A’s running time augmented with the time need for computing
[[c]](Z), i.e. �(c). We conclude that [[c]]π(Z) ∼(t′−�(c),ε′) [[c]](Z).

Consider now the second item. Roughly speaking, the bound T (c)2

|U| corre-
sponds to the probability of collisions between arguments of Encr among them-
selves and with with arguments of Enc�; and collisions among values returned
by ν. Moreover, we can then prove that cr is a well-typed rWhile program. ��

6 Conclusion

This extended abstract introduces a type system for an imperative language
that includes deterministic encryption and random assignment. It establishes
soundness of the type system under the assumption that the encryption scheme
is a pseudo-random permutation. The proof is carried in the concrete security
setting, thus providing concrete security estimates. Our work can be extended in
several directions. First, we could consider encryption as “first class” expressions.
This is not a substantial extension as any such program can be easily translated
into our language and refining the type of variables to (τs, τr) as for expressions.

Computationally Sound Typing for Non-interference 375

Second, we could consider decryption. An easy way to do this is to type the
result of any decryption with H . This may not, however, be satisfactory as the
so-obtained type system would be too restrictive. An other extension consists
in considering generation and manipulation of keys - it is not difficult to extend
the type system to deal with this, we need, however, to introduce conditions
on the expressions (acyclicity) and to apply hybrid arguments; data integrity -
which are in some sense dual to non-interference. Some of these extensions are
considered in the full paper [1], which also contains the detailed proofs of the
results presented in this extended abstract. In the full paper, we also show that
our notion of non-interference implies semantic security and Laud’s notion.

References

[1] Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: The case of deterministic encryption. Technical report, VERIMAG-
University of Grenoble and CNRS (2007)

[2] Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

[3] Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

[4] Laud, P.: Semantics and program analysis of computationally secure information
flow. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, pp. 77–91.
Springer, Heidelberg (2001)

[5] Laud, P.: Handling encryption in an analysis for secure information flow. In:
Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618, pp. 159–173.
Springer, Heidelberg (2003)

[6] Laud, P., Vene, V.: A type system for computationally secure information flow.
In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 365–377.
Springer, Heidelberg (2005)

[7] Malacaria, P.: Assessing security threats of looping constructs. In: Hofmann, M.,
Felleisen, M. (eds.) POPL, ACM, New York (2007)

[8] Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

[9] Sabelfeld, A., Myers, A.: Language-Based Information-Flow Security. IEEE Jour-
nal on Selected Areas in Comunications 21, 5–19 (2003)

[10] Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security (2007)

[11] Smith, G., Alpzar, R.: Secure information flow with random assignment and en-
cryption. In: FMSE, pp. 33–44 (2006)

[12] Volpano, D.M.: Secure introduction of one-way functions. In: CSFW, pp. 246–254
(2000)

[13] Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow
analysis. Journal of Computer Security 4(2/3), 167–188 (1996)

Bounding Messages for Free in

Security Protocols

Myrto Arapinis and Marie Duflot

LACL - University Paris 12, France
myrto@arapinis.org, duflot@univ-paris12.fr

Abstract. The verification of security protocols has been proven to be
undecidable in general. Different approaches use simplifying hypothe-
ses in order to obtain decidability for interesting subclasses. Amongst
the most common is type abstraction, i.e. considering only well-typed
runs, therefore bounding message length. In this paper, we show how to
get message boundedness “for free” under a reasonable (syntactic) as-
sumption on protocols, which we call well-formedness. This enables us
to improve existing decidability results.

1 Introduction

Security protocols are short programs that describe communication between two
or more parties in order to achieve security goals such as data confidentiality,
identification of a correspondent, etc. The protocols are executed in a hostile
environment, such as the Internet, and aim at preventing a malicious agent from
tampering with the messages, for instance, using encryption. However, encrypt-
ing messages is not sufficient to ensure security properties. History has shown
that these protocols are extremely error-prone, and careful formal verification is
needed.

Despite the apparent simplicity of such protocols, their verification is a dif-
ficult problem and has been proven undecidable in general [DLMS99, CC01].
Indeed, models we need to consider for protocols are (i) of infinite depth, and
(ii) infinitly branching. The depth infinity arises from the unbounded length of
traces (since an unbounded number of instances of the protocol can be involved).
On the other hand, infinite branching is due to the unboundedness of message
length (if no bound on the message length is set, then the intruder can input
an arbitrary number of messages that must be considered). The present paper
is mainly concerned with the second source of undecidability.

We introduce a syntactic condition of “well-formedness”, and a strong
typing system, which ensure that only well-typed runs need to be considered
for security analysis. Indeed, we prove that a well-formed protocol admits
an attack if and only if it admits a “well-typed” attack. This gives a bound
on the size of messages that needs to be considered. Many existing results
[Low99, RS03a, DLMS99, CKR+03] bound the message length, in order to ob-
tain decidability. But while they do so in adopting a type abstraction, an ad hoc

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 376–387, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounding Messages for Free in Security Protocols 377

assumption according to which one can always tell the type of a given message,
we provide a simple way of justifying it.

Although this question has already been addressed in [LYH04, HLS03] amongst
others, and solved with tagging schemes, the syntactic criterion introduced here is
significantly lighter. Moreover, the typing system we consider here is much more
fine-grained. It thus refines existing results in decreasing importantly the branch-
ing that needs to be considered.

Finally, to the best of our knowledge, only very few papers [Low99,RS03a,
RS03b] give decidability results with an unbounded number of sessions and
nonces. Such a result is achieved in [RS03b] by means of tagging. In the last part
of this paper, we show that this tagging scheme can be lightened by combining
the decidability results obtained in [RS03a, Low99] under the typing abstraction,
and the result presented in this paper.

2 Modelling Security Protocols

In this section, we define the trace based model used throughout the paper to
define and reason about security protocols.

2.1 The Syntax

Messages exchanged are modelled as terms in the following way. We first assume
several disjoint sets of atomic terms. A finite set P = {P1, . . . , Pk} of principal
names standing for the different participants of the protocol. During one protocol
execution, each principal Pi generates a finite set Ki = {Ki

1, . . . , K
i
li
} of short-

term keys or session keys, as well as a finite set Ni = {N i
1, . . . , N

i
mi

} of fresh
values called nonces. The set of session keys (resp. nonces) generated by all
principals is denoted K =

⋃
1≤i≤k Ki (resp. N =

⋃
1≤i≤k Ni). We assume a

finite set C = {c1, . . . , qcn} of constants. Finally, in order to model participants’
beahviour, we also need to assume, for each principal Pi, a finite set Xi =
{X i

1, . . . , X
i
pi

} of variables. Variables are used to model the fact that a principal
may receive data which he cannot check (nonces generated by other principals
for instance). The set of variables is then X =

⋃
1≤i≤k Xi.

The set of terms is defined inductively over the above sets as follows:

T ::= P | pb(P) | pv(P) | sh(P , P) | K | N | C | X | 〈T , T 〉 | {T }T | sigT (T)

where pb(P), pv(P), sh(P, P ′) are respectively the public key, private key of
principal P and shared key between principals P and P ′, and 〈t1, t2〉, {t1}t2 ,
sigt1

(t2) represent pairing, encryption and signature.
In what follows, we denote the set of variables of a term t by V(t) and the

set of subterms of t by St(t). These are defined as usual. The set of encrypted
subterms of t is denoted by ESt(t) and is defined as ESt(t) = {f(t1, t2) | f ∈
{{ } , sig ()}}.

In order to capture precisely what can be sent by a principal and what can be
accepeted by the receiver, we split the rules commonly used to describe proto-
cols [CJ97] into send and receive actions. We thus have a set of actions D = S∪R

378 M. Arapinis and M. Duflot

where S = {Pi!Pj : t | Pi, Pj ∈ P , Pi �= Pj , t ∈ T } is the set of send actions
and R = {Pi?Pj : t | Pi, Pj ∈ P , Pi �= Pj , t ∈ T } is the set of receive actions.

The term of an action is defined as term(Pi!Pj : t) = term(Pi?Pj : t) = t,
and for every sequence of actions D = d1 . . . dn, terms(D) =

⋃
1≤i≤n term(di).

Similarly, the set of variables of D is V(D) =
⋃

t∈terms(D) V(t), the set of sub-
terms of D is St(D) =

⋃
t∈terms(D) St(t), and the set of encrypted subterms of

D is ESt(D) =
⋃

t∈terms(D) ESt(t).
Finally, before giving the definition of protocols, we also need to define substi-

tution. A substitution is a map θ from variables to terms. θ(t) or tθ will denote
indifferently the application of substitution θ to term t. A unifier of two terms t
and t′ is a substitution θ such that θ(t) = θ(t′). The most general unifier of two
terms t, t′, mgu(t, t′), is a unifier θ of t and t′ such that for all unifier ψ of t and t′

there exists a substitution φ such that ψ = φ◦θ. We will denote the fact that two
terms t and t′ are not unifiable by mgu(t, t′) = ⊥. The domain of a substitution θ
is the set of variables actually instantiated by θ, i.e. dom(θ) = {X | θ(X) �= X}.

Definition 1. A protocol Π = s1r1 . . . slrl is a sequence of send-receive actions
such that, ∀i, 1 ≤ i ≤ l

1. si ∈ S and ri ∈ R
2. if si = P !P ′ : t, then ri = P ′?P : t′

3. if X ∈ V(term(si)), then ∃j, 1 ≤ j < i such that X ∈ V(term(rj))
4. for every 1 ≤ i ≤ l there exists a substitution δi �= ⊥, with

{
δ1 = mgu(term(s1), term(r1)), and
δk = mgu(δk−1(. . . δ1(sk)), δk−1(. . . δ1(rk))), ∀1 < k ≤ l.

The composition δ = δl ◦· · ·◦δ1 is the honest substitution for all the variables
occurring in the protocol specification.

This means that a protocol is a sequence of actions, such that each send ac-
tion corresponds to a matching receive action between the same two principals.
Moreover, point 3 states that a variable must be received before being sent, since
an agent cannot send a message it doesn’t know.

A role of the protocol is the restriction (in the usual sense) of Π to the ac-
tions (send and receive) of one of the principals, as illustrated in the following
example.

Example 1. The Needham-Schroeder protocol

ΠNS = P1 ! P2 : {P1, N
1
1 }pb(P2)

P2 ? P1 : {P1, X
2
1}pb(P2)

P2 ! P1 : {X2
1 , N2

1 }pb(P1)

P1 ? P2 : {N1
1 , X1

1}pb(P1)

P1 ! P2 : {X1
1}pb(P2)

P2 ? P1 : {N2
1}pb(P2)

Bounding Messages for Free in Security Protocols 379

The protocol has two principals, hence two roles described here.

ΠNS
1 = P1 ! P2 : {P1, N

1
1 }pb(P2)

P1 ? P2 : {N1
1 , X1

1}pb(P1)

P1 ! P2 : {X1
1}pb(P2)

ΠNS
2 = P2 ? P1 : {P1, X

2
1}pb(P2)

P2 ! P1 : {X2
1 , N2

1 }pb(P1)

P2 ? P1 : {N2
1}pb(P2)

2.2 The Semantics

After having described the roles of a protocol, i.e. the way things should happen
in an honest execution of the protocol, we will now describe how things really
happen. In particular, we have to take into account the fact that a protocol can
be executed several times, by different agents, and that in each case the nonces
and keys generated should be different, in order to ensure freshness.

A session will be a partial instantiation of one of the roles of the protocol.
Since we do not assume the number of sessions to be bounded, we consider an
infinite set Σ = {σn | n ∈ N} of session ids. In the same vein, we consider an
infinite set A = {an | n ∈ N} ∪ {ε} of agents that will play the roles of the
protocol, with the special agent ε standing for the intruder.

Nonces in N and Keys in K should be instantiated by different values in each
session. We also need to distinguish variables from different sessions. To do so,
we consider the following infinite sets, where the session id is used to distinguish
two instances of the same nonce, session key and variable respectively.

K = {Ki
j(σ) | Ki

j ∈ K, σ ∈ Σ} of session keys,
N = {N i

j(σ) | N i
j ∈ N , σ ∈ Σ} of nonces, and

X = {X i
j(σ) | X i

j ∈ X , σ ∈ Σ} of variables.

We do not need to consider the intruder as a normal agent that generates
keys and nonces during a session. It is provided at the beginning with a set of
nonces and session keys:

Nε = {ni
j | i, j s.t. N i

j ∈ N}, and Kε = {ki
j | i, j s.t. Ki

j ∈ K}.

Using the above defined sets, we can inductively define the set of (instantiated)
terms.

T ::=A | pb(A) | pv(A) | sh(A, A) | K | Kε | N | Nε | C | X | 〈T, T〉 | {T}T | sigT(T)

The set M of actual messages exchanged on the network is the set of ground
terms, i.e. variable-free terms. Based on this definition of instantiated terms, we
define the set D = S ∪ R of possible instantiations of send and reveive actions.

As said above, in a session σ, of role Pi, between participants (b1, . . . , bk) ∈ Ak,
each nonce N i

j ∈ Ni (resp. session-key Ki
j ∈ Ki) must be instantiated with

a fresh value N i
j(σ) (resp. session-key Ki

j(σ)), each principal name Pj ∈ P
must be instantiated with agent name bj, and each variable X i

j ∈ Xi must be
individuated in terms of the session by X i

j(σ). This is ensured by means of
function ||.||(σ,b1,...,bk) (e.g ||N i

j ||(σ,b1,...,bk) = N i
j(σ) and ||Pj ||(σ,b1,...,bk) = bj).

||.||(σ,b1,...,bk) is inductively extended to terms, actions, and sequences of actions
as expected.

380 M. Arapinis and M. Duflot

The formal execution model is a state transition system. A global state of
the system is given by (SId, q, I) where SId is a set of sessions, q is a function
that describes the local state of each session in SId and I ⊆ M represents the
intruder’s knowledge.

More precisely, ∀σ ∈ SId, q(σ) = (i, b1, . . . , bk, θ, p) is the local state of ses-
sion σ:

– i is the index of the role that is executed in this session,
– (b1, . . . , bk) ∈ Ak are the identities of the parties that are involved in the

session,
– θ is a partial instantiation of variables occuring in ||Πi||(σ,b1,...,bk),
– p is the control point of the program.

Given a protocol Π , the initial state of any trace of Π is (SId0, q0, I0), with
SId0 = ∅ (and thus the definition of q0 is useless) and I0 = A ∪ C ∪ Kε ∪
Nε ∪ {pb(a) | a ∈ A} ∪ {sh(a, ε), sh(ε, a) | a ∈ A} ∪ {pv(ε)} (the intruder
knows the agent names, constants, his own session keys and nonces, every agent’s
public key as well as his own private key and the keys he shares with other
agents).

Let Q = (SId, q, I) be a global state for Π . Three types of transition Q
e−→

update(Q, e) may be allowed:

1. Initiate a new session for the ith role (e = new(σ, i, b1, . . . , bk)):
– Event e is enabled at state Q whenever the session σ does not belong to

SId, the agent bi is not the intruder and any two agents taking part in
this new session are distinct.

– The effect of firing this transition is update(Q, e) = (SId ∪ {σ}, q′, I)
with
{

q′(σ′) = q(σ′), ∀σ′ ∈ SId
q′(σ) = (i, b1, . . . , bk, ∅, 1).

2. Execute next send-action of an existing session σ ∈ SId (e = snd(σ, p)):
– Event e is enabled at state Q whenever the control point of session σ is

p and the next action to perform in σ is a send action.
– The effect of firing this transition is update(Q, e) = (SId, q′, I ∪ {m})

with m = θ(||t||(σ,b1,...,bk)) and
{

q′(σ′) = q(σ′), ∀σ′ ∈ SId, σ′ �= σ
(q′(σ) = (i, b1, . . . , bk, θ, p + 1)).

3. Execute next receive-action of an existing session σ ∈ SId (e = rcv(σ, p, m)):
– Event e is enabled at state Q whenever the control point of session σ is

p and the next action to perform in σ is a receive action.
• m ∈ M is a message that can be computed by the intruder from I,
• q(σ) = (i, b1, . . . , bk, θ, p) (the control point of σ is p),
• Πi(p) = Pi?j : t (the next action is a receive),
• ψ �= ⊥, where ψ = mgu(m, θ(||t||(σ,b1,...,bk))) (m and the expected

message are unifiable).

Bounding Messages for Free in Security Protocols 381

– The effect of firing this transition is update(Q, e) = (SId, q′, I) with
{

q′(σ′) = q(σ′), ∀σ′ ∈ SId, σ′ �= σ
q′(σ) = (i, b1, . . . , bk, θ ∪ ψ, p + 1).

The adversary intercepts messages between honest participants and computes
new messages using the deduction rule � defined in Fig.1. Intuitively M � m
means that the adversary is able to compute the message m from the set of
messages M . The notation m−1 stands for pb(a) if m is of the type pv(a), pv(a)
if m is of the type pb(a), and m−1 = m otherwise.

M � m
m ∈ M

M � m1 M � m2

M � 〈m1, m2〉
M � 〈m1, m2〉

M � mi
1 ≤ i ≤ 2

M � m1 M � m2

M � {m1}m2

M � {m1}m2 M � m−1
2

M � m1

M � m1 M � m2

M � sigm1
(m2)

M � sigm1
(m2) M � m−1

1

M � m2

Fig. 1. Deduction rules

2.3 The Secrecy Problem

Let Π be an arbitrary k-party protocol. We say that Π guarantees the secrecy
of nonce N i

j ∈ N (resp. session key Ki
j ∈ K) if, in all possible executions, each

honest instantiation of N i
j (resp. Ki

j) remains unknown to the adversary. More
formally,

Definition 2. We say that Π preserves secrecy of nonce N i
j ∈ N (of session

key resp. Ki
j ∈ K) if for every valid trace (SId0, s0, I0) →∗ (SIdn, sn, In)

of the protocol and for every session σ ∈ SId such that qn(σ) is of the form
(i, b1, . . . , bk, θ, p), (b1, . . . , bk) ∈ (A \ {ε})k (i.e. k honest agents) for some θ
and some p, we have In �� N i

j(σ) (resp. In �� Ki
j(σ)).

We say that Π admits an attack on nonce N i
j ∈ N (resp. session key Ki

j ∈ K)
if Π does not preserve secrecy of N i

j (resp Ki
j).

3 Well-Formed Protocols and Well-Typed Attacks

In this section, we state the main result of the paper. We prove that for well-
formed protocols (i.e. with non unifiable subterms), for verification of the se-
crecy property we only need to consider well-typed runs of the protocol, i.e for
well-formed protocols the typing abstraction, with respect to the following type
system, is correct with repsect to the secrecy problem.

382 M. Arapinis and M. Duflot

3.1 Types

We introduce in this section a very strong typing on messages, that will allow
us to restrict significantly the set of traces to consider in order to detect an
attack. For example, nonces may have different types, depending on the role
that generated them, and the point of their generation in the protocol.

We first use a single type agent α for every principal name P ∈ P . In partic-
ular, the intruder has the same type as any other agent.

To each session key Ki
j in K (resp. nonce N i

j in N , constant ci in C), we
associate a different type κi

j (resp. νi
j , γi). The notations κ, ν and γ denote

respectively the set of session key types, nonce types and constant types.
We thus obtain inductively the following type set for terms:

τ ::= α | κ | ν | γ | pb(α) | pv(α) | sh(α, α) | 〈τ, τ〉 | {τ}τ | sigτ (τ)

The typing rules are given in Fig.2.

P ∈ P
P : α

ci ∈ C
ci : γi

Ki
j ∈ K

Ki
j : κi

j

N i
j ∈ N

N i
j : νi

j

P ∈ P
pb(P) : pb(α)

P ∈ P
pv(P) : pv(α)

P, P ′ ∈ P
sh(P, P ′) : sh(α, α)

t1 : τ1 t2 : τ2

f(t1, t2) : f(τ1, τ2)

X ∈ X δ(X) : τ

X : τ
f ∈ {〈 , 〉, { } , sig ()}

t : τ

||t||(σ,b1,...,bk) : τ

ki
j ∈ Kε

ki
j : κi

j

ni
j ∈ Nε

ni
j : νi

j

Fig. 2. Typing rules

Definition 3. A well-typed run is a valid trace (SId0, q0, I0) →∗ (SIdn, qn, In)
such that for every session id σ ∈ SIdn with qn(σ) = (i, b1, . . . , bk, θ, p), for
some i, b1, . . . , bk, θ, p, it is the case that θ preserves types, i.e. for every variable
X ∈ dom(θ), X : τ ⇒ θ(X) : τ .

This definition states that each variable used in the specification is always instan-
tiated (using substitution θ) by a message of the expected type. The following
definition constrains unifiability between subterms of different types.

Definition 4. A protocol Π (Definition 1) is said to be well-formed when the
following condition holds:

∀t, t′ ∈ ESt(Π), if there exist (σ, b1, . . . , bk), (σ′, b′1, . . . , b
′
k) ∈ Σ × Ak and a

substitution θ such that θ(||t||(σ,b1,...,bk)) = θ(||t′||(σ′,b′
1,...,b′

k)), then δ(t) = δ(t′).

Bounding Messages for Free in Security Protocols 383

This condition is often met in practice in the literature (see [CJ97]). And even
when the protocol isn’t well-formed, a light tagging scheme ensures
well-formednes, as it is done in [BP05] in which a different label is introduced
at every encryption step of the specification. We present such a tagging scheme
in definition 6 when discussing the decidability results of [RS03a]. (Note that
tagging is already present in protocols such as SSH.)

3.2 Considering Only Well-Typed Runs for Well-Formed Protocols

We now state the main result of this paper. Due to a lack of space we only give
the main ideas of the proof here. Further details can be found in [AD07].

Theorem 1. Let Π be a well-formed protocol. If Π admits an attack, then Π
admits a well-typed attack.

The proof is based on the fact that if a protocol admits an attack, then it admits
an attack of bounded length n, which can thus be found. The proof of theorem 1
is done by induction on a procedure searching for this attack. Indeed, we show
that the considered procedure from [CDD07] instantiates variables only with
terms of the expected type. We will first detail this procedure and then come
back to explanations concerning well-typedness of computed substitutions.

The secrecy problem for security protocols can be translated into a constraint
satisfaction problem [MS01, CZ06, CDD07, RT01]. In [CDD07], it is shown that
using some simplification rules, solving general constraints can be reduced to
solving simpler constaint systems that are called solved.

Definition 5. [CDD07] A constraint system C is a finite set of expressions
Ti � tt or Ti � ui where Ti ⊆ T, Ti �= ∅, tt is a special symbol that represents
an always deducible term, and ui ∈ T, 1 ≤ i ≤ n, such that:

– Ti ⊆ Ti+1, ∀i, 1 ≤ i ≤ n − 1;
– if X ∈ V(Ti), then ∃j<i such that Tj = min{T | T � u ∈ C, X ∈ V(u)} (for

the inclusion relation) and Tj � Ti

⊥ denotes the unsatisfiable system. A constraint system is said to be solved if it
is different from ⊥ and each of its constraints are of the form T � tt or T � X,
where X ∈ X.

The left-hand side of the constraint T � u is T and u is its right-hand side. The
left-hand side lhs(C) of the constraint system C is the maximal left-hand side of
its constraints, and the right-hand side rhs(C) of C is the set of messages in the
right-hand side of its constraints. We consider the following sets over C defined
as expected: V(C) = V(lhs(C)) ∪ V(rhs(C)), terms(C) = lhs(C) ∪ rhs(C),
St(C) = St(terms(C)) and ESt(C) = ESt(terms(C)).

The simplification rules we consider are defined in Fig.3. They have been
proven correct, complete and terminating in polynomial time [CDD07].

From correction, completeness and termination, it follows that the secrecy
problem for a protocol Π admitting an attack can be translated into a constraint

384 M. Arapinis and M. Duflot

R1 C ∧ T � u �∅ C ∧ T � tt if T ∪ {X | T ′ � X ∈ C, T ′
� T} � u

R2 C ∧ T � u �ψ Cψ ∧ Tψ � uψ if ψ = mgu(t, u), t ∈ ESt(T)
t 	= u, u not variable

R3 C ∧ T � u �ψ Cψ ∧ Tψ � uψ if ψ = mgu(t1, t2), t1, t2 ∈ ESt(T)
t1 	= t2

R4 C ∧ T � u �∅ ⊥ if V(T, u) = ∅ and T 	� u
Rf C ∧ T � f(u, v) �∅ C ∧ T � u ∧ T � v for f ∈ {〈 , 〉, { } , sig ()}

Fig. 3. Simplification rules

system C0 admitting a sequence of simplifications that leads to a solved con-
straint system Cn:

C0 �Ri1
θ1

C1 �Ri2
θ2

· · · �Rin

θn
Cn

As said before, the proof of theorem 1 is done by induction on the length n of
this sequence of simplifications. We will show that Cn is well-typed (i.e. ∀j, 1 ≤
j ≤ n, θj preserves types).

It is easy to see that rules R1, R4 and Rf preserve well-typedness since they
do not instantiate any variable.

For rules R2 and R3 we show, by means of some lemmas detailed in [AD07]
(again due to a lack of space), that the selected substerms t and t′, such that
ψj = mgu(t, t′) 1 ≤ j ≤ n when Rij ∈ {R2, R3}, are of the same type, and
that computing the mgu of two terms of the same type results in a well-typed
substitution. This allows us to conclude that, when applying these rules, variables
are instantiated only with terms of the expected type, and thus they preserve
well-typedness.

The following corollary is an immediate consequence of the previous theorem
and of the fact that function application (pairing, encrypting and signing) is
embedded in the type of a term.

Corollary 1. Let Π be a well-formed protocol. If Π admits an attack, and B is
the length of the longest message in an honest run of the protocol, then Π admits
an attack with messages of bounded length B.

We have thus proven in this section that the encryption abstraction is correct
for well-formed protocols. And that this holds for a much more fine-grained
type notion than the one considered in [LYH04, HLS03], where all nonces and
session keys are of the same type. This severely restricts the search space to
consider for verification purposes. We now define a tagging scheme that ensures
well-formedness.

Definition 6. A tagged protocol is a protocol (Definition 1) s. t.:

∀t ∈ ESt(Π), ∃c ∈ C and t1, t2 ∈ T s.t. t = {c, t1}t2 or t = sigt1
(c, t2),

∀t, u, t1, u1, t2, u2 ∈ ESt(Π), ∀c ∈ C s.t. t = f(c, t1, t2) and u = f(c, u1, u2),
δ(t) = δ(u).

It immediately follows that such tagged protocols verify well-formedness. This
tagging scheme is extremely lighter than the ones in [LYH04, HLS03] where the

Bounding Messages for Free in Security Protocols 385

whole type of an encrypted subterm is used for tagging it. We have thus obtained
a more refined type abstraction with a very simple tagging scheme.

4 Application to Decidability Results

As claimed in the introduction, the type assumption is often necessary in order
to obtain decidability and in particular in the presence of an unbounded number
of sessions and nonces. Indeed, Lowe in [Low99] as well as Ramanujam and
Suresh in [RS03a] prove the decidability of a class of protocols but assume that
messages are of bounded length.

In [RS03a], the authors prove decidability of the secrecy problem (for a
stronger definition of secrecy than the one given in section 2) in the framework
of messages of bounded length, for a class of protocols they call structured. Since
structured protocols do not admit blind copies (i.e. do not admit variables of
non-atomic type, corresponding to encrypted terms received by a participant Pi

but which Pi cannot decrypt), we can slightly strengthen their definition in order
to ensure well-formedness, and we claim that this does not restrict the class of
protocols from a semantic point of view. Indeed, any structured protocol in the
sence of [RS03a] can easily be transformed in a well-structured protocol in the
sense of definition 7 (because of the absence of blind copies) without changing its
purported “meaning”. Hence we can combine the decidability result in [RS03a]
and theorem 1.

Definition 7. A protocol Π = s1r1 . . . slrl is said to be well-structured if the
following conditions hold:

– Π doesn’t have blind copies, each variable is of atomic type,
– keys are atomic,
– encrypted subterms are textually distinct, an encrypted subterm t of a pro-

tocol in the described class can be unified only with its matching send or
receive t′.

The above definition constrains unifiability of different subterms (even of the
same message) whereas the one of [RS03a] only constrains unifiability of sub-
terms of different messages.

As already argued above, the additional restriction is not severe and accept-
able as it yields decidability for unbounded messages. Moreover, since two en-
crypted subterms of the protocol t, t′ ∈ ESt(Π) are unifiable iff the one is the
send or receive message of the other, it is the case that δ(t) = δ(t′). Thus well-
structured protocols as defined in definition 7 are well-formed, which permits
us to conclude to the decidability of well-structured protocols in the frame of
unbounded message length.

One way of ensuring well-structuredness may be by means of tags/labels. The
following definition is an adaptation of definition 6 to the framework of [RS03a].

Definition 8. A protocol Π = s1r1 . . . slrl is a tagged protocol if it satisfies the
folowing conditions:

386 M. Arapinis and M. Duflot

– no blind copies,
– keys are atomic,
– ∀t ∈ ESt(Π), ∃c ∈ C, ∃t1, t2 ∈ T such that t = {c, t1}t2 or t = sigt2

(c, t1)
– ∀c, c′ ∈ C, ∀i �= j, 1 ≤ i, j ≤ l, if f(c, t1, t2) ∈ ESt(si) then ∀f(c′, u1, u2) ∈

ESt(sj), c �= c′

– ∀c ∈ C, ∀i 1 ≤ i, j ≤ l, ∀p ∈ N
∗, if term(si)|p = f(c, t1, t2) then ∀q ∈ N

∗ s.t.
q �= p ∧ term(si|q) = f(c′, u1, u2), c �= c′.

The third condition is similar to all definitions of tagged protocols [BP05, RS03b].
The fourth condition stipulates that each tag is used at most in one send event;
and the fifth, that a tag used in a send event is used in at most one position. We
have thus constrained a term to be used exactly once in the protocol. Thus any
encrypted subterm is unifiable with and only with its matching send or receive
action. Therefore tagged protocols are well-structured, and we can hence con-
clude to decidability of the secrecy problem for tagged protocols (as defined in
definition 8). The secrecy problem, for the class of tagged protocols, is shown to
be decidable in [RS03b], but the considered tagging scheme is heavier. Indeed, in
the above definition a few bits are sufficient to tag messages, whereas in [RS03b]
each encrypted subterm of the protocol is tagged with a pair (c, N) where c is
a constant and N is a different nonce making the tagging scheme heavier.

5 Conclusion

The result presented in this paper is a first step towards decidability. We have
proven that for a well known and wide class of protocols (that we call well-
formed) the type abstraction is correct. Therefore there is no need to check for
badly typed attacks, and this restricts the search space to consider in order to
prove secrecy for a protocol. This was achieved in a much more economic way
than in [LYH04, HLS03]. Furthermore, the type abstraction is here significantly
refined and thus the search space to consider, in order to find an attack, is smaller
than in [LYH04, HLS03].

In addition, we have shown how this result can improve existing decidabil-
ity results. We also believe it could improve the efficiency of existing tools by
restricting their search space to well-typed executions.

Our next goal is to use our theorem to get decidability for (at least a large
subclass of) our well-formed protocols. The idea is that protocols at stake in
existing undecidability proofs lie outside our framework. They are either not
executable (i.e. in an honest execution, some action of the specification can
never occur) or not well-formed (i.e. they allow, for example, to replay a message
generated in a session at step m in another session at step n < m without the
agents noticing it). We expect that the restriction to well-formed and executable
protocols will lead to a larger decidable subclass.

Acknowledgments. The authors are very grateful to Véronique Cortier,
Stéphanie Delaune, Steve Kremer and S. P. Suresh for enlightening discussions
while conceiving this paper.

Bounding Messages for Free in Security Protocols 387

References

[AD07] Arapinis, M., Duflot, M.: Bounding messages for free in security protocols
(extended version) (2007), http://www.arapinis.org/publications/
fsttcs07ext.pdf

[BP05] Blanchet, B., Podelski, A.: Verification of cryptographic protocols: Tagging
enforces termination. TCS: Theoretical Computer Science 333 (2005)

[CC01] Comon, H., Cortier, V.: Tree automata with one memory, set constraints
and cryptographic protocols. Research Report LSV-01-13, Laboratoire
Spécification et Vérification, ENS Cachan, France, p. 98 (2001)

[CDD07] Cortier, V., Delâıtre, J., Delaune, S.: Safely composing security protocols.
In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, Springer,
Heidelberg (2007)

[CJ97] Clark, J.A., Jacob, J.L.: A survey of authentication protocol literature
(1997)

[CKR+03] Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M., Vigneron, L.:
Extending the Dolev-Yao intruder for analyzing an unbounded number of
sessions. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803,
pp. 128–141. Springer, Heidelberg (2003)

[CZ06] Cortier, V., Zalinescu, E.: Deciding key cycles for security protocols. In:
Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 317–331. Springer, Heidelberg (2006)

[DLMS99] Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of
bounded security protocols. In: Proc. Work. on Formal Methods and Se-
curity Protocols (FMSP) (1999)

[HLS03] Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on
security protocols. Journal of Computer Security 11(2), 217–244 (2003)

[Low99] Lowe, G.: Towards a completeness result for model checking of security
protocols. Journal of Computer Security 7(1) (1999)

[LYH04] Li, Y., Yang, W., Huang, C.-W.: Preventing type flaw attacks on security
protocols with a simplified tagging scheme. In: ISICT 2004. Proc. Int.
symp. on Information and communication technologies, Trinity College
Dublin, pp. 244–249 (2004)

[MS01] Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryp-
tographic protocol analysis. In: Proc. 8th ACM Conf. on Computer and
Communications Security, pp. 166–175. ACM Press, New York (2001)

[RS03a] Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security
protocols. In: Proc. Work. on Issues in the Theory of Security (WITS 2003)
(2003)

[RS03b] Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable with un-
bounded nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST
TCS 2003. LNCS, vol. 2914, Springer, Heidelberg (2003)

[RT01] Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of
sessions is NP-complete. In: CSFW 2001. Proc. 14th IEEE work. on Com-
puter Security Foundations, p. 174. IEEE Computer Society Press, Los
Alamitos (2001)

http://www.arapinis.org/publications/fsttcs07ext.pdf
http://www.arapinis.org/publications/fsttcs07ext.pdf

Triangulations of Line Segment Sets in the Plane

Mathieu Brévilliers, Nicolas Chevallier, and Dominique Schmitt

Laboratoire MIA, Université de Haute-Alsace
4, rue des Frères Lumière, 68093 Mulhouse Cedex, France

{Mathieu.Brevilliers,Nicolas.Chevallier,Dominique.Schmitt}@uha.fr

Abstract. Given a set S of line segments in the plane, we introduce a
new family of partitions of the convex hull of S called segment triangu-
lations of S. The set of faces of such a triangulation is a maximal set
of disjoint triangles that cut S at, and only at, their vertices. Surpris-
ingly, several properties of point set triangulations extend to segment
triangulations. Thus, the number of their faces is an invariant of S. In
the same way, if S is in general position, there exists a unique segment
triangulation of S whose faces are inscribable in circles whose interiors
do not intersect S. This triangulation, called segment Delaunay triangu-
lation, is dual to the segment Voronoi diagram. The main result of this
paper is that the local optimality which characterizes point set Delaunay
triangulations [10] extends to segment Delaunay triangulations. A sim-
ilar result holds for segment triangulations with same topology as the
Delaunay one.

1 Introduction

The Voronoi diagram of a set S of sites in the d-dimensional Euclidean space
E partitions E into regions, one per site; the region for a site s consists of all
points closer to s than to any other site. In very recent years, particular attention
has been paid to the study of the Voronoi diagram of a set of line segments in
three dimensions [13], [18], [9], ... However, the topology of this diagram is really
known only for a set of three lines [8]. The investigation for the point set Voronoi
diagram has been fairly facilitated by the well understanding of its dual, the De-
launay diagram. Recall that, if no d+1 points of S are cospherical, the Delaunay
diagram of S is the unique triangulation of S whose tetrahedra are inscribable in
empty spheres, that is, spheres whose interiors do not intersect S. Among all the
triangulations of S, the Delaunay diagram of S has many optimality properties,
some of them extending in any dimension [15], [17]. Until now, no such properties
have been given, even in the plane, for the dual of the segment Voronoi diagram
which has been introduced by Chew and Kedem [5]. Surprisingly, no family of
diagrams containing this dual diagram has been defined whereas many general-
izations of point set triangulations have been studied: constrained triangulations
[11], pseudo-triangulations [16], pre-triangulations [1], ...

In this paper, we introduce a new family of diagrams, called segment triangu-
lations, which decompose the convex hull of a set S of points and line segments

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 388–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Triangulations of Line Segment Sets in the Plane 389

in the plane. The set of faces of a segment triangulation of S is a maximal set of
disjoint triangles such that the vertices of each triangle belong to three distinct
sites of S and no other point of the triangle belongs to S. The edges of the seg-
ment triangulation are the (possibly two-dimensional) connected components of
the convex hull of S when the sites and open faces are removed. These definitions
are natural for, when S is a point set we recover the definitions of the faces and
the edges of a point set triangulation. The aim of this paper is to study this new
kind of triangulation in order to characterize by local properties the dual of the
segment Voronoi diagram among the set of segment triangulations.

The segment triangulations are studied for their own sake in the two first
sections. We show that they retain different geometrical and topological prop-
erties of point set triangulations and that they are intimately related to some
generalized constrained triangulations.

In the next section, we prove that there exists one and only one segment
triangulation of S whose faces are inscribable in empty circles. We show that this
triangulation, called segment Delaunay triangulation, is the dual, introduced by
Chew and Kedem, of the segment Voronoi diagram and can thus be constructed
in O(n log n) time.

The point set Delaunay triangulation admits an important local characteri-
zation which is used to prove many of its optimality properties and enables to
check in linear time whether a given triangulation is Delaunay or not. This local
property states that a triangulation is Delaunay if and only if every couple of
faces sharing a common edge is in Delaunay position with respect to its four
defining sites [10]. The main result of the second part of the paper is that this
property also characterizes the segment Delaunay triangulation among all the
segment triangulations of a given set of line segments. We also give another local
property that characterizes the set of segment triangulations having the same
topological structure as the segment Delaunay triangulation.

2 Segment Triangulations and Constrained Triangulations

Let S be a finite set of n ≥ 2 disjoint closed segments in the plane, which we
call sites. Throughout this paper, a closed segment may possibly be reduced to
a single point. We say that a circle is tangent to a site s if s meets the circle
but not its interior. The sites of S are supposed to be in general position, that
is, we suppose that no three segment endpoints are collinear and that no circle
is tangent to four sites.

Definition 1. A segment triangulation P of S is a partition of the convex hull
conv(S) of S in disjoint sites, edges and faces such that:

(i) Every face of P is an open triangle whose vertices belong to three distinct
sites of S and whose open edges do not intersect S,

(ii) No face can be added without intersecting another one,
(iii) The edges of P are the (possibly two-dimensional) connected components

of conv(S) \ (F ∪ S), where F is the set of faces of P .

390 M. Brévilliers, N. Chevallier, and D. Schmitt

Fig. 1. A weakly constrained triangulation (dotted lines) of an S-polygon (in grey)

Such a triangulation always exists, that is, for any set S, there is a finite number
of faces verifying Definition 1. Indeed, it is not difficult to see that at most two
disjoint triangles can have their vertices on the same three sites (see Figure 3(a)).

There is a well-known triangulation defined on a set of points and line seg-
ments: The constrained triangulation. It is a triangulation of the set of points
and segment endpoints such that every given line segment is a side of a triangle.
These triangulations are mainly used to triangulate terrains with topographic
constraints (mountain crests, roads, ...) or interiors of polygons. However, the
triangles being mostly too irregular, so called Steiner points are added to the ini-
tial point set (see for example [3]). Steiner points added on the segments enable
to split them into subsegments and to generate a better constrained triangula-
tion. We show now that segment triangulations are intimately related to a kind
of generalized Steiner triangulation that we call weakly constrained triangula-
tion. In this triangulation (see Figure 1), a point added on a line segment does
not split the segment but becomes a vertex of triangles that are on one side of
the segment. Therefore, the two sides of a segment are independent. This en-
ables, for example, to independently triangulate two slopes on both sides of a
same mountain crest. We now define the weakly constrained triangulation of a
restricted region.

Definition 2

(i) Given a set S of sites, we call S-polygon (possibly with holes), any closed
two-dimensional subset A of conv(S), equal to the closure of its interior,
such that A \ S is connected and the boundary of A is composed of a finite
number of disjoint line segments that are of the two following forms:
– closed and contained in S,
– open, not intersecting S, and with their endpoints in S.

(ii) We call weakly constrained triangulation of A (with respect to S), any par-
tition of A in triangles whose vertices belong to S, whose interiors do not
cut S, and whose open sides either do not cut S or are contained in S.

When A = conv(S), such a triangulation is also called a weakly constrained
triangulation of S.

The following lemma will enable to establish the connection between segment
triangulations and weakly constrained triangulations.

Triangulations of Line Segment Sets in the Plane 391

Lemma 1. If A is an S-polygon that intersects at least three sites of S then
every weakly constrained triangulation of A contains at least one triangle whose
vertices belong to three distinct sites of S.

Proof. Given a weakly constrained triangulation T of A, let ΔT (A) be the (pos-
sibly empty) set of triangles of T having one side in S. We show, by induction on
the number |ΔT (A)| of triangles of ΔT (A), that T contains at least one triangle
whose vertices belong to three distinct sites of S.

Obviously, if ΔT (A) = ∅, the vertices of every triangle of T belong to three
distinct sites. Suppose now the result true for every weakly constrained triangu-
lation T with |ΔT (A)| < k (k ≥ 1).

For every weakly constrained triangulation T of A with |ΔT (A)| = k and for
every closed triangle t of ΔT (A), the closure A \ t of A \ t intersects the same
sites as A. If A \ t is connected, A′ = A \ t is an S-polygon. Otherwise, A \ t
has two connected components, the closure of at least one of them being an
S-polygon. In the latter case, each of the S-polygons intersects the two sites to
which the vertices of t belong. It follows that at least one of these S-polygons
intersects at least three sites. Let A′ be this S-polygon. In both cases, if T ′ is
the restriction of T to A′, |ΔT ′(A′)| < |ΔT (A)|. Thus, by induction hypothesis,
T ′ contains at least one triangle whose vertices belong to three distinct sites of
S. It is the same for T . ��

It follows from this lemma that, in any weakly constrained triangulation of S,
the set F of triangles having their vertices on three distinct sites of S is maximal.
Indeed, the closure of every connected component e of conv(S)\ (F ∪S) is either
a line segment connecting two points of S or an S-polygon. In the second case, it
follows from Lemma 1 that e can only intersect two sites. Therefore no triangle
having its vertices on three distinct sites of S can be added without cutting
F ∪ S. Thus, the theorems:

Theorem 1. Every weakly constrained triangulation of S is a refinement of a
segment triangulation of S, that is, a segment triangulation whose edges are
decomposed in triangles.

Theorem 2. The closure of every edge of a segment triangulation of S intersects
exactly two sites of S.

This shows that an edge of a segment triangulation P of S is really an edge
in that sense that it “connects” exactly two sites of S. Its shape can also be
deduced from the discussion above. The closure of an edge either is reduced to
a line segment joining two points in two distinct sites of S, or is a triangle with
one side and its opposite vertex in S, or is a (possibly non-convex) quadrilateral
with two opposite sides in S (see Figure 2). Moreover, every edge of P contains

– either two sides of two triangles of P ,
– or one side of one triangle of P and one side of conv(S) that is not a site,
– or two such sides of conv(S).

392 M. Brévilliers, N. Chevallier, and D. Schmitt

Fig. 2. Examples of edges (grey) connecting two sites in a segment triangulation

Here the edges of a segment triangulation are implicitly defined by comple-
mentarity with respect to the faces and to the sites. If we want to extend segment
triangulations in d dimensions, the faces of dimension less than d have to be de-
fined explicitly. In the plane, this could be done by defining the edges in the
following way: Take a maximal set E of open disjoint line segments that do
not cut S and whose endpoints belong to S (in general E is infinite). Then, it
can be proved that the connected components of E are the edges of a segment
triangulation of S.

3 Topological Properties of Segment Triangulations

Since every edge of a segment triangulation P of S “connects” two sites of S,
we can associate an abstract graph with P such that:

– the vertices of the graph are the sites of S,
– the edges connecting two sites s and t in the graph are the edges of P whose

closures intersect s and t.

Proposition 1. The abstract graph associated with a segment triangulation P
of S is planar.

Proof. For every site s of S, let γs be a convex closed Jordan curve such that:

– s is inside γs (i.e. in the subset of the plane bounded by γs),
– S \ s is outside γs,
– the interior of γs intersects only the edges of P whose closures intersect s.

Replace now every site s by a point ps inside γs. For every edge e of P that
intersects γs, replace the subset of e inside γs by a line segment connecting ps

to a point of e on γs. While doing this, the order of the edges around s remains
unchanged and the reduced edges do not intersect. Once this transformation is
fulfilled in every Jordan curve γs, replace every reduced edge by a Jordan arc
included in it. Finally, we get a planar representation G of the abstract graph
associated with P (see Figure 3(b)). ��

Theorem 3. Every segment triangulation P of a set S of n sites contains 3n−
n′ − 3 edges and 2n − n′ − 2 faces, where n′ is the number of edges of conv(S)
that are not sites.

Triangulations of Line Segment Sets in the Plane 393

(a) (b)

Fig. 3. A segment triangulation (a) (the sites are in black, the edges in grey, and the
faces in white) and its associated graph (b)

Proof. Counting the edges and faces of P comes down to counting the edges and
bounded faces of the planar representation G constructed in the proof of Propo-
sition 1. Moreover, the unbounded face of G corresponds to the complementary
of conv(S). The result is then an immediate consequence of Euler’s relation, of
the fact that every bounded face of G has three edges, and that the edges adja-
cent to one (resp. no) bounded face appear once (resp. twice) while traversing
the boundary of the unbounded face of G. ��

An interesting consequence of this theorem is that the size of a segment trian-
gulation is linear with the number of sites. Moreover, it shows that the number
of triangles of the triangulation is an invariant of the set of sites. This is an
extension of a well-known property of the triangulations of planar point sets.

Using the planar representation G constructed in the proof of Proposition 1,
we can associate a combinatorial map M with the segment triangulation P :

– the underlying graph is the abstract graph associated with the triangula-
tion P ,

– for every vertex s of M , the cyclic ordering of the edges out of s agrees with
the counter-clockwise ordering of the associated Jordan arcs around s in the
planar representation G.

Note that, in general, the same map M is associated with different segment
triangulations of S. We say that:

Definition 3. Two segment triangulations of S have the same topology if they
have the same associated combinatorial map.

In order to use M as a data structure to store the segment triangulation P ,
we only need to add the coordinates of the vertices of the triangles of P in
the structure: One vertex per oriented edge. A segment triangulation of a set S
of n sites can thus be stored using O(n) space. Furthermore, from Theorem 1,
every constrained triangulation of S is a refinement of a segment triangulation of
S. There exists a sweep-line algorithm to construct a constrained triangulation
in O(n log n) time [7] and this algorithm can easily be adapted to construct a
segment triangulation also in O(n log n) time.

394 M. Brévilliers, N. Chevallier, and D. Schmitt

4 Segment Delaunay Triangulation and Segment Voronoi
Diagram

Among the set of all segment triangulations, some are distinguished. For ex-
ample, we could look for the segment triangulation whose faces have a maximal
total area. Here we will be interested in the segment triangulation whose faces are
inscribable in empty circles. In this section, we prove the existence and unicity
of this special segment triangulation and we show that it is dual to the segment
Voronoi diagram (see Figure 4). Our proof uses some properties of the segment
Voronoi diagram, which can be found in [2], [4], and [14].

Let now F be the set of triangles of the plane such that the vertices of each
triangle belong to three distinct sites of S and such that the interior of the
circumcircle of each triangle does not intersect S.

Theorem 4

(i) The triangles of F are the faces of a segment triangulation P of S, which
we call the segment Delaunay triangulation.

(ii) The combinatorial map M associated with P is dual to the segment Voronoi
diagram of S.

Proof. Since the interior of the circumcircle of every triangle of F is empty, two
such triangles cannot intersect. Thus, they are faces of a segment triangulation.
On the one hand, the number of vertices of the Voronoi diagram V or(S) of S
is known and by Theorem 3, it is the same as the number of triangles of a seg-
ment triangulation of S. On the other hand, each vertex of the Voronoi diagram
corresponds to one triangle of F . Therefore, the number of triangles of F is max-
imal, which means that F is the set of triangles of a segment triangulation P .
Furthermore, by definition of the Voronoi diagram, there is a one-to-one corre-
spondence between the regions of V or(S) and the sites, which are, by definition,
the vertices of M .

It remains to study the edges of M and of V or(S). Let a be an edge of V or(S)
incident to the two Voronoi regions of s and t. Each point p in a is the center
of an empty circle Cp touching the two sites s and t at the points ps and pt. It

Fig. 4. A segment Delaunay triangulation and an illustration of the duality

Triangulations of Line Segment Sets in the Plane 395

is not difficult to prove that such an open segment pspt never meets a triangle
of F . Thus, for each p in a, the open segment pspt is included in an edge of the
segment triangulation P . Furthermore, the union Ea of all the open segments
pspt, p ∈ a, is a connected subset of conv(S), therefore Ea is included in a single
edge e of P , which is incident to s and t. The last thing to see is that for each
edge e of P there is exactly one edge a of V or(S) such that Ea ⊂ e. Since the
numbers of edges of P and of V or(S) are equal, it suffices to prove that for each
edge e of P there is at least one edge a such that Ea ⊂ e. Now, any boundary
segment of an edge e linking two sites s and t, is of the previous kind pspt.
Therefore there is an edge a of V or(S) such that Ea ⊂ e. ��

It is easy to see that the segment Delaunay triangulation of S defined in this
theorem is equivalent to the dual of V or(S) introduced by Chew and Kedem,
which they called the edge Delaunay triangulation of S [5]. Using algorithms
that construct segment Voronoi diagrams, the segment Delaunay triangulation
can be computed in O(n log n) time [14].

5 Legality in Segment Triangulations

An interesting property of the Delaunay triangulation of a planar point set is
the legal edge property. Consider an edge of a point set triangulation and its
two adjacent triangles. The edge is illegal if a vertex of one of these triangles lies
inside the circumcircle of the other triangle. It is well-known that the Delaunay
triangulation of a point set is the unique triangulation of this point set without
illegal edge. In the following, we are going to prove a similar property for segment
triangulations.

Definition 4. An egde of a segment triangulation is legal if the circumcircles
of its adjacent triangles contain no point of the sites adjacent to these triangles
in their interiors.

Theorem 5. The segment Delaunay triangulation of S is the unique segment
triangulation of S whose all edges are legal.

Proof. Obviously, the segment Delaunay triangulation has no illegal edge. Let
P be a segment triangulation which is not Delaunay and let f be a face of P
whose circumcircle cf contains a point of S in its interior df . We have to prove
that P has an illegal edge. Let x be a point in f and p a point in df lying on
a site. We can assume that the interior of the segment xp does not intersect S.
Denote by k the number of edges crossed by the segment xp. Note that k ≥ 1,
for, by definition, p can neither be in f , nor in an edge adjacent to f . Denote e
the first edge crossed by xp, g the other face adjacent to e, cg its circumcircle,
dg the interior of cg, ab the side of g contained in e, and u the site that contains
the vertex of g that is not a vertex of e (see Figure 5). If k = 1, p lies on u and
therefore the edge crossed by xp is illegal. Now suppose that, if xp crosses k edges
then at least one of them is illegal. We have to prove that if xp crosses (k + 1)

396 M. Brévilliers, N. Chevallier, and D. Schmitt

x

p

f
g

e

u

Fig. 5. Illustration of the proof of Theorem 5

edges then P has an illegal edge. If the edge e is illegal we are done. Otherwise
the points a and b cannot be in the disk df . Moreover the point y = ab ∩ xp
is in df . Therefore, the segment ab splits df into two parts. Denote d1 the part
containing the face f and d2 the other part. The disk dg must contain at least
d1 or d2, and since e is legal it can not contain d1. It follows that the segment
yp is in dg and crosses one edge less than xp. Using the induction hypothesis,
we conclude that P has an illegal edge. ��

As remarked in section 3, different segment triangulations of S can have the
same topology. Especially an infinite number of segment triangulations of S
have the topology of the segment Delaunay triangulation of S. As the segment
Delaunay triangulation can be easily computed when its topology is known, it
is useless to store the coordinates of the vertices, which, moreover, are usually
inexact. Thus it is interesting to know if a given segment triangulation of S has
the topology of the segment Delaunay triangulation of S. Furthermore, suppose
that a segment triangulation of S is Delaunay and that the sites of S are slightly
moved. Then we can wonder if the initial topology remains the topology of the
segment Delaunay triangulation of the new set S. For these reasons, we define
the edge legality for maps associated with segment triangulations.

Definition 5. Let f be a face of a segment triangulation of S. The tangency
triangle of f is the triangle such that:

– its vertices are on the same three sites as the vertices of f ,
– the interior of its circumcircle does not intersect these three sites,
– if f and its tangency triangle are traversed in counter-clockwise direction,

they encounter these three sites in the same order.

Definition 6. Let M be a map associated with a segment triangulation of S.
An edge e of M is legal in the two following cases:

1. e is adjacent to at most one internal triangle.
2. e is adjacent to two internal triangles T1 and T2 and the following property

holds. Denote t, r, u, v the sites such that t, r, u are incident to T1 and r, t,
v are incident to T2 in counter-clockwise direction. Let t1r1u1 and r2t2v2 be
the tangency triangles of T1 and T2 with ti ∈ t, ri ∈ r, u1 ∈ u, and v2 ∈ v.
Then:

Triangulations of Line Segment Sets in the Plane 397

– The polygon t1t2r2r1 is either reduced to a segment or is a counter-
clockwise oriented simple polygon (with three or four edges),

– The circumcircles’ interiors of t1r1u1 and r2t2v2 do not intersect the
sites t, r, u, v.

Theorem 6. Let M be a map associated with a segment triangulation P of S.
Suppose that all the edges of this map are legal, then M is also the map associated
with the segment Delaunay triangulation of S.

Proof (sketch). We want to prove that the collection of tangency triangles gives
rise to the segment Delaunay triangulation. Making use of previous theorem, we
see that the only thing to prove is that the interiors of the tangency triangles
are the faces of a segment triangulation of S.

The main idea of the proof is to use a result of Devillers et al. [6] which asserts
that a representation of a combinatorial map by smooth curves in the plane is a
planar graph if:

– All the circuits of the map are represented by simple closed curves,
– The ordering at each vertex s of the map is given by the geometric ordering

of the curves emanating from the point representing s.

Actually, the result of Devillers et al. is stated with segments instead of smooth
curves but an approximation argument leads to the same result for smooth
curves.

First, for each ε > 0 sufficiently small, it is possible to construct a planar
graph as done in Figure 6(a). All edges of this graph are smooth curves that are
at a distance less than ε either from the sites or from the sides of the triangles
of P . This planar graph is a representation in the plane of a new combinatorial
map M ′ which does not depend on ε.

(a) (b)

Fig. 6. (a) Planar graph deduced from P . (b) A new representation of the map M ′.

Next, moving all the triangles T of P to their tangency positions T ′, we can
define a new representation of the map M ′:

– The curves associated with each triangle of P moves from the initial triangle
to the tangency triangle.

398 M. Brévilliers, N. Chevallier, and D. Schmitt

– The new closed curves around the sites are slightly more difficult to define.
Suppose that T1 and T2 are two adjacent triangles of P incident to a site s.
Call γs the “old” curve around s. There is a point pi on γs associated with
the vertex of Ti lying on s and there is a point p′i on γs associated with the
vertex of the tangency triangle T ′i lying on s. In the new representation of
the map M ′, we take the portion of the curve γs going from p′1 to p′2 turning
around s in the same direction as the portion of γs going from p1 to p2 (see
Figure 6(b)).

This process ensures that the geometric ordering of the curves emanating
from a vertex are the same for the old and the new representation of the map
M ′. Finally, thanks to the legality of all the edges, one can prove that the new
representation of the circuits of M ′ are simple closed curves. Then, it follows
by the result of Devillers et al. that the new representation of M ′ is a planar
graph. Letting ε going to zero, we see that the tangency triangles are the faces
of a segment triangulation. ��

Theorem 6 enables to test whether a segment triangulation has the topology of
the segment Delaunay triangulation by checking the edge legality. From
Theorem 3, the number of edges is in O(n) where n = card(S), thus this test
can be done in O(n) time. Hence:

Corollary 1. There is a linear time algorithm that checks whether a given seg-
ment triangulation has the same topology as the segment Delaunay triangulation.

By duality this allows to check in linear time the correctness of the topology of a
segment Voronoi diagram computed by a program. For more details on efficient
program checkers in computational geometry see, for example, [6] and [12].

6 Conclusion

In this paper, we have notably shown that the segment Delaunay triangulation is
the unique segment triangulation that is locally Delaunay in all its edges. As for
point set triangulations, this should enable to prove optimality properties of the
segment Delaunay triangulation and to give a flip algorithm that transforms any
segment triangulation in the segment Delaunay triangulation by a sequence of
local improvements. Together with this local characterization, there is a strong
hint which makes us believe that a kind of flip algorithm should work with
segment triangulations. Lifting a set of sites S onto the paraboloid z = x2 + y2,
it is not hard to see that the triangles of the segment Delaunay triangulation
are exactly the downward projection of the triangular faces of the lower convex
hull of the lift of S; whereas the lift of any non-Delaunay face is above this lower
convex hull, as in the case of point set triangulations. At last, we mention two
possible extensions of segment triangulations. On the one hand, it is possible to
define triangulations for a set S of disjoint compact convex subsets in the plane.
We think that most of the results of this paper might extend to this more general

Triangulations of Line Segment Sets in the Plane 399

setting. On the other hand, we hope that segment triangulations can be defined
in higher dimensions and that it will help to better understand the topological
structure of the segment Voronoi diagram in higher dimensions.

References

1. Aichholzer, O., Aurenhammer, F., Hackl, T.: Pre-triangulations and liftable com-
plexes. In: Proc. 22th Annu. ACM Sympos. Comput. Geom., pp. 282–291 (2006)

2. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, Elsevier Science Publishers B.V,
North-Holland, Amsterdam (1998)

3. Bern, M.W., Eppstein, D.: Mesh generation and optimal triangulation. In: Du,
D.-Z., Kwang-Ming Hwang, F. (eds.) Computing in Euclidean Geometry, 2nd edn.
Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)

4. Boissonnat, J.-D., Yvinec, M.: Géométrie algorithmique. Ediscience international,
Paris (1995)

5. Chew, L.P., Kedem, K.: Placing the largest similar copy of a convex polygon
among polygonal obstacles. In: Proc. 5th Annu. ACM Sympos. Comput. Geom.,
pp. 167–174 (1989)

6. Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity
of polytopes and the planarity of subdivisions. Comput. Geom. Theory Appl. 11,
187–208 (1998)

7. Edelsbrunner, H.: Triangulations and meshes in computational geometry. Acta
Numerica, 133–213 (2000)

8. Everett, H., Lazard, S., Lazard, D., Safey El Din, M.: The voronoi diagram of
three lines. In: SCG 2007. Proceedings of the twenty-third annual symposium on
Computational geometry, pp. 255–264. ACM Press, New York (2007)

9. Koltum, V., Sharir, M.: Three dimensional euclidean voronoi diagrams of lines with
a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)

10. Lawson, C.L.: Software for C1 surface interpolation. In: Rice, J.R. (ed.) Math.
Software III, pp. 161–194. Academic Press, New York (1977)

11. Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Dis-
crete Comput. Geom. 1, 201–217 (1986)

12. Mehlhorn, K., Näher, S., Schilz, T., Schirra, S., Seel, M., Seidel, R., Uhrig, C.:
Checking geometric programs or verification of geometric structures. In: Proc. 12th
Annu. ACM Sympos. Comput. Geom., pp. 159–165 (1996)

13. Mourrain, B., Técourt, J.-P., Teillaud, M.: On the computation of an arrangement
of quadrics in 3d. Comput. Geom. Theory Appl. 30(2), 145–164 (2005)

14. Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. John Wiley & Sons, Chichester (1992)

15. Rajan, V.T.: Optimality of the Delaunay triangulation in Rd. Discrete Comput.
Geom. 12, 189–202 (1994)

16. Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations - a survey. Discrete Comput.
Geom. (to appear)

17. Schmitt, D., Spehner, J.-C.: Angular properties of Delaunay diagrams in any di-
mension. Discrete Comput. Geom. 5, 17–36 (1999)

18. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in
an arrangement of quadrics. Comput. Geom. Theory Appl. 33(1–2), 65–97 (2006)

Reconstructing Convex Polygons and Polyhedra from
Edge and Face Counts in Orthogonal Projections

(Extended Abstract)

Therese Biedl1, Masud Hasan2, and Alejandro López-Ortiz1

1 School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2M 3G1
{biedl,alopez-o}@uwaterloo.ca

2 Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

masudhasan@cse.buet.ac.bd

Abstract. We study the problem of constructing convex polygons and convex
polyhedra given the number of visible edges and visible faces from some or-
thogonal projections. In 2D, we find necessary and sufficient conditions for the
existence of a feasible polygon of size N and give an algorithm to construct one,
if it exists. When N is not known, we give an algorithm to find the maximum
and minimum size of a feasible polygon. In 3D, when the directions span a sin-
gle plane we show that a feasible polyhedron can be constructed from a feasible
polygon. We also give an algorithm to construct a feasible polyhedron when the
directions are covered by two planes. Finally, we show that the problem becomes
NP-complete for three or more planes.

1 Introduction

Reconstructing polyhedra from projection information is an important field of research
due to its applications in geometric modeling, computer vision, geometric tomography,
and computer graphics. The nature of reconstruction problems and the techniques to
solve them depend upon the types of information given, such as line drawings, silhou-
ettes, and area/volume/shape of shadows, among others.

The computational geometry community has studied the problem of reconstructing
convex polyhedra from triangulations of the shadow boundary. Marlin and Toussaint
[15] gave an O(n2) algorithm for deciding whether such a polyhedron exists and con-
structing a polyhedron where possible. In another variation of this problem, where the
triangulations are isomorphic to two opposite projections from the z-axis, Bereg [2]
showed that the polyhedron can always be reconstructed. See [6] for a collection of
similar problems on reconstruction of polyhedra.

Reconstructing polyhedra has also been studied from the point of view of
applications, and various types of projection information have been considered. Among
them line drawings [13,14,17,18,19,20,23,24] are possibly the most common. Line
drawings may be obtained from images, from geometric drawings from the designers
[20, Chapter 1], or may be freehand drawings [12,22]. The reconstruction algorithms
differ for a single and multiple drawings. For multiple drawings there are two common

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 400–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 401

approaches based on the representation of the polyhedra to be reconstructed: construc-
tive solid geometry and boundary representation. Both approaches are used in engi-
neering and product design such as designing complex mechanical parts and in CAD
[10,23]. It is more difficult to construct a polyhedron from a single drawing [20,23].

Reconstruction from the area and shape of projections has been considered in ge-
ometric tomography [8]. Usually convex objects are reconstructed here. A related but
more application oriented field is computerized tomography, where 3D objects are re-
constructed from sectioning information such as the area of a plane section of the ob-
jects. Medical CAT scanning is an important application of computerized tomography
where an image of the human body is reconstructed from X-ray information [8]. The
information achieved through X-rays gives the lengths, widths, volumes and shapes of
different parts of an object, which are similar to area and shape of projections.

Instead of whole projections, sometimes only silhouettes are used to reconstruct
polyhedra [4,5,11,16]. In volume intersection, which is a well-known technique in com-
puter vision, the only information available is a set of silhouettes [4,5,11], sometimes
even with unknown view points [4,5].

Our Results. Most reconstruction algorithms are based on fairly complex information
such as triangulations, line drawings, silhouettes, and geometric measures of the pro-
jections, along with some non-geometric surface information such as shading, texture,
and reflection of light. In contrast, we consider a very different and very limited type of
information, which is also robust: we consider the number of visible edges for polygons
and the number of visible faces for polyhedra in some orthogonal projections. Here we
study reconstructing convex polygons and polyhedra from orthogonal projections only;
see [9] for results on perspective projections and non-convex polygons and polyhedra.

We consider only non-degenerate orthogonal projections where the view directions
are not parallel to the edges (faces) of the polygon (polyhedron). A direction-integer
pair, or simply a d-i pair, 〈d, n〉 consists of a direction vector d and a positive integer
n, and expresses how many edges (faces) should be seen from the direction. A d-i set
R is a set of d-i pairs where no two directions are the same or opposite to each other.
(We assume this because we will ultimately generate and then use the d-i pairs for all
opposite directions too.) A convex polygon (polyhedron) P is feasible for R if, for each
d-i pair 〈d, n〉 in R, d is not parallel to edges (faces) of P and the number of visible
edges (faces) from d is n. For a d-i set, a feasible polygon may or may not exist or it
may exist for more than one possible number of edges (see Figure 1.)

In this paper, we consider the problem of given a d-i set R and an integer N , create a
feasible polygon (or polyhedron) of size N for R. We first give necessary and sufficient

(a) (b)

〈d2, 4〉
〈d1, 4〉

〈d2, 4〉〈d2, 5〉

〈d1, 15〉

〈d0, 5〉

〈d1, 4〉

〈d0, 3〉 〈d0, 3〉

Fig. 1. (a) A d-i set with no feasible polygon. (b) Example of feasible polygons of different size.

402 T. Biedl, M. Hasan, and A. López-Ortiz

conditions for a feasible polygon to exist, which also give an algorithm to construct the
polygon, if it exists. With K directions, our algorithm runs in O(K + N) time if R is
ordered, and in O(K log K + N) time otherwise. For unknown N , the above charac-
terization gives an O(K + v log v)-time algorithm to find the maximum and minimum
size of a feasible polygon where 1 ≤ v < K .

In 3D, we consider cases by the minimum number of planes that cover the directions,
where “covering” means each direction lies in at least one plane. For one plane, 2D re-
sults are easily transferred. For two planes, we give an algorithm to construct a feasible
polyhedron, whenever it exists, except for one special case. Finally, for three or more
planes, we prove that testing the existence of a feasible polyhedron is NP-complete.

For space reasons, most proofs in this paper have been abbreviated or omitted and
most results are covered in full detail in [9].

Impact. Our algorithm to test feasibility of reconstruction can be useful as a prelimi-
nary step in applications in which other types of information are used, in addition, for
reconstruction purposes—the user can decide quickly the existence of possible resulting
polyhedra before starting a rigorous reconstruction process.

Although from the applications point of view the problem of reconstructing polyhe-
dra is more common than that of reconstructing polygons, surprisingly, the latter are
themselves very rich and their solution techniques will serve as foundation for solving
the former.

Preliminaries. Throughout this paper, we assume we are given a d-i set R. Usually we
also assume that the size N of the desired polygon/polyhedron is given. Clearly, we
must have N ≥ 3 or 4, respectively, and N must be strictly larger than any integer of a
d-i pair. We assume this throughout.

Our problem is defined in terms of a d-i set R, but to solve it we will use a proper
d-i set S which has 2K d-i pairs and is derived from R and N as follows: For each d-i
pair 〈d, n〉 in R, S has both 〈d, n〉 and 〈d′, N −n〉, where d′ is opposite to d, and S has
no other d-i pair. The d-i pairs 〈d, n〉 and 〈d′, N − n〉 in S are called opposite to each
other. Clearly a convex polygon (polyhedron) P with N edges is feasible for R if and
only if it is feasible for S.

In 2D, or n 3D when the directions of S lie in one plane, S is represented as S =
{〈d0, n0〉, 〈d1, n1〉, . . ., 〈d2K−1, n2K−1〉}, where the d-i pairs are ordered counter-
clockwise by directions. From now on indices of the terms related to S are taken
modulo 2K .

2 Reconstructing Polygons

We first study the 2D case. Let P be a feasible polygon of size N for S and consider the
sets of visible edges of P from the directions of S. When we move from direction di to
di+1, there may be some edges of P that become newly visible and/or newly invisible to
di+1. From ni and ni+1 alone, it cannot be said exactly how many edges become newly
visible or invisible to di+1. However, it is possible to lower bound these quantities.
Observe that if an edge e becomes newly visible when going from di to di+1, then it

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 403

becomes newly invisible when going from di+K to di+K+1. This implies that although
the change in the visibility of each edge happens twice, the total change in the visibility
for all edges can be counted by considering only their change from invisible to visible.
(This use of opposite directions is the main motivation to consider the proper d-i set S
instead of the d-i set R.) Moreover, e is newly visible for exactly one direction of S.

We now state the characterization formally. For each i, define δi = max{0, ni+1 −
ni}. We call δi the i-th view difference. There must be at least δi edges that become
newly visible while moving from di to di+1. Therefore if a polygon exists, then D :=
∑2K−1

i=0 δi ≤ N . Our main result here is that this necessary condition is also sufficient.

Theorem 1. Given a proper d-i set S and an integer N , a feasible polygon P of size
N exists if and only if D ≤ N .

Proof. The proof idea is as follows. For each view direction di, choose δi edges, if
δi > 0, such that they are newly visible for di+1. The remaining N − D edges are
chosen in antipodal pairs so that one becomes visible exactly when the other becomes
invisible. This is possible because N − D is even, and in fact, we know exactly what
it is:

Lemma 1. For any i, N − D = 2(ni −
∑i−1

j=i+K δj).

To avoid constructing an unbounded polygon we have to be careful in how to chose
edges. To simplify the description, we will not choose edges directly, and instead choose
a normal-point for each edge on a circle c centered at the origin o. From these normal
points, we can then reconstruct a polygon by computing the intersection of their tangent
half-planes in O(N log N) time.

For any direction di, denote by hi the visible half-circle of di, i.e., the (closed) half-
circle of c that is visible from di. Clearly e is visible from di if and only if its normal-
point is strictly within hi. Moreover, a polygon defined by normal-points is bounded if
and only if not all normal-points are within a single open half-circle.

The circular arc θi = hi+1\hi is called the i-th d-arc (“d” for difference). Normal-
points in θi correspond to edges that are newly visible to di+1. Normal-points will never
be placed on the boundary of θi, and hence we will not distinguish as to whether θi is
open or closed. Observe that θi and θi+K are the reflections of each other with respect
to the origin and are called opposite to each other. (See Figure 2(a)). Since di and di+K

are opposite directions, we have
⋃i−1

j=i−K θj = hi for all i. (See also Figure 2(b)).
Now place δi arbitrary normal-points strictly within each θi. If D < N , then by

Lemma 1, N −D is even. Select N −D−2 additional normal-points in antipodal pairs
arbitrarily (but not on end-points of any θi). The last two normal points p1 and p2 are
placed within two opposite d-arcs, but chosen carefully such that no half-circle contains
all normal-points. Let p be one among the already selected normal-points, and place p1

at clockwise ε (circular) distance after p. Let p′ be the antipodal point of p and place p2

at clockwise ε/2 distance after p′. ε is small enough so that p1 and p2 are within two
opposite d-arcs. See Figure 2(c). Clearly no half-circle can contain all of p, p1, and p2.

Recall that hi =
⋃i−1

j=i−K θj . The number of normal points strictly within hi is

hence
∑i−1

j=i−K δj + 1
2 (N − D), because d-arc θj initially gets δj normal points, and

404 T. Biedl, M. Hasan, and A. López-Ortiz

p2

p1

p′

(b) (c)

o

di

θi−K

o

p

ε/2

o θi

θi+K

di
di+1

c

hi

(a)

ε

hi
δj(N)

δi(N)

D(N)

(d)

N

hi+1

θi−1

Fig. 2. (a) Visible half-circles, and d-arcs; two opposite d-arcs are in bold. (b) hi =
⋃i−1

j=i−K θj .
(c) Selecting the last two normal-points when D < N . (d) δi and D(N) against unknown N .

then exactly half of the additional N − D points are placed within half-circle hi. By
Lemma 1 therefor hi contains ni normal points as desired.

All that remains to show is that no half-circle contains all normal points. This was
already guaranteed if D < N , since the last two normal-points p1 and p2 were chosen
carefully. If N = D, then each d-arc θi gets exactly δi normal-points. Any open half-
circle h intersects K − 1 d-arcs fully, and we claim that δj > 0 for one of them. For if
not, then using min{δi, δi+K} = 0 and adding the adjacent d-arc which achieves 0, we
get K consecutive d-arcs without normal-points. Say

∑i+K−1
j=i δi = 0, then ni+K =

∑i+K−1
j=i δi + 1

2 (N − D) = 0 + 0 = 0, a contradiction. ��

The above proof is algorithmic, and it is straightforward how to implement it in O(N +
K) time if S is ordered, and in O(N + K log K) otherwise. We summarize:

Theorem 2. Given a d-i set R of size K and given an integer N , a feasible polygon P
with N edges can be computed, whenever it exists, in O(N + K) time if R is ordered,
or in O(N + K log K) time otherwise.

Maximum and Minimum Polygon. Using Theorem 1, we can also find out whether there
exists a feasible polygon for a given d-i set R if N is unknown. In fact, we find both
the maximum and minimum size of a feasible polygon. Observe that if R contains two
opposite d-i pairs, then the sum of the two integers would give the value of N . Hence,
once again it is assumed that no opposite d-i pair appears in R.

The overall idea is as follows. We compute as before a proper d-i set S(N) from R,
but this time the d-i pairs of S(N) will be functions of N—for each pair 〈d, n〉 in R,
the opposite pair 〈d′, N −n〉 in S contains the unknown N . We call 〈d, n〉 original and
〈d′, N −n〉 derived. Then we compute δi(N) and D(N), which also become functions
of N . Recall from Theorem 1 that a feasible polygon exists if and only if D(N) ≤ N .

Analyzing cases, one can observe that the function δi(N) is either a constant or a
V-shape with slopes ±1 for which the tip (with δi(N) = 0) occurs at a place well-
defined in terms of ni, ni+1 and whether di and di+1 are original and derived respec-
tively. Hence the function D(N), which is the sum of these, is convex and piecewise
linear. See also Figure 2(d). So D(N) = N has at most two solutions, and any N
between them is feasible as long as N ≥ 3 and N ≤ maxi{ni}. The algorithm to
compute this range of N takes O(K + v log v) time, where v is the number original d-i
pairs in S(N) whose corresponding next d-i pairs are derived. Of course v ∈ O(K),
but v could be as small as one if all directions in R are spanned within a half-plane.

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 405

Theorem 3. Given an ordered d-i set R of size K , the maximum and minimum size of
a feasible polygon can be computed in O(K + v log v) time, where v is the number of
original d-i pairs in S(N) whose corresponding next d-i pairs are derived. If R is not
ordered, then the algorithm takes O(K log K) time.

3 Reconstructing Polyhedra

Similar to 2D, in order to construct a feasible polyhedron P we will compute the proper
d-i set S from the given d-i set R and instead of choosing faces directly we will choose
them implicitly by choosing normal-points of the faces on the surface of an origin-
centered sphere s. Then given such normal-points, we can compute a polyhedron from
them by computing the intersection of their tangent half-planes in O(N log N) time [7].

A face f is visible from a direction di if and only if its normal-point is strictly within
the visible hemisphere hi of di. Moreover P is bounded if and only if not all normal-
points intersect a single open hemisphere.

3.1 Directions Covered by a Single Plane

If all directions are in one plane, then S can be interpreted as an input to the 2D case.
A solution to the 2D case then implies an open cylinder in 3D which can easily be
converted to a solution in the 3D case. The other direction is slightly less trivial; the
following theorem gives a precise proof.

Theorem 4. Given an ordered proper d-i set S of size 2K , where all the directions lie
in one plane π, and given N ≥ 4, there exists a feasible polyhedron P of size N for S if
and only if there exists a feasible polygon p of size N for S, interpreted as 2D directions
within π. Moreover, the time required to construct P from p is O(N log N) and p from
P is O(N).

Before giving the proof, we need some notations, which will be used in later sec-
tions as well. Given a proper d-i set S with directions in one plane and ordered coun-
terclockwise, define the ith d-lune to be θi = hi+1\hi. See Figure 3(a). As in 2D,
hi =

⋃i−1
j=i−K θj . All d-lunes of S have two common antipodal points which are called

poles of S.

(b) (c)(a) (d)

Great−circle

(i) (ii)

for h0 and h
Ks

hi+1

θi

pole

o
c

hi

pole

o

s

c

s

c

Fig. 3. (a) Visible half-sphere and d-lune. (b) P from p. (c) p from P . (d) (i) Two planes of S
with common directions, and (ii) arrangement of the d-lunes for such S .

406 T. Biedl, M. Hasan, and A. López-Ortiz

Proof. Let c be the great circle of s corresponding to the plane π. Assume first that p
exists. Each edge of p then corresponds to a point of c by virtue of taking its normal
and computing its intersection with c. Move two of these points towards the two poles
of S, respectively, but within their respective d-lunes. This still remains a solution to
the d-i set, but closes up the open cylinder that would have been defined by these points
otherwise. See Figure 3(b).

Now assume a polyhedron P for the 3D problem exists. Each face then corresponds
to a point on the sphere s by virtue of taking the intersection of the face-normal with
s. Move each of these points onto c along the great-circle through the point and the
poles, using the shorter arc. See Figure 3(c). If points overlap after the movement, then
move them slightly but within their respective d-lunes and keeping them on c. Now
all normal-points are within a plane, and we can construct a polygon from them in
O(N) time. ��

3.2 Directions Covered by Two Planes

Now we consider the case when all view directions are covered by two planes π̄ and π̃.
The d-i set S hence gets split into S and S̃, depending on which plane each direction
belongs to. (One pair of opposite directions can belong to both planes.) We assume
that S and S̃ each are numbered counter-clowise (within their planes). This then also
defines d-lunes θi and θ̃j and view differences δi, δ̃i as before. All indices are taken

modulo K := |S| and K̃ := |S̃|. We set D =
∑2K−1

i=0 δi and D̃ =
∑2K̃−1

j=0 δ̃j as
before.

We assume the numbering is such that d0 = d̃0 if the two sets S and S̃ have a
common direction, and such that θ0 and θ̃0 contain the poles of the other d-i set if they
don’t. Intersecting the two sets of lunes splits the sphere s into a grid-like structure,
except near the poles if S and S̃ have no direction in common. See Figure 3(d) and
Figure 4(a).

Fig. 4. (a) Arrangement of d-lunes if S and S̃ have no direction in common. (b) Arranging normal
points to avoid an empty half-sphere. (c) Choosing a great-circle such that d-lunes have at least
two normal points. (d) (i) Splitting into octants, and (ii) shifting normal-points within octants.

Let θa,b = θa ∩ θ̃b; this is a spherical polygon called d-polygon, and the union of the
d-polygons covers the sphere s. If Δa,b is the number of normal points assigned to θa,b,
then the following must hold:

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 407

–
∑

j Δi,j ≥ δ̄i for all 0 ≤ i < 2K,

–
∑

i Δi,j ≥ δ̃j for all 0 ≤ j < 2K̃,
–

∑i−1

�=i+K

∑
j Δ�,j = ni for all 0 ≤ i < 2K,

–
∑j−1

�=j+K̃

∑
i Δi,� = ñj for all 0 ≤ j < 2K̃,

where the unspecified sums run over all indices for which Δa,b exists, i.e., the two
respective d-lunes intersect.

Satisfying these four conditions will be called the valid assignment problem. It is
quite similar to Edmond’s transportation problem, see e.g. [1], and it is not difficult to
develop an algorithm to find a valid assignment if one exists. We can even add extra
conditions that will be useful later:

Lemma 2. We can find a valid assignment, if one exists, in O(K + K̃) time. Moreover,
if max{D, D̃} < N , then Δ0,0 > 0 and ΔK,K̃ > 0.

This yields how many normal points should be placed in each d-polygon, but not the
actual locations. To find the actual location, we need to solve what we call the valid
selection problem: Assign normal points such that no hemisphere contains all normal
points. (If one hemisphere contains all normal points, then the resulting polyhedron is
unbounded. If this is allowed, then the existence of a valid assignment is necessary and
also sufficient for the existence of a feasible polyhedron.)

Insufficiency of a Valid Assignment. Before we study how to find a valid selection, we
first show that this is a non-trivial problem, by describing an instance which has a valid
assignment, but no valid selection. Consider the 2D proper d-i set S′ of Figure 5(a).
It has twelve d-i pairs and the only positive view differences are δ0 = 1, δ4 = 1, and
δ8 = 2. We use N = 4, so N = D. The key property of S′ is that this defines very
thin d-lunes. We use S′ twice, in two different planes, see Figure 5(b). There are only
two possible valid assignments for the d-polygons of S which are shown in (c). But in
either case all three positive d-polygons are strictly within a single hemisphere (shown
shaded). So no valid selection exists.

s s

δ8 = 2
δ̃8 = 2 δ̃0 = 1δ0 = 1

δ4 = 1 δ̃4 = 1

2

1

1

1

ss

(b) (c)

1

2

〈d7, 1〉

〈d9, 3〉
〈d8, 1〉

〈d5, 2〉 〈d6, 2〉

〈d11, 2〉
〈d10, 3〉

(a)

〈d4, 1〉

〈d3, 1〉
〈d2, 3〉

〈d1, 3〉
〈d0, 2〉

Fig. 5. Example Insufficiency of a valid assignment

Finding a Valid Selection. Despite this negative example, we can find a valid selection
in two cases: (i) max{D, D̃} < N and (ii) D = N = D̃ and all directions see at least
four faces. Note that neither case covers the above example.

408 T. Biedl, M. Hasan, and A. López-Ortiz

In the first case, by Lemma 2 we can find a valid assignment where θ0,0 contains a
normal point x3, and θK,K̃ contains a normal point x4. Let x1, x2 be two other normal
points; these exist by N ≥ 4. Without loss of generality we assume that x1, x2 and x3

are all within one hemisphere; they then span a spherical triangle t, which intersects
θ0,0. See also Figure 4(b). The antipodal triangle t′ to t hence intersects θK,K̃ , and we
can move x4 so that is inside t′ ∩ θK,K̃ . This will ensure that no hemisphere contains
all of x1, x2, x3, x4.

Now consider the case when D = N = D̃ and each direction sees at least four
faces. This case is significantly more complicated. In fact, we are not able to find a
valid selection for any given assignment, but we can find a valid selection if we are
allowed to change the given assignment slightly.

We first define octants of the sphere by choosing three great circles as follows. The
first one is the great circle g∗ that contains the poles of S and S̃. The second great-circle
g is obtained by rotating a great-circle, starting at g∗, through the poles of S until the
four lunes defined by g∗ and g contain at least two normal points each. That this is
possible is non-trivial; it requires D = N and ni ≥ 4, as well as distributing normal
points in d-polygons intersected by g∗. See also Figure 4(c). Similarly we find a great-
circle g̃ by rotating from g∗ through the poles of S̃ until the four lunes defined by g∗

and g̃ contain at least two normal points each.
Now we have eight octants defined by three great circles. A fairly straightforward

proof shows that if each octant contain a normal point, then no hemisphere can be
empty. However, our given valid assignment need not have a normal point in all octants.
But, since the great circles were chosen such that each lune has at least two normal
points, we can change the valid assignment to a different valid assignment by shifting
points from octants with two normal points to empty octants. See also Figure 4(d).
After doing so, we can choose arbitrary points within the d-polygons and obtain a valid
selection.

None of our steps is computationally expensive, and the time complexity is domi-
nated by the time to compute the intersection of the tangent half-planes of the computed
normal points. In summary, we obtain:

Theorem 5. Given a proper d-i set S and an integer N ≥ 4, where the directions of
S are covered by two planes. We can construct a feasible polyhedron P , if it exists, in
O(N log N + |S|) time, in each of the following cases: (i) max{D, D̃} < N , or (ii)
D = N = D̃ and n ≥ 4 for each d-i pair 〈d, n〉 in S.

4 NP-Completeness for Arbitrary Directions

We will prove that the problem of finding a valid assignment, which is necessary for
two or more planes, is NP-complete for three planes.

Theorem 6. Given a proper d-i set S of size 2K with three planes of directions, it is
NP-complete to decide the existence of a feasible polyhedron for S.

Proof. The problem is easily seen to be in NP. Given a set of normal points for the faces
of the polyhedron, we can easily test whether the right number of normal points is in

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 409

each hemisphere defined by S. Since the normal points are to be chosen somewhere
within an open set, they can be chosen with polynomial size coordinates.

To prove that the problem is NP-hard, we apply a reduction from the problem of
testing whether a 2-edge connected cubic planar graph G has an independent set of size
k, which is proven to be NP-complete in [3]. Here, an independent set I of G is a set of
vertices s.t. no two vertices of I are connected by an edge.

Since G is a 2-edge connected cubic planar graph, it is 3-edge colorable (by the four
color theorem [21].) We draw G as follows: Place all vertices in a vertical line. Let
L be the set of all lines of slope iπ/3, i = 0, 1, 2 through the set of vertices. Draw
each edge of color j with 3 segments: One of slope jπ/3 at each end, and one of slope
(j + 1)π/3 connecting them. We choose the edge lengths such that for each edge the
three lines (of slope iπ/3, i = 0, 1, 2) through the bends of the edge do not cross any
other intersection point of two lines previously added to L. This can always be done by
drawing the middle segment sufficiently far out, and suitable lengths can be computed
in polynomial time. Add the three new lines through bends of the edge to L. See also
Figure 6.

Now we have a (not necessarily planar) drawing of G where every edge has exactly
two bends. Moreoever, we have a system of lines L with three slopes such that any
trivalent point (a point that belongs to three lines of L) corresponds to a vertex of G or
a bend of an edge of G; no other three lines of L cross in one point. Since G is cubic
and 3-edge-colored, one easily verifies that there are n+m lines in each direction in L,
where n and m are the number of vertices and edges of G. Also m = 3

2n, so |L| = 15
2 n.

L

=⇒ =⇒

Fig. 6. Creating a set of lines from graph G (only some edges are shown); projecting lines onto a
sphere, and converting lines to thin lunes

We will eventually project L onto the sphere, and then create a d-i set such that any
solution to it can be converted to a set of points of L with certain properties. This will
be helpful, since there is a correspondence between independent sets of G and points
placed on L as follows:

Lemma 3. G has an independent set of size k if and only if there exists a set T of
9
2n − 2k points such that each line of L intersects exactly one point of T , and each
point of T intersects either one or three (but not two) lines of L.

Proof. Given an independent set I of size k of G, we construct T as follows: (1) Add
the point of every vertex in I . This adds k trivalent points. (2) For every edge (v, w) of
G, at least one endpoints (say v) is not in I . Add the point of the bend adjacent to v in
the drawing of (v, w). This adds m = 3

2n trivalent points. By construction no line of L

410 T. Biedl, M. Hasan, and A. López-Ortiz

is covered twice by the points chosen thus far. (3) For every line in L not covered, add
one more point that intersects this line only. Since 3k + 9

2n lines were already covered
and |L| = 15

2 n, this adds 3n − 3k points. One easily verifies the desired properties.
For the other direction, assume we are given such a point set T , and assume it con-

tains � trivalent points. Then |L|−3� = 15
2 n−3� lines are covered by points that are on

one line only, so |T | = 15
2 n−2�, which with |T | = 9

2n−2k implies � = 3
2n+k. Let H

be the graph obtained from G by subdividing each edge twice. Each of the � = 3
2n + k

trivalent points belongs to a vertex or bend of G, hence a vertex of H , and these vertices
are an independent set I ′ of H since every line contains only one point of T . I ′ contains
at most one bend per edge (v, w) of G, and if both v and w are in I ′, then neither bend
of edge (v, w) is in I ′. So by removing one vertex per edge of G we can convert I ′ into
an independent set of size k in G. ��

Now we create an instance of our reconstuction problem from set L as follows. First
do a stereographic projection, i.e., consider L as lines in an xy-plane, place a sphere s
outside this plane, and map each line l of L to the great circle defined by the intersection
of s with the plane through the center of s and l. All lines of the same slope hence
get mapped to great-circles with common poles, and the three pole-sets for the three
directions all lie in one xy-plane, which for ease of description we assume to be the
(z = 0)-plane. Note that the arrangement of line appears twice on the sphere, once on
each side of the (z = 0)-plane.

We now set up the directions of a d-i set such that each great-circle of a line gets
replaced by a lune through the same poles. These lunes are thin enough such that no
point is in more than 3 lunes replacing lines. We also replace the great-circle of the
(z = 0)-plane by 12 lunes: for each pair of poles, each half-circle between them gets
replaced by two adjacent thin lunes, divided at the (z = 0)-plane.

Finally we set up N and the integers of the d-i set such that in the half-plane above
the (z = 0)-plane, the following holds: (1) The sum of view differences is exactly N , so
the total view difference is exactly the number of normal points in any solution. (2) The
lunes replacing lines all have view-difference 1. Hence any assignment of normal points
will have to assign exactly one point to this line. (3) The spaces between lunes all have
view-difference 0. Hence we can only place normal points at the intersection of three
lunes, which correspond to trivalent points, or at the lunes replacing the (z = 0)-plane.
(4) The total number of points in this half-plane is 3

2n − 2k.
It can be shown that such a set of integers for the d-i set always exists. With this,

clearly a solution to the reconstruction problem implies a set of points with properties
as in Lemma 3, and hence yields an independent set of size k in G. Conversely, it is
not hard to show that any set of points as in Lemma 3 can be converted to both a valid
assignment and a valid selection for the d-i set; hence the reduction is complete. ��

References

1. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. John
Wiley, Chichester (2005)

2. Bereg, S.: 3D realization of two triangulations of a convex polygon. In: 20th Eur. Work.
Comp. Geom., pp. 49–52. Seville, Spain (March 2004)

Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts 411

3. Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-
connectivity constraint. Algorithmica 19(4), 427–446 (1997)

4. Bottino, A., Jaulin, L., Laurentini, A.: Reconstructing 3D objects from silhouettes with un-
known viewpoints: The case of planar orthographic views. In: 8th Iberoamerican Congress
on Patt. Recog., pp. 153–162. Havana, Cuba (November 2003)

5. Bottino, A., Laurentini, A.: Introducing a new problem: Shape-from-silhouette when the
relative positions of the viewpoints is unknown. IEEE PAMI 25(11), 1484–1493 (2003)

6. Demaine, E.D., Erickson, J.: Open problems on polytope reconstruction. Manuscript
7. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1986)
8. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge (1995)
9. Hasan, M.: Reconstruction and visualization of polyhedra using projections. PhD thesis,

School of Computer Science, University of Waterloo, Canada (2005)
10. Hoffman, C.H.: Geometric and Solid Modelling. Morgan Kaufmann, San Francisco (1989)
11. Laurentini, A.: How many 2D silhouettes does it take to reconstruct a 3D object?. Comp.

Vis. Image Unders 67(1) (1997)
12. Lipson, H., Shpitalni, M.: Optimization-based reconstruction of a 3D object from a single

freehand line drawing. Computer Aided Design 28(8), 651–663 (1996)
13. Markowsky, G., Wesley, M.: Fleshing out wire frames. IBM J. Res. Dev. 24, 582–597 (1980)
14. Markowsky, G., Wesley, M.: Fleshing out projections. IBM J. Res. Dev. 25(6), 934–954

(1981)
15. Marlin, B., Toussaint, G.: Constructing convex 3-polytopes from two triangulations of a poly-

gon. In: 14th Can. Conf. Comp. Geom., Lethbridge, Alberta, pp. 36–39 (August 2002)
16. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based visual hulls.

In: SIGGRAPH 2000, pp. 369–374. New Orleans, Louisiana (July 2000)
17. Nagendra, I.V., Gujar, U.G.: 3-D objects from 2-D orthographic views– a survey. Computer

and Graphics 12(1), 111–114 (1988)
18. Penna, M.: A shape from shading analysis for a single perspective image of a polyhedron.

IEEE PAMI 11(6), 545–554 (1989)
19. Sugihara, K.: A necessary and sufficient condition for a picture to represent a polyhedral

scene. IEEE Trans. Patt. Anal. Mach. Intell 6(5), 578–586 (1984)
20. Sugihara, K.: Machine Interpretation of Line Drawing. MIT Press, Cambridge (1986)
21. Thomas, R.: An update on four-color theorem. Notices of American Mathematical Soci-

ety 45(7), 848–859 (1998)
22. Varley, P.A.C.: Automatic creation of boundary-representation models from single line draw-

ings. PhD thesis, Dept. of Computer Science, University of Wales College of Cardiff (2003)
23. Wang, W., Grinstein, G.G.: Survey of 3d solid reconstruction from 2d projection line draw-

ings. Computer Graphics Forum 12(2), 137–158 (1993)
24. Yan, Q.-W., Chen, C.L.P., Tang, Z.: Efficient algorithm for the reconstruction of 3d objects

from orthographic projections. Computer Aided Design 26(9), 699–717 (1994)

Finding a Rectilinear Shortest Path in R2 Using

Corridor Based Staircase Structures

R. Inkulu and Sanjiv Kapoor

Department of Computer Science,
Illinois Institute of Technology, Chicago, USA

{inkuraj,kapoor}@iit.edu

Abstract. The rectilinear shortest path problem can be stated as - given
a set of m non-intersecting simple polygonal obstacles in the plane, find a
shortest rectilinear (L1) path from a point s to a point t which avoids all
the obstacles. The path can touch an obstacle but does not cross it. This
paper presents an algorithm with time complexity O(n + m(lg n)3/2),
which is close to the known lower bound of Ω(n + m lg m) for finding
such a path. Here, n is the number of vertices of all the obstacles together.
Our algorithm is of O(n + m(lg m)3/2) space complexity.

1 Introduction

In this paper, we are interested in finding a 2-dimensional rectilinear (L1) short-
est path from a point s to another point t in a polygonal region P comprising m
non-intersecting polygoinal obstacles with n vertices in total. This problem has
numerous applications, especially in automated circuit design. In [9], deRezende,
Lee and Wu present a O(n lg n) time complexity solution to the rectilinear short-
est path problem when the obstacles are disjoint isothetic rectangles. In [11],
Mitchell considers the case when the obstacles are rectilinear polygons and us-
ing a continuous Dijkstra’s approach, obtains an O(n(lg n)2

lg lg n) algorithm. In [10]
Clarkson, Kapoor, Vaidya and in [7] Mitchell study the problem where the ob-
stacles are non-intersecting simple polygons. Two algorithms are presented in
[10] : one requires O(n lg n) space and O(n(lg n)2) time, and the other takes
O(n(lg n)3/2) time and O(n(lg n)3/2) space. The algorithm presented in [7] is of
O(n lg n) time and O(n) space complexities.

Typically, the number of obstacles m is much smaller than the number of
vertices of all the obstacles together, n. This has been used to provide efficient
algorithms for finding Euclidean shortest paths on the plane among obstacles
to yield a O(n + m2 lg n) time and O(n) space algorithm by Kapoor, Mahesh-
wari and Mitchell in [4]. In this paper, we design an algorithm for computing
a rectilinear shortest path in O(n + m(lg n)3/2) time and O(n + m(lg m)3/2)
space. Hershberger and Suri gave O(n lg n) time and O(n lg n) space algorithm
in [2] to find an Euclidean shortest path, which uses the continuous Dijkstra
approach. Since the continuous Dijkstra approach ([11] and [2]) is complicated,
we use a visibility graph based approach. The visibility graph method is based

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 412–423, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding a Rectilinear Shortest Path in R2 Using Corridor 413

on constructing a graph whose nodes are the vertices of the obstacles and whose
edges are pairs of mutually visible vertices. Welzl provides an algorithm for con-
structing the visibility graph with n line segments in O(n2) time [6]. Ghosh and
Mount [3], and, Kapoor and Maheshwari [5] found an algorithm to construct the
visibility graph of time complexity O(n lg n + |E|) (where |E| is the number of
edges in the graph). Applying Dijkstra’s algorithm on this graph, one can de-
termine a shortest path in O(n lg n + E). Unfortunately the visibility graph can
have Ω(n2) edges in the worst case, so any shortest path algorithm that depends
on an explicit construction of the visibility graph will have a similar worst-case
running-time.

We propose an algorithm that builds a restricted visibility graph and then ap-
plies Dijkstra’s shortest path algorithm on this visibility graph. To construct the
restricted visibility graph, our algorithm uses a partition of the polygonal region
into corridors as in [1] and [4]. The construction of corridors relies on triangu-
lating the polygonal region using the algorithm by Bar-Yehuda and Chazelle [8].
Each corridor contributes O(1) vertices to the visibility graph and since there are
O(m) corridors this results in a reduced set of vertices in the visibility graph.
However, if we construct the complete visibility graph on this reduced set of
vertices the number of edges would be O(m2). To reduce the number of edges
further, we generalize the staircase structure proposed in [10] to apply to the
reduced vertex set and to the region partitioned into corridors. We create a set
of extra vertices, termed Steiner vertices, and along with a reduced set of edges
construct a restricted visibility graph G of smaller size. These Steiner vertices
are chosen s.t. for every staircase structure S defined w.r.t. a point p, there exists
a rectilinear path from p to any chosen vertex on S. This property facilitates the
visibility graph G to contain a rectilinear shortest path from s to t.

This paper is organized as follows. Section 2 describes corridor based staircase
structures and the construction of a weighted restricted visibility graph that
precisely represents the staircases surrounding each point. Section 3 describes
another weighted visibility graph that can be constructed efficiently and allows
us to find a rectilinear shortest path. Section 4 contains conclusions.

2 Corridor Based Staircase Structures and Visibility
Graph

The rectilinear shortest path problem can be stated as: Given a set of non-
intersecting simple polygonal obstacles in the plane, P , find a rectilinear (L1)
shortest path from a point s to a point t which avoids all the obstacles. Here, s
and t are considered as degenerate obstacles.

This problem can be solved by using a visibility graph G = (V, E) where
V is the set of vertices of the polygonal region and E is the set of visibility
edges. Each edge in E is weighted by the rectilinear (L1) distance between its
endpoints. However, as noted above, |E| = O(n2). In this section, we show how
this problem can be solved by partitioning the polygonal region into corridors
and defining a restricted visibility graph V ISTMP (Vvistmp, Evistmp). Vvistmp

414 R. Inkulu and S. Kapoor

will have two kinds of vertices, termed Vortho and V1. The vertices in Vortho are
obtained from the corridors into which the region is partitioned, and, the vertices
in V1 are obtained by horizontal and vertical projections of vertices in Vortho.
We justify restricting attention to these sets of vertices and an associated set of
restricted visibility edges, by using the staircase structure from [10] applied to
the set of corridors.

We adopt the partition of the polygonal region into corridors which is provided
in [1] and [4]: Consider a triangulation of the given polygonal region P . For two
triangles τs, τt in this triangulation, let s ∈ τs and t ∈ τt. The points s and t are
then incorporated into the triangulation by linking s to the three corners of τs,
and, by linking t to the three corners of the triangle τt (we assume that τs �= τt;
otherwise, a shortest path from s to t is simply the line segment joining them).
Let T denote the resulting triangulation, and let GT denote the graph-theoretic
dual of T . GT is a planar graph having O(n) nodes, O(n) edges, and m+1 faces.
Consider the recursive removal of all nodes of degree one along with its incident
edges until no more degree-1 nodes can be removed from GT . Now, GT has m+1
faces and all nodes are of degree 2 and 3. Each node of degree 3 corresponds to a
triangle in T termed as a junction of P . Removal of the junction triangles from
P results in a set of simple polygons, which we refer to as the corridors of P .

The boundary of one such simple polygon, say C, consists of four components:
(1) a polygonal chain along the boundary of an obstacle O1, from a vertex a to a
vertex b; (2) for a vertex c located on an obstacle O2 (possibly O2 = O1), a diago-
nal (junction triangle edge) from b to c; (3) a polygonal chain along the boundary
of O2, from c to a vertex d; and (4) a diagonal (junction triangle edge) from d
back to a. If we replace the paths from a to b and from c to d with their geodesic
paths, within C, then we obtain a region, called a hourglass. The segments ad
and bc are the bounding edges of corridor C (previously known as, doors of C).

1

ad

c

b

O1

2O = O

(a) Open Corridor

apex

a

d

b

c

O2 O1

funnel

(b) Closed Corridor

Fig. 1. Types of Corridors

Finding a Rectilinear Shortest Path in R2 Using Corridor 415

The corridors are classified by their structure into two types, open and closed
corridors. Consider the corridor C with the boundaries B1 = (b, c) and B2 =
(a, d). Suppose that there does not exist a pair of points p1, p2 located on B1, B2

respectively s.t. p1 and p2 are mutually visible from each other, then the corridor
C is termed as a closed corridor. Otherwise, C is termed as an open corridor. A
closed corridor has at most two funnels, each with an apex. (Fig 1)

To handle both the open and closed corridors uniformly, we partition each
closed corridor into four convex chains and an edge (similar to the approach in
[4]). The convex chains correspond to two chains incident to each of the apex
points whereas the apex points of the funnels are the endpoints of the edge
introduced, say e. The unique shortest path between the two apex points is
precomputed and the L1 distance along that path is the weight of the edge e.
In open corridors the hourglass provides two convex chains, one from a to b and
the other from c to d. There are O(m) convex chains in total. The rest of the
paper uses only these convex chains.

For a convex chain CC of a corridor C, note that the starting (ending) vertex
of the chain, termed as an endpoint of the corridor convex chain CC is common
to both CC and a bounding edge of C. Let p and q be points on a convex chain
CC. Then the contiguous boundary along CC between p and q is known as a
section of convex chain CC. For a corridor bounding edge e, let points p, q ∈ e.
Then the line segment joining p and q is known as a section of corridor bounding
edge e.

The set of vertices Vortho is defined such that v ∈ Vortho iff either of the
following is true:

(i) v is an endpoint of a corridor convex chain,
(ii) v is a vertex of some corridor convex chain CC, with the property that there

exists a tangent to CC at v which is either horizontal or vertical.

Let COOR(p) be the orthogonal coordinate system defined with p ∈ Vortho

as the origin, horizontal x-axis and vertical y-axis. We define a set of points
πi(p) as follows: a point r ∈ πi(p) iff r ∈ Vortho is located in the ith quadrant of
COOR(p). Furthermore, we define a set of points Si(p). A point q is in the set
Si(p) iff (Fig 2):

– q ∈ πi(p)
– there is no p′ (distinct from p) s.t. p′ is in πi(p) and q is in the ith quadrant

of COOR(p′)
– q is visible from p

We will assume that Si(p) is an ordered set with the points in Si(p) sorted by
increasing x-coordinate value. It is easy to see that:

Lemma 1. Ordering the set of points in S1(p) in increasing x-coordinates results
in the same set of points being ordered in descending order w.r.t. y-coordinates
(or, vice versa).

Note that similar arguments to Lemma 1 can be given for Si(p) where i ∈
{2, 3, 4}.

416 R. Inkulu and S. Kapoor

Two points {pu, pv} ⊆ Si(p) are termed as adjacent in Si(p) if no point
pl ∈ Si(p) occurs in between pu and pv either in the x- or y-coordinate based
ordering of points in the set Si(p).

Let the sequence of points in Si(p), sorted by increasing x-coordinate values,
be p1, p2, . . . , pk. Let the horizontal ray from each point pj ∈ Si(p) in increasing
x direction be known as hj . The first line/line segment that the ray hj intersects
is either a corridor convex chain, excluding its endpoints, or vj+1. Let this point
of intersection be hp

j . Also, let the vertical ray from each point pj ∈ Si(p) in
increasing y direction be known as vj . The first line/line segment that the ray vj

intersects is either a corridor convex chain, excluding its endpoints, or hj−1. Let
this point of intersection be vp

j . Note that if the ray does not intersect any other
line or line segment then the points hp

j , v
p
j are at infinity. For any j ∈ [1, k],

CC’’

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

���
���
���
���

���
���
���
���

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���
���

���
���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
����������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

p

p2

p1

p3

p4

v2

2

2

h2 v3

h3
v4

h4

3

4
4

3

1
1

X

Y

h1

v1

v p
h p

v p

h p v p

h p

v p
h p

CC’

Fig. 2. Staircase structure (in bold) with S1(p) = {p1, p2, p3, p4}

p’

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Y

X

shortest path to q

rk
r’

pj

pk

p

r

CCY

Fig. 3. Replacing a shortest path from p to q with edges in VISTMP

Finding a Rectilinear Shortest Path in R2 Using Corridor 417

Rj is the contiguous sequence of sections of corridor convex chains/bounding
edges joining hp

j and vp
j+1. The elements in the set ∪∀j∈{1,2,...,k}(vj ∪ hj ∪ Rj)

form a contiguous sequence, termed as the Si(p)-staircase (Figs. 2, 3). Note that
the convex chains intersecting the coordinate axes are not defined to be part of
the staircases in any quadrant. No other configuration is possible as part of the
staircase structure. This is detailed in the proof of the following theorem.

Theorem 1. Along the S1(p)-staicase, any two adjacent points in S1(p) are
joined by at most three geometric entities. These entities ordered in increasing
x-coordinates order are : first a horizontal line segment, second a section of
convex chain where each edge in that section has a negative slope, and finally a
vertical line segment.

Proof. Consider two adjacent points in S1(p), say pj, pj+1. Let h be the line
segment from pj parallel to the x-axis in increasing x-direction, and, suppose h
incidents to a point hp of a convex chain belonging to the staircase structure
in the first quadrant of COOR(p) or v. Also, let v be the line segment from
pj+1 parallel to the y-axis in increasing y-direction, and, suppose v incidents
to a point vp of a convex chain belonging to the staircase structure in the first
quadrant of COOR(p) or h. Let REG be the region bounded by ppj, h, sections
of convex chains/corridor bounding edges between hp and vp along the staircase,
v, pj+1p. No convex chain can cross either of ppj, ppj+1 (as both pj and pj+1

are visible to p), h, v (because hp is the chosen projection from pj ; similarly vp

from v); also, no convex chain can have an endpoint strictly in the interior of the
region REG (because of the adjacency of pj , pj+1 along the staircase; definition
of S1(p); lemma 1). In other words, there does not exist a section of convex chain
which intersects with the region REG.

First, we prove that if the point hp is not same as the point vp then they are
incident to the same convex chain. Note that there is nothing to prove in the
other case. Suppose hp is located on a convex chain CCk, and, vp is located on a
convex chain CCl for CCk �= CCl. Let CCk, CCk+1, CCk+2, . . . , CCl−1, CCl be
the consecutive sequence of sections of convex chains or corridor bounding edges
encountered while traversing along the staircase from hp to vp. Let P be the set
consisting of points of intersection of any two adjacent entities (where each entity
can be a convex chain or a corridor bounding edge) in this sequence including
hp and vp. Note that the vertex set Vortho includes every point belonging to P .
Since we have chosen pj and pj+1 as adjacent points on the staircase, we obtain a
contradiction if there exists at least one point in P ∩S1(p) whenever |P | > 2. We
show below that there always exists a point in P ∩S1(p) whenever |P | > 2. From
this we can conclude that no point joining two geometric entities (where each
entity can be a convex chain or corridor bounding edge) can exist in between
pj and pj+1 along the staircase. In other words, at most a section of the convex
chain or a section of corridor bounding edge joins hp and vp. However due to
the staircase definition, a corridor bounding edge cannot join hp and vp.

Suppose P ∩ S1(p) = φ and |P | > 2. Let CCj be the first convex chain along
the staircase while traversing the staircase from hp s.t. there exists a tangent ppt

to CCj where the point pt is located on CCj , and, pt is visible to p. If no such

418 R. Inkulu and S. Kapoor

pt exists for any convex chain along the staircase, then the endpoint of the first
convex chain along the staircase (while traversing the staircase from hp) which
is in P (as |P | > 2) is such a pt. Thus at least one such CCj always exists. Let qb

and qe be the first and last points on CCj (not necessarily distinct from hp and
vp) as the staircase is traversed from hp in increasing x-coordinates order. Let
pt be the first such possible point of tangency (satisfying the above mentioned
constraints) along CCj starting from qe towards qb. In [12], we prove that there
exists a point r located on the section of convex chain CCj between (including)
qb and pt s.t. r ∈ S1(p) by giving an exhaustive case analysis; hence, leading to
the contradiction.

Let the only possible section of convex chain between pj and pj+1 along the
staircase be CC. In [12], we prove that each edge of this section has a negative
slope. ��

Note that similar arguments to theorem 1 can be given for Si(p) where i ∈
{2, 3, 4}.

We now define the weighted restricted visibility graph VISTMP(Vvistmp =
Vortho ∪ V1, Evistmp = Eorthocc ∪ E1 ∪ Etmp):

– For each v ∈ Vortho, let the intersection point of a horizontal ray HL, starting
at v, with the first corridor convex chain encountered while moving along
HL towards the left be known as vL whereas moving along HL towards the
right be known as vR. Further, let the intersection point of a vertical ray V L,
starting at v, with the first corridor convex chain while moving along HV
downwards be known as vD whereas moving along HV upwards be known as
vU . For each point p ∈ {vL, vR, vD, vU}, if the rectilinear distance of p from
v is finite then p is added to V1 and the edge pv is added to E1. The weight
of the edge e ∈ E1 is the Euclidean distance between its two endpoints.

– An edge e = (p, q) belongs to Eorthocc iff p and q are in Vvistmp and are ad-
jacent along a corridor convex chain. The weight of edge e is the L1 distance
along the section of convex chain between p and q.

– An edge e′ = (p′, q′) belongs to Etmp iff q′ ∈ Si(p′) for p′ ∈ Vortho. The
weight of e′ is the rectilinear distance along e′.

Theorem 2. Let {p, q} ⊆ Vvistmp. Then a shortest path from p to q in VISTMP
defines a shortest L1 path from p to q that does not intersect any of the obstacles.

Proof. Consider a shortest path P from p to q that avoids all the obstacles. We
need to consider two cases:

Case (i) - The shortest path P does cross a staircase structure defined w.r.t.
point p. Since convex chains on the staircase bound obstacles, the shortest path
P does not intersect any of the convex chains in the staircase. Therefore, the
shortest path P incidents on either a point in Si(p), or, an orthogonal line
segment in the staircase. Suppose the path crosses an orthogonal segment of
the staircase at p′1. Consider replacing the path from p to p′1 with two lines, one

Finding a Rectilinear Shortest Path in R2 Using Corridor 419

joining p to p1, and, the other from p1 to p′1. Note that the L1 distance along the
line joining p to p′1 is same as the L1 distance along the altered path. Let pj , pk

be the points in Si(p) with the minimum and maximum x-coordinates when the
points in Si(p) are sorted w.r.t. their x-coordinates. This new rectilinear path
is always guaranteed to exist because: (i) no point of Vortho exists in the region
bounded by the staircase and the line segments ppj, ppk; (ii) neither of the
convex chains intersecting the coordinates axes intersect with the interior of the
altered path. The path from p1 to q can be altered similarly without changing
the length of the path. Since a shortest path from p to q does not repeat any
vertex, the alteration procedure will terminate. Note that the altered path is in
VISTMP because for p and every pl ∈ Si(p), the edge ppl ∈ Evistmp. Therefore,
the rectilinear shortest path P between p and q in the given polygonal region can
be found by determining the shortest path from p to q in the graph VISTMP.

Case (ii) - The shortest path P does not cross any of the staircase structures
defined w.r.t. point p. Suppose the line segment LS starting from p which is
part of the shortest path P is in the first quadrant of COOR(p) (other cases
can be argued symmetrically). Let pj , pk be the points having the minimum and
maximum x-coordinates among all the points in S1(p) (Fig 3). Since the shortest
path P does not cross the staircase structure in S1(p), it must be the case that
the x-coordinate of q is either less than the x-coordinate of pj or greater than
the x-coordinate of pk. Consider the former case (the other case is symmetric).
If no convex chain intersects y-axis in the first quadrant, then either q ∈ S1(p)
or the interior of LS does not intersect with the first quadrant of COOR(p) -
leading to a contradiction. Alternatively, consider CCY , the first convex chain
that intersects the y-axis while moving in increasing y-direction from p. Also,
let CC′ be the section of CCY in the first quadrant of COOR(p). Suppose a
vertex r of CC′ is in Vortho. Let the intersection of the horizontal line at r with
the staircase in the first quadrant be r′ (Fig 3). Suppose the shortest path P
intersects the line segment rr′. Let this point of intersection be rk. Also, let p′

be the vertical projection of p onto CC′. Then replace the path from p to rk

with an equivalent cost path consisting of a vertical line segment pp′, path from
p′ to r along CC′, path from r to rk. The L1 distance along the line joining p to
rk is same as the L1 distance along the altered path as the slopes of edges along
the path from p′ to r cannot be negative. Note that if the slope of any of these
edges is negative, then there exists a vertex r′ of CC′ s.t. r′ ∈ S1(p), causing
the shortest path P to cross the staircase - hence, leading to a contradiction.
The new rectilinear path is always guaranteed to exist because pp′ ∈ E1 and the
edges comprising the path from p′ to r along CC′ are in Eorthocc. The path from
r to q can be altered similarly when the y-coordinate of q is greater than r. The
detailed version of this paper [12] considers several other cases to complete this
proof. ��
Because of the staircase structures, the size of Etmp is not quadratic and yields a
better complexity in applying Dijkstra’s algorithm. Let there be O(q) points in
S3(p), and, O(r) points in S1(p). Consider the path from a point pk ∈ S1(p) to
pl ∈ S3(p). This path can be altered to another path with L1 distances along the

420 R. Inkulu and S. Kapoor

lines pk to p, and, p to pl. Note that the altered path does not change the L1 dis-
tance from pk to pl. By having an edge joining every point in S3(p)∪S1(p) with p,
the number of visibility edges around p are reduced from O(qr) to O(q+r). Sim-
ilar savings can be achieved among the possible edges between S4(p) and S2(p).

However, explicitly finding the staircase structures surrounding each point
p ∈ Vortho can be of quadratic time complexity. To improve the efficiency, we
introduce Type-II Steiner points and devise the following approach.

3 Visibility Graph with Steiner Points

In this section, we detail the construction procedure of a modified restricted
weighted visibility graph VIS(Vvis = Vortho ∪ V1 ∪ V2, Evis = Eorthocc ∪ E1 ∪ E2)
where V2 and E2 are the additional Steiner vertices and edges added to the
graph. The vertices V1 ∪ V2 and the edges E1 ∪ E2 are defined so that for any
edge e = (vp, vq) ∈ Etmp of VISTMP, there is a path of the same L1 length
between vp and vq in VIS(Vvis, Evis). The vertices and edges of VIS are divided
into two types, Type-I (Vortho ∪ V1, Eorthocc ∪ E1) and Type-II (V2, E2), whose
construction is described below.

3.1 Type-I Points and Edges

The Type-I points and edges are defined in section 2. These points are obtained
by sweeping the obstacle space by orthogonal sweep lines. Since there are four
orthogonal projections possible for a point, the algorithm sweeps a vertical sweep
line from left to right and from right to left, and, a horizontal sweep line from
top to bottom and from bottom to top. During a sweep, the projections onto an
obstacle convex chain are generated in order. Details are presented in [12]. At
the end of these four sweeps, an ordered list of the Type-I points along a convex
chain are obtained. This list readily gives Eorthocc.

3.2 Type-II Points and Edges

The TypeIIMain procedure lists the pseudocode to obtain the Type-II Steiner
points and Steiner edges. To facilitate subdividing points into strips, we maintain
two lists corresponding to the sorted sequences of points in Vvis along the x- and
y-coordinates. The points corresponding to a node in the recursion tree are ob-
tained from the point set corresponding to its parent. The Type-II points/edges
corresponding to a strip at a recursive step are obtained using these lists. All
the Type-II points are found during one sweep of a vertical line, details of which
are presented in [12].

Theorem 3. Let p and q be points in Vvis. Then a shortest path from p to
q in VIS(Vvis, Evis) defines a shortest L1 path from p to q that avoids all the
obstacles.

Finding a Rectilinear Shortest Path in R2 Using Corridor 421

procedure TypeIIMain()

1: V ′′ ← (Vortho ∪ V1)
2: TypeIISteiPoints(V ′′)
3: among all Steiner points V2 with the same x-coordinate, include in E2 edges be-

tween adjacent vertices in V2 that are visible to each other

procedure TypeIISteiPoints(V ′′)

1: divide the points V ′′ into O(|V ′′|/
√

lg m) strips parallel to the x-axis with each
strip having O(

√
lg m) points

2: let xm be the median of the x-coordinates of points in V ′′; also, suppose the line
Lm parallel to y-axis passes through xm

3: for each set R consisting of all the points in a strip do
4: let the point pt ∈ R be the one having the largest y coordinate among all the

points in R s.t. the point, p′
t, obtained by projecting pt parallel to x-axis onto

Lm is visible from pt. Then the points p′
t are added to V2; note that if no such

point pt exists, then there is no such p′
t is introduced. Similarly, let the point

pb ∈ R be the one having the smallest y coordinate among all the points in R
s.t. the point, p′

b, obtained by projecting pb parallel to x-axis onto Lm is visible
from pb; then the points p′

b are added to V2; note that if no such point pb exists,
then there is no such p′

b is introduced.
5: R′ ← R ∪ {p′

t, p
′
b}

6: end for
7: for a pair of points p, q ∈ R′ we include an edge in E2 iff the rectangle formed

with p and q at the diagonal endpoints does not contain a point in Vortho, and, p
is visible from q

8: V ′′
tmp ← points in V ′′ with x-coordinates less than xm

9: TypeIISteiPoints(V ′′
tmp)

10: V ′′
tmp ← points in V ′′ with x-coordinates greater than xm

11: TypeIISteiPoints(V ′′
tmp)

Proof. To prove this, we show that if there is an edge of length l between two
points in VISTMP(V, E), it is guaranteed that there exists a path of length l
in the graph VIS(Vvis, Evis) between the same two points. W.l.o.g. we consider
the edges contained in the first quadrant of COOR(p). For a point p ∈ V , we
know that an edge ppi ∈ E whenever pi ∈ S1(p). Suppose pi ∈ S1(p) and the L1

length of edge ppi be l. Let R be the rectangle obtained by having p and pi as
diagonal endpoints. We need to consider the following two cases:

Case (i) - The interior of R does intersect with some corridor convex chain
CC s.t. the projections from points p and pi incident onto CC. Consider the
case in which R intersects with more than one convex chain along a coordi-
nate axis. This is not possible unless there exists a point p′ distinct from p s.t.
(p′ ∈ π1(p))∧ (pi ∈ π1(p′)). However, then the point pi does not belong to S1(p)
(due to the second constraint of S1(p) definition), a contradiction. Therefore, CC
is the only corridor convex chain that intersects R along the axis. This is true for
both the axes. In other words, the projections from points p and pi are always
incident to the same convex chain CC. Suppose the Type-I points due to the
orthogonal projections of p and pi onto CC be p′ and p′i respectively. Let CC′

422 R. Inkulu and S. Kapoor

be the section of CC from p′ and p′i. First note that no vertex of CC′ belongs to
Vortho. Hence CC′ has either only non-negative or only negative sloped edges.
Suppose CC′ consists of edges with non-negative slope only. Then consider the
path comprising the edge pp′ ∈ E1, path from p′ to p′i comprising edges from
Eorthocc, and the edge p′ipi ∈ E1. The L1 distance along this path is l. Otherwise,
suppose CC′ consists of edges with negative slope only. But then pi is not visible
from p as CC′ cannot have an endpoint in R, therefore reaching a contradiction.

Case (ii) - The interior of R does not intersect with any corridor convex chain.
Let p and pi reside in (not necessarily distinct) strips Rk and Rl respectively.
Assume that the strip Rk is located below Rl (the other case can be argued
symmetrically). Then there must exist a median line, say Lm, located in between
p and pi (including p and pi). Let pkt and plb be the top and bottom points
in strips Rk and Rl respectively s.t. for two points p′kt, p

′
lb on Lm, line segments

pktpkt′ and plbp
′
lb are parallel to the x-axis with pkt′ visible from pkt and p′lb visible

from plb (considering either pkt or plb residing on Lm itself as a degenerate case).
Since pi ∈ S1(p) and the rectangle R does not intersect with any convex chain,
the interior of rectangle R does not contain any obstacles. Hence for p distinct
from pkt, as p′kt is located interior to R, there exists a Type-II Steiner edge
joining p and p′kt. Similarly, for pi distinct from plb, as p′lb is located interior to
R, there exists a Type-II Steiner edge joining pi and p′lb. Suppose there is no such
pkt which is distinct from p. Since no obstacle intersecs the interior of rectangle
R, for a point p′ on Lm with the line segment pp′ parallel to the x-axis, the point
p′ is visible from p. Hence p′ is same as p′kt. Symmetric argument can be give
for the case in which there is no plb distinct from pi. Therefore, Type-II edges
ppkt′ and piplb′ always exist. Also, no convex chain can intersect Lm in between
p′kt and p′lb as there is no obstacle strictly inside the rectangle R. Since pkt, plb

are chosen s.t. they are the top and bottom points in strips Rk, Rl respectively,
the L1 distance of the path consisting of Type-II edges pp′kt, p

′
ktp
′
lb, p

′
lbpi is of

length l. ��

Theorem 4. Computing a rectilinear shortest path from s to t is of O(n +
m(lg n)3/2) time and O(n + m(lg m)3/2) space complexity.

Proof. The number of Type-I points and edges are O(m). The number of Type-
II points and edges are O(m(lg m)1/2) and O(m(lg m)3/2) respectively. Hence,
|Vvis| = O(m(lg m)1/2) and |Evis| = O(m(lg m)3/2). Applying Dijkstra’s algo-
rithm takes O(|Evis| + |Vvis| lg |Vvis|) i.e., O(m(lg m)3/2). Using the algorithm
by Bar-Yehuda and Chazelle [8] the triangulation of polygonal region takes
O(n + m(lg m)1+ε), represented as O(T). Finding corridors and junctions given
the triangulation takes O(n + m lg n). The time involved in precomputing the
rectilinear shortest distance between the apex points at all the closed corri-
dors together takes O(n) time. Computing the Type-I points and edges takes
O(m lg n) time. Computing the Type-II points and edges takes O(m(lg m)3/2)
time. Computing the point of tangencies and orthogonal tangents on all the
convex chains together takes O(m lg n). Hence the overall time complexity is
O(n + m(lg n)3/2). Only binary trees and lists are used in the algorithm. And,

Finding a Rectilinear Shortest Path in R2 Using Corridor 423

no data structure uses more space than the total number of Type-I/Type-II
points/edges, hence the space complexity (including the input complexity).
Detailed analysis is presented in [12]. ��

4 Conclusion

This paper presented a O(n + m(lg n)3/2) time and O(n + m(lg m)3/2) space
algorithm for finding a shortest rectilinear path from s to t through simple
polygonal obstacles, where n is the number of vertices of the obstacles and m is
the number of obstacles. It is of interest to find an algorithm of time complexity
O(n + m lg m).

References

[1] Kapoor, S., Maheshwari, S.N.: An Efficient Algorithm for Euclidean Shortest
Paths Among Polygonal Obstacles in the Plane. In: Proceedings of the ACM
Symposium on Computational Geometry, pp. 172–182. ACM Press, New York
(1988)

[2] Hershberger, J., Suri, S.: An Optimal Algorithm for Euclidean Shortest Paths in
the Plane. SIAM Journal on Computing 28(6), 2215–2256 (1999)

[3] Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility
graphs. SIAM J. Comput. 20, 888–910 (1991)

[4] Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An Efficient Algorithm for
Euclidean Shortest Paths Among Polygonal Obstacles in the Plane. Discrete Com-
putational Geometry 18(4), 377–383 (1997)

[5] Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a
simple polygon with obstacles. SIAM J. Comput. 30(3), 847–871 (2000)

[6] Welzl, E.: Constructing the visibility graph for n line segments in O(n2) time.
Inform. Process. Lett. 20, 167–171 (1985)

[7] Mitchell, J.S.B.: L1 Shortest Paths Among Polygonal Obstacles in the Plane.
Algorithmica 8(1), 55–88 (1992)

[8] Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Com-
put. Geometry Appl. 4(4), 475–481 (1994)

[9] de Rezende, P.J., Lee, D.T., Wu, Y.F.: Rectilinear Shortest Paths with Rectan-
gular Barriers. Discrete and Computational Geometry 4, 41–53 (1989)

[10] Clarkson, K.L., Kapoor, S., Vaidya, P.M.: Rectilinear Shortest Paths through
Polygonal Obstacles in O(n (lgn)3̂/2) time. Proceedings of the ACM Symposium
on Computational Geometry, 251–257 (1987)

[11] Mitchell, J.S.B.: Shortest Rectilinear Paths among obstacles. Technical Report
No. 739, School of OR/IE, Cornell University (1987)

[12] Shortest L1 path in R2 using Corridor based Staircase Structures, full
manuscript, Submitted to Computational Geometry: Theory and Applications,
http://www.ices.utexas.edu/∼rinkulu/docs/l1sp.pdf

http://www.ices.utexas.edu/~rinkulu/docs/l1sp.pdf

Compressed Dynamic Tries with Applications to

LZ-Compression in Sublinear Time and Space

Jesper Jansson1,�, Kunihiko Sadakane1, and Wing-Kin Sung2

1 Department of Computer Science and Communication Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

jj@tcslab.csce.kyushu-u.ac.jp, sada@csce.kyushu-u.ac.jp
2 Department of Computer Science, National University of Singapore,

3 Science Drive 2, 117543 Singapore
Genome Institute of Singapore, 60 Biopolis Street, Genome 138672, Singapore

ksung@comp.nus.edu.sg

Abstract. The dynamic trie is a fundamental data structure which finds
applications in many areas. This paper proposes a compressed version
of the dynamic trie data structure. Our data-structure is not only space
efficient, it also allows pattern searching in o(|P |) time and leaf inser-
tion/deletion in o(log n) time, where |P | is the length of the pattern and
n is the size of the trie. To demonstrate the usefulness of the new data
structure, we apply it to the LZ-compression problem. For a string S
of length s over an alphabet A of size σ, the previously best known
algorithms for computing the Ziv-Lempel encoding (lz78) of S either
run in: (1) O(s) time and O(s log s) bits working space; or (2) O(sσ)
time and O(sHk + s log σ/ logσ s) bits working space, where Hk is the k-
order entropy of the text. No previous algorithm runs in sublinear time.
Our new data structure implies a LZ-compression algorithm which runs
in sublinear time and uses optimal working space. More precisely, the
LZ-compression algorithm uses O(s(log σ +log logσ s)/ logσ s) bits work-
ing space and runs in O(s(log log s)2/(logσ s log log log s)) worst-case time,

which is sublinear when σ = 2
o(log s

log log log s

(log log s)2
)
.

1 Introduction

A trie [7] is a rooted tree in which every edge is labeled by a symbol from an
alphabet A in such a way that for every node u and every a ∈ A, there is
at most one edge from u to a child of u that is labeled by a. (From here on,
we assume A is fixed and define σ = |A|.) Each leaf � in the trie represents a
string obtained by concatenating the symbols on the unique path from the root
to �; thus, a trie can be used to store a set of strings over A. A dynamic trie is a
fundamental data structure allowing operations to modify it dynamically, i.e., al-
lowing strings to be inserted or deleted from the trie. It find applications in many
areas including information retrieval, natural language processing, database sys-
tems, compilers, data compression, and computer networks. As an example, in
� Supported by Japan Society for the Promotion of Science (JSPS).

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 424–435, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compressed Dynamic Tries with Applications to LZ-Compression 425

computer networks, dynamic tries are used in IP routing to efficiently maintain
the hierarchical organization of routing information to enable fast lookup of IP
addresses [14]. In data compression, dynamic tries are used to represent the so-
called lz-trie and the Huffman coding trie which are the key data structures in
the Ziv-Lempel encoding (lz78) [20] (or its variant LZW encoding [17]) and the
Huffman encoding, respectively. Furthermore, many data structures such as the
suffix trie/suffix tree, the Patricia trie [11], and the associative array (hashing
table) can be maintained as dynamic tries.

Without loss of generality, assume σ ≤ n. A dynamic trie T of size n can
be implemented using a standard tree data-structure in O(n log n) bits space
such that: (1) insertion or deletion of a leaf into or from T takes O(1) time;
and (2) finding the longest prefix of a query pattern P in T takes O(|P |) time.
A number of solutions have been proposed to improve the average time and
space complexities of tries [1,2,11]. However, in the worst case, those solutions
still use O(n log n) bits space and pattern searching still requires O(|P |) time.
Employing the latest advances on compressed trees, a trie can now be maintained
in O(n log σ) bits space under the unit-cost RAM model such that: (1) insertion
or deletion of a leaf takes O(log n) time; and (2) the longest common pattern
query takes O(|P |) time. Note that none of the existing data structures can
answer the longest common pattern query in o(|P |) time.

This paper assumes a unit-cost RAM model with word size logarithmic in
n, in which standard arithmetic and bitwise boolean operations on word-sized
operands can be performed in constant time [9]. Also, we assume the pattern P
is packed in O(|P | log σ/ log n) words. Under such a model, we propose a data
structure which uses O(n log σ) bits such that: (1) insertion or deletion of a
leaf takes O((log log n)2/ log log log n) time; and (2) the longest common pattern

query takes O(|P |logσ n
(log log n)2

log log log n) time. Note that when σ = 2o(log n log log log n

(log log n)2
), our

O(n log σ)-bits dynamic trie data-structure can be maintained such that the
longest common pattern query can be performed in o(|P |) time while insertion
and deletion takes o(log n) time.

In this paper we define “sublinear” as follows. We assume that the alphabet
size σ is a function of n (or a constant). We say the space is sublinear if it is
o(n log σ) because n log σ is the input size. We say the time is sublinear if it is
o(n log σ). Note that no algorithm can achieve sublinear time for large alphabets
such as log σ = Ω(log n) because it takes Ω(n log σ

log n) time to read the input. We

give sublinear time algorithms when σ = 2o(log n log log log n

(log log n)2
).

Our improvement stems from the observation that small tries (that is, tries
of size O(logσ n)) can be maintained very efficiently. Hence, our data structures
partition the trie into many small tries and maintain them individually. With
this approach, we not only store the trie using O(n log σ) bits, but also allow
fast queries and efficient insertions and deletions.

To demonstrate the usefulness of our dynamic trie data structure, we applied
it to generate the lz78 encoding of a text. The Ziv-Lempel encoding (lz78) [20]
(or its variant LZW encoding[17]) of a text is a popular compression scheme.

426 J. Jansson, K. Sadakane, and W.-K. Sung

Ziv and Lempel [20] showed that the lz78 encoding scheme gives an asymptot-
ically optimal compression ratio.

The current solutions for constructing the lz78 encoding of a text first con-
struct the lz-trie and then generate the lz78 encoding. These solutions either
run in: (1) O(s) time and O(s log s) bits working space [5,15]; or (2) O(sσ)
time and O(s log σ) bits working space [3]. None of the solutions in the liter-
ature runs in sublinear time and O(s log σ)-bit working space. By maintain-
ing the lz-trie using our dynamic trie data structure, we obtain the first LZ
compression algorithm which uses optimal working space and runs in sublin-

ear time when σ = 2o(log s log log log s

(log log s)2
). More precisely, we propose an algorithm

which uses O(s(log σ + log logσ s)/ logσ s) bits working space and runs in in
O(s(log log s)2/(logσ s log log log s)) worst-case time. Note that the working
space is asymptotically smaller than the outputted compressed text.

The paper is organized as follows. Section 2 reviews some previously known
facts about tries and lz78 encoding. Section 3 defines the lz78 encoding and
gives some simple data structures that are useful for maintaining a lz-trie.
Sections 4 and 5 detail our dynamic trie data structure. Finally, Section 6
presents our LZ compression algorithms.

2 Previous Work

A dynamic trie data structure can be implemented naively using O(n log n) bits
such that: (1) insertion and deletion of a leaf takes O(1) time; and (2) the
longest prefix of any query pattern P in T can be found in O(|P |) time. Many
practical improvements have been proposed which yield good performance (on
average) for searching a pattern. Morrison [11] proposed the Patricia trie which
compresses a path by merging the nodes of degree 2. This idea reduces the size
of the trie. Later, Andersson and Nilsson [1] proposed the LC-trie, which reduces
the depth of the trie by increasing the branching factor (level compression). This
idea reduces the average running time [6].

Willard [18,19] proposed two data structures for maintaining a trie of depth
O(log M) for some positive integer M : (1) the Q-fast trie [19], which uses
O(n log M) bits space and searches for the pattern P in T in O(

√
log M) time

while inserting or deleting a leaf in O(
√

log M) time; and (2) the Y-fast trie [18],
which is a static trie that uses O(n log M) bits space and can report the longest
prefix of any pattern P in T in O(log log M) time.

Ziv-Lempel encoding (lz78) is a widely used encoding scheme for compressing
a text [17,20]. lz78 also has applications in compressed indexing; Navarro [13]
presented a compressed full-text self-index called LZ-index based on the lz-trie
whose size is proportional to the compressed text size. The LZ-index allows
efficient pattern queries.

A straightforward implementation of lz78 based on Lempel and Ziv’s original
definition takes O(n2) worst-case time to process a string of length n. Rodeh,
Pratt, and Even [15] improved the running time to O(n) using suffix trees, and

Compressed Dynamic Tries with Applications to LZ-Compression 427

Brent [5] gave another linear time compression algorithm based on hashing. How-
ever, both algorithms use O(n log n)-bits working space. This is larger than the
size of the Ziv-Lempel encoding, which is O(nHk) where Hk is the k-order en-
tropy of the text. People have recently realized the importance of space-efficient
data compression algorithms [3,10]. Given a long text, we may have enough mem-
ory to store the compressed text (that is, the Ziv-Lempel encoding). However,
we may be unable to construct it if the working space requirement is too large.
For example, we are able to store the Ziv-Lempel encoding of the human genome
in a 2GB RAM computer, but we may fail to construct the encoding due to the
size of the memory. Hence, a space-efficient construction algorithm is necessary.
Utilizing the solution of Arroyuelo and Navarro [3], the Ziv-Lempel encoding of
a text can be constructed using O(σn) time and O(nHk + n log σ/ logσ n) bits
working space.

3 Preliminaries

We first reviews simple data structures used for dynamically maintaining a set
of length-(logσ n) strings and a tree, respectively, in Sections 3.1 and 3.2. These
data structures are the building blocks of our dynamic trie data structure, which
is used to dynamically maintain a lz-trie. Section 3.3 reviews the definitions of
the lz78 encoding and the lz-trie.

3.1 A Data Structure for Maintaining a Set of Length-(logσ n)
Strings

This subsection describes a dynamic data structure for maintaining a set of k
strings, each of length at most logσ n, over an alphabet of size σ. It needs to
support three operations: (1) insertion of a length-(logσ n) string, (2) deletion
of a length-(logσ n) string, and (3) predecessor of a string P (that is, reporting
the string currently in the set which is lexicographically just smaller than P).

We make use of the dynamic predecessor data structure of Beame and Fich [4],
whose properties are summarized in the next lemma:

Lemma 1 ([4]). The dynamic predecessor data structure of Beame and Fich [4]
can maintain a set of � O(log n)-bit integers using O(� log n) bits under insertions
and deletions while supporting predecessor queries so that each insert/delete/
predecessor operation takes O((log log n)2/(log log log n)) time.

We immediately obtain:

Lemma 2. Consider k strings of length at most logσ n over an alphabet of size
σ. We can store all strings in O(k log n) bits such that insert/delete/predecessor
can be found in O((log log n)2/ log log log n) time.

Proof. Treat the strings as integers in the range {0, 1, . . . , n − 1} and apply
Lemma 1. ��

428 J. Jansson, K. Sadakane, and W.-K. Sung

3.2 Data Structures for Maintaining an Edge-Labeled Tree

This section discusses how to dynamically maintain an edge-labeled tree T . We
assume the size of the tree and all labels are integers smaller than n. We support
the following operations:

– Insert(u, κ, v): Insert a leaf v as a child of u and label the edge (u, v) by κ.
– Delete(v): Delete the leaf v and the edge between v and its parent (if any).
– Child(u, κ): Return the child v of u such that the edge (u, v) is labeled by κ.

Lemma 3. A tree T can be maintained dynamically in O(|T | log n) bits space
such that Child/Insert/Delete can be answered in O((log log n)2/(log log log n))
time.

Proof. We represent T using two dynamic predecessor data structures D1 and
D2, as in Lemma 1. For each edge (u, v) labeled by κ, we maintain n2 ·u+n ·κ+v
in D1 and n2 · v + n · u + κ in D2. D1 and D2 take O(|T | log n)-bit space. Since
u, v, κ ≤ n, there is a one-to-one mapping between (u, v, κ) and the number
w = n2 · u + n · κ + v in D1. To be precise, v = w mod n, u = �w/n2�, κ =
�(w − u · n2)/n�. Similarly for D2.

To insert a leaf node v, which is a child of u with edge label κ, it can be done
by inserting n2 · u + n · κ + v in D1 and n2 · v + n · u + κ in D2.

To delete a leaf node v, we first query D2 to retrieve the integer w which is
just bigger than n2 · v. Note that w = n2 · v + n · u + κ where u is the parent of
v and κ is the label of (u, v). Then, the leaf node v can be removed by deleting
n2 · u + n · κ + v from D1 and n2 · v + n · u + κ from D2.

To compute Child(u, κ), we first retrieve the integer w which is just bigger
than n2 ·u+n ·κ in D1. Then, Child(u, κ) equals the remainder when we divide
w by n.

The running time for each of the three operations is O((log log n)2/(log log
log n)) time by Lemma 1. ��

3.3 LZ78 Encoding and LZ-Trie

Ziv-Lempel encoding [20], or lz78, is a data compression scheme for strings. For
a given string S = S[1..n], it constructs a phrase list and a lz-trie procedurely
using the following method: First, initialize a trie T as empty, the current position
p = 1, and the number of phrases c = 0. Then, parse S into phrases from left
to right until p > n as follows. Find the longest string, t ∈ T , that appears as a
prefix of S[p..n]. Set c = c + 1. Obtain the phrase sc = S[p..p + |t|] = t · S[p + |t|]
and insert it into T . Then, set p = p+ |t|+1 and repeat the parsing for the next
phrase.

The trie T generated during the above process is called the lz-trie while the
list of phrases s1, s2, . . . , sc is called the phrase list. The Ziv-Lempel encoding of
the given string S consists of the lz-trie together with the phrase list for S. By
[20], it holds that

√
n ≤ c ≤ n/ logσ n. Also, the lz-trie and the phrase list can

be stored in c log c + O(c log σ) = nHk + O(n log σ/ logσ n) bits.

Compressed Dynamic Tries with Applications to LZ-Compression 429

4 Dynamically Maintaining a Trie of Height logσ n

In this and the next section, we show how to maintain a trie while efficiently
supporting the following operations:

– Insert(T, u, a): Insert a leaf v as a child of u such that the label of (u, v) is
a, where a ∈ A.

– Delete(T, u): Delete the leaf u and the edge between u and its parent (if
any).

– Lcp(T, P): Report the length � such that P [1..�] is the longest prefix which
exists in T .

Here, we discuss the dynamic trie data structure for small tries. First, we
consider how to maintain a trie of size O(logσ n). Then, we study how to maintain
a trie of height at most logσ n. (In the next section, we discuss how to maintain
a general trie.)

4.1 Maintaining a Trie of Size O(logσ n)

This subsection describes how to dynamically maintain a trie T of size O(logσ n).

Lemma 4. Given a precomputed table of size O(n5ε) bits for any constant 0 <
ε < 0.2, we can maintain a trie T of size ε logσ n using at most 3ε logn bits. All
operations Lcp, Insert, and Delete take O(1) worst case time. Also, preorder of
any node can be computed in O(1) time.

Proof. The data structure has two parts. First, the topology of T is stored in
2|T | = 2ε logσ n bits using parenthesis encoding [12,8]. Second, the edge labels
of all edges are stored in preorder using |T | logσ = ε log n bits. Therefore the
total space is at most 3ε log n bits.

In addition, the data structure also requires four pre-computed tables. The
first table stores the value of Lcp(R, Q) for any trie R of size at most ε logσ n
and any string Q of length at most ε logσ n. The second table stores the value of
preorder(R, Q), which is the preorder of any string Q in the trie R for any trie
R of size at most ε logσ n and any string Q of length at most ε logσ n. Since there
are O(22·ε logσ n · σε logσ n · σε logσ n) = O(n4ε) different combinations of R and Q,
both tables can be stored in O(n4ε log logσ n) = O(n5ε) bits space. The size of
the tables for insert/delete is O(22·ε logσ n ·σε logσ n · ε logσ n ·σ · ε log n) = O(n5ε).

The four operations can be supported in O(1) time as follows using a precom-
puted table for each operation.

– To insert/delete a node x, we update the topology and the edge label.
– Lcp(T, P) can be computed by asking O(1) queries. in the precomputed

table.
– Preorder of any string in T can also be computed in O(1) time. ��

Lemma 5. The tables for Lcp() and preorder() can be constructed incremen-
tally using O(logσ n) time per entry. When the size of the tables is n, Lcp(R, Q)
and preorder(R, Q) queries can be answered in O(1) time for any R of size at
most 0.2 logσ n and Q of length at most 0.2 logσ n.

430 J. Jansson, K. Sadakane, and W.-K. Sung

4.2 Maintaining a Trie of Height O(logσ n)

This section describes how to dynamically maintain a trie of height O(logσ n).

Lemma 6. Given a precomputed table of size O(n5ε) bits for any constant 0 <
ε < 0.2, we can dynamically maintain a trie T of height ε

2 logσ n using
O(|T | log σ) bits space such that all operations Lcp, Insert, and Delete take
O((log log n)2/ log log log n) time.

Proof. Let ui be the node in T whose preorder is i. Let S = {s1, s2, . . . , s|T |} be
the set of strings where si is the string representing the path label of ui. Note
that the si’s are sorted in alphabetical order.

A block is defined to be a series of strings si, si+1, . . . , sj where i ≤ j ≤ |T |.
Note that all strings in a block can be represented as a subtrie of T . The nodes
ui, ui+1, . . . , uj are connected if we add the nodes on the path from the root to
ui. Therefore the size of the subtrie is at most j − i + 1 + ε

2 logσ n.
The set S can be partitioned into a set B = {B1, B2, . . . B|B|} of

non-overlapping blocks such that B1 ∪B2 ∪ . . .∪B|B| = S. We also maintain the
invariant that (1) every block contains at most ε

2 logσ n strings and (2) at most
one block has less than ε

4 logσ n/2 strings. Besides, for each Bi ∈ B, let sb(i) be
the smallest string in Bi.

Our dynamic data structure represents the trie T using a two-level data struc-
ture.

– (1) Top-level: Using the data structure in Lemma 2, we store {sb(1), . . . ,
sb(|B|)}.

– (2) Block-level: For each block Bi ∈ B, we can represent the strings in Bi

as a trie of size ε logσ n and store the trie using Lemma 4.

We first show that the space required is O(|T | log σ) bits. Note that |B| =
O(|T |

ε logσ n) blocks. The space required for the top-level structure is O(ε−1|B| logn)
= O(ε−1|T | logσ) bits. Each block requires O(log n) bit space by Lemma 4. The
space for the block-level structure is O(|B| log n) = O(|T | log σ).

The time complexity of the three operations is as follows.

– Lcp(T, P): Let P ′ be the first ε
2 logσ n characters of P . To compute the

longest common prefix of P in T , we first find si and si+1 such that P ′ is
alphabetically in between si and si+1; let lcp1 be the longest common prefix
of P ′ and si and lcp2 be the longest common prefix of P ′ and si+1; then,
Lcp(T, P) equals the maximum of lcp1 and lcp2. To locate si, our strategy
is to first locate the sb(j) which is alphabetically just smaller than or equal
to P ′. By Lemma 2, sb(j) can be found in O((log log n)2/ log log log n) time.
Then, within Bj , we locate the si just smaller than or equal to P ′. By
Lemma 4, this step takes O(1) time.

– Insert(T, u, a): Suppose u represents a string s ∈ S. This operation is equiv-
alent to insert a new string s · a after s. Let Bj be the block containing s.
We first insert s · a into Bj using O(1) time by Lemma 4. If Bj contains less
than ε

2 logσ n strings, then the insert operation is done. Otherwise, we need

Compressed Dynamic Tries with Applications to LZ-Compression 431

to split Bj into two blocks each containing at least ε
4 logσ n strings. The split

takes O(1) time since Bj is packed in O(log n) bits. Lastly, we update the
top-level structure to indicate the existence of the new block, which takes
O((log log n)2/ log log log n) time.

– Delete(T, u): The analysis is similar to the Insert operation. ��

5 Maintaining a Trie with No Height Restrictions

This section gives a data structure to dynamically maintain a general trie T . We
also show how to build an auxiliary data structure for T using O(|T |) time such
that the preorder of any node can be reported in O(log log n) time.

We describe a dynamic data structure for a trie T such that insertion/deletion
of a leaf takes O((log log n)2/ log log log n) time and longest common prefix of P

can be computed in O(|P |logσ n
(log log n)2

log log log n) time.
Our data structure represents a general trie T by partitioning it into tries of

height at most h = ε
2 logσ n for some constant 0 < ε < 0.2. To formally describe

the representation, we need some definitions.
Let δ = h/3. For any node u ∈ T , u is denoted as a linking node if (1) the

height of u is of multiple of δ and (2) the subtrie rooted at u has more than δ
nodes.

Let LN be the set of linking nodes of T . For any u ∈ LN , let τu be the subtrie
of T rooted at u including all descendents v of u such that there is no linking
node in the path between u and v. For any non-root node v ∈ T , we denote by
p(v) the linking node such that p(v) is the lowest ancestor of u in T .

Let T ′ be a tree whose vertex set is LN and whose edge set is {(p(u), u) |
u ∈ LN and u is not the root}. The label of every edge (p(u), u) in T ′ is the
length-δ string represented by the path from p(u) to u in T .

Based on the above discussion, T can be represented by storing (1) T ′ and
(2) τu for all u ∈ LN . The next lemma bounds the size of LN .

Lemma 7. |LN | ≤ |T |/δ. Also, for any u ∈ LN , τu is of height smaller than 2δ.

Proof. Each u ∈ LN has at least δ unique nodes associated to it. Hence |T | =∑
u∈LN |τu| ≥ |LN |δ. Thus, |LN | ≤ |T |/δ. By construction, τu is of height

smaller than 2δ. ��

The theorem below is our main result. It states how to maintain T ′ and τu for
all u ∈ LN .

Theorem 1. We can dynamically maintain a trie T using O(|T | log σ) bits space
such that Lcp(T, P) takes O(|P |logσ n

(log log n)2

log log log n) time while insertion/deletion of a
leaf takes O((log log n)2/ log log log n) time.

Proof. We represent T ′ by Lemma 3 using O(|T ′| log n) = O(|T |logσ n log n) =
O(|T | log σ) bits. For every u ∈ LN , the height of τu is bounded according to
Lemma 7, so we can represent τu as in Lemma 6 using O(|τu| log σ) bits. Since

432 J. Jansson, K. Sadakane, and W.-K. Sung

∑
u∈LN |τu| = |T |, all τu’s can be represented in O(|T | log σ) bits. Also, we

maintain the lookup tables for answering queries Lcp(R, Q) and preorder(R, Q)
for any tree R of size at most ε logσ |T | and any query Q of length at most
ε logσ |T | where 0 < ε < 1.

For Lcp(T, P), the longest prefix of P which exists in T can be found in two
steps. First, we find the longest prefix of P in T ′. It is done in O(|P |logσ n

(log log n)2

log log log n)
time using the predecessor data structure in Lemma 3. Suppose u is the node in
T ′ corresponding to the longest prefix P [1..x] of P . Second, we find the longest
prefix of P [x + 1..|P |] in τu. By Lemma 6, it takes another O((log log n)2

log log log n) time.
For insertion/deletion of a leaf node u, suppose we need to insert/delete the

leaf node u in the subtrie τv where v ∈ LN . By Lemma 6, it takes O((log log n)2

log log log n)
time. Moreover, if the insertion/deletion creates/destroys a new linking node v′

in τv, we need to do the following additional steps. (1) Insert/delete a new leaf in
T ′ corresponding to v′ (This step can be done in O((log log n)2

log log log n) time by Lemma 3);
(2) Create/delete a new subtrie τv′ (Since τv′ is of size smaller than logσ n, we
can create/delete it in O(1) time); and (3) Insert/delete τv′ from τv (Since τv′ is
stored in O(1) blocks in τv, we can modify those blocks in O((log log n)2

log log log n) time).
(4) For every insertion, if the size of the lookup tables Lcp() and preorder() is
smaller than nε, we incrementally increase the size of the tables by one using
Lemma 5. For every deletion, if the size of the tables is bigger than 2nε, we
reduce the size of the tables by one using Lemma 5. ��

The following lemma states how to build an auxiliary data structure for T to
answer preorder queries.

Lemma 8. Given a trie T represented by the dynamic data structure in The-
orem 1, we can generate an auxiliary data structure of size O(|T | log σ) bits in
O(|T |) time such that the preorder of a node can be computed in O(log log n)
time.

Proof. The auxiliary data structure stores information for every linking node u
(that is, u ∈ T ′). First, we store the preorder of u. Then, for the corresponding
subtrie τu, define B and the set {sb(1), sb(2), . . . sb(|B|)} as in Lemma 6. We store
three information below.

1. By Lemma 2, using O(|B|(log log n)2/ log log log n) time, we extract all
strings in {sb(1), sb(2), . . . sb(|B|)}. The set {sb(1), sb(2), . . . sb(|B|)} is stored in
O(|B| log n) bits space using O(|B| log log n) time by the y-fast trie data
structure [18]. Then, given any string P , we can report the largest i such
that sb(i) is alphabetically smaller than or equal to P using O(log log n) time.

2. It stores an array V [1..|B|] where V [j] equals the preorder values of the sb(i).
Since each preorder value can be stored in log n bits, the array V can be
stored in |B| logn = O(|T |) bits.

3. For each Bi ∈ B, all strings in Bi are represented as a trie of size O(log n)
bits using Lemma 4.

Compressed Dynamic Tries with Applications to LZ-Compression 433

For any node v ∈ T , let u be the linking node that is the lowest ancestor
of u in T . Let B be the block in τu which contains v and w be the node in
τu corresponds to the smallest string in B. Note that the preorder of v equals
the sum of (1) the preorder of u in T , (2) the preorder of w in τu, and (3) the
preorder of v in B.

For (1), the preorder of u in T is stored in the auxiliary data structure. For
(2), by y-fast trie, using O(log log n) time, we can find the preorder of w in τu.
For (3), by Lemma 4, the preorder v in B can be determined in O(1) time. The
lemma follows. ��

6 LZ-Compression

This section gives a two-phase algorithm to construct the LZ-compression of
the input text S[1..s]. The first phase constructs the lz-trie based on the trie
data structure in Theorem 1. Then, it enhances the lz-trie with an auxiliary
data structure so that preorder of any node can be computed efficiently using
Lemma 8. The second phase generates the phrase list. It scans the text S to
output the list of preorders of the phrases. Fig. 1 describes the details of the al-
gorithm. The lemma below states the running time of our algorithm. We assume
a unit-cost RAM model with word size log s, and σ ≤ s.

Lemma 9. Suppose we use the trie data structure in Theorem 1. The algorithm
in Fig. 1 builds the lz-trie T and the phrase list using O(s

logσ s
(log log s)2

log log log s) time

and O(s(log σ+log logσ s)
logσ s) bits working space.

Proof. Phase 1 builds the trie T through the while-loop in Step 4 of Fig. 1.
Since there are c phrases, the while-loop will execute c times and generate c
phrases s1, s2, . . . , sc. For the i-th iteration, by Theorem 1, Step 4.1 can find
si in O(|si|

logσ s
(log log s)2

log log log s) time. Step 4.2 stores the length of si by delta-code in
1+�log si�+2�log(1+�log si�)� bits. Then, Step 4.3 inserts the phrase si into the
trie T using O((log log s)2/ log log log s) time. Finally, the lz-trie T is enhanced
with an auxiliary data structure for preorder by Lemma 8.

Since
∑c

i=1 |si| = s, the c iterations take O(
∑c

i=1
|si|

logσ s
(log log s)2

log log log s) time, which

equals O(s
logσ s

(log log s)2

log log log s) time. The auxiliary data structure is constructed using
O(c) = O(s

logσ s) time.
Given the trie T and the string S, Phase 2 first enhances the data structure so

that preorder of any node in T can be computed in O(log log s) time by Lemma 8.
For each phrase si, we first obtain its length � stored by delta-code. Then we
search the trie for the node representing the phrase si = S[p..p + � − 1]. It takes
O(|si|

logσ s
(log log s)2

log log log s) time by Theorem 1. The preorder of the phrase si can be

computed in O(log log s) time. In total, Phase 2 takes O(
∑c

i=1
|si|

logσ s
(log log s)2

log log log s)

time, which equals O(s
logσ s

(log log s)2

log log log s) time.

434 J. Jansson, K. Sadakane, and W.-K. Sung

Algorithm LZcompress
Input: A sequence S[1..s].

Output: The compressed text of S.

1 Initialize T as an empty trie. /* Phase 1: Construct the trie tree T */

2 Denote empty phrase as phrase 0.

3 p = 1;

4 while p ≤ n do
4.1 Find the longest phrase t ∈ T that appears as a prefix of S[p..s].

4.2 Store the length of t by delta-code.

4.3 Insert the phrase t · S[p + |t|] into T .

4.4 p = p + |t| + 1;

endwhile
5 Enrich the trie T so that we can compute the preorder of any node in T by

Lemma 8.

6 p = 1; j = 1 /* Phase 2: Construct the phrase list s1s2 . . . sc */

7 while p ≤ n do
7.1 Obtain the length � of the next phrase stored by delta-code.

7.2 Find the phrase t = S[p..p + � − 1] ∈ T .

7.3 sj = preorder index of t in T

7.4 Output sj .

7.5 p = p + |t| + 1; j = j + 1;

endwhile
End LZcompress

Fig. 1. Algorithm for LZ-compression

In total, the running time is O(s
logσ s

(log log s)2

log log log s) time. The working space re-

quired to store the lz-trie is O(c log σ) = O(s log σ
logσ s) bits, and the space for storing

lengths of the phrases is
∑c

i=1 O(1 + log si) = O(c log s
c) = O(s log logσ s

logσ s). ��

As a final remark, the working space of the algorithm is precisely O(c log σ +
c log logσ s) where c is the number of phases output. Since c ≥ √

s, the working
space must be asymptotically smaller than the output size, which is O(c log c +
c log σ). Note that the output size is larger than c log c ≥ 1

2

√
s log s, while the

tables used in the algorithm have size O(sε) for arbitrarily small ε > 0.
Secondly, the output codes of the algorithm in Fig. 1 are different from the

original lz78. The algorithm outputs the same codes as [16]1. Then we can
decode any substring of S of length O(logσ s) in constant time. The output size
of [16] is asymptotically the same as the original lz78.

1 More precisely, the output codes represents preorders of the trie. To convert it into
the original lz78, we need one more scan of S using the trie.

Compressed Dynamic Tries with Applications to LZ-Compression 435

References

1. Andersson, A., Nilsson, S.: Improved behaviour of tries by adaptive branching.
Information Processing Letters 46, 295–300 (1993)

2. Aoe, J.: An efficient digital search algorithm by using a double array structure.
IEEE Transactions on Software Engineering 15(9), 1066–1077 (1989)

3. Arroyuelo, D., Navarro, G.: Space-efficient construction of LZ-index. In: Deng, X.,
Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, Springer, Heidelberg (2005)

4. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem. In: Proc. of
the 31 stAnnual ACM Symposium on the Theory of Computing (STOC 1999), pp.
295–304 (1999)

5. Brent, R.P.: A linear algorithm for data compression. Australian Computer Jour-
nal 19(2), 64–68 (1987)

6. Devroye, L., Szpankowski, W.: Probabilistic behavior of asymmetric level com-
pressed tries. Random Structures and Algorithms 27, 185–200 (2005)

7. Fredkin, E.: Trie memory. Communications of the ACM 3, 490–500 (1960)
8. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation

for balanced parentheses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U.
(eds.) CPM 2004. LNCS, vol. 3109, pp. 159–172. Springer, Heidelberg (2004)

9. Hagerup, T.: Sorting and searching on the word ram. In: Proceedings of Symposium
on Theory Aspects of Computer Science, pp. 366–398 (1998)

10. Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K.: Constructing compressed
suffix arrays with large alphabets. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC
2003. LNCS, vol. 2906, Springer, Heidelberg (2003)

11. Morrison, D.R.: PATRICIA - Practical Algorithm To Retrieve Information Coded
In Alphanumeric. Journal of the ACM 15(4), 514–534 (1968)

12. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

13. Navarro, G.: Indexing text using the Ziv-Lempel trie. Journal of Discrete Algo-
rithmcs (JDA) 2(1), 87–114 (2004)

14. Nilsson, S., Karlsson, G.: IP-address lookup using lc-tries. Journal on Selected
Areas in Communications IEEE 17(6), 1083–1092 (1999)

15. Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. Journal of ACM 28(1), 16–24 (1981)

16. Sadakane, K., Grossi, R.: Squeezing Succinct Data Structures into Entropy Bounds.
In: Proc. ACM-SIAM SODA, pp. 1230–1239. ACM Press, New York (2006)

17. Welch, T.A.: A technique for high-performance data compression. IEEE Computer,
8–19 (1984)

18. Willard, D.E.: Log-logarithmic worst case range queries are possible in space θ(n).
Information Processing Letters 17, 81–84 (1983)

19. Willard, D.E.: New trie data structures which support very fast search operations.
Journal of Computer and System Sciences 28, 379–394 (1984)

20. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory IT-24(5), 530–536 (1978)

Stochastic Müller Games are

PSPACE-Complete�

Krishnendu Chatterjee

EECS, University of California, Berkeley, USA
c krish@eecs.berkeley.edu

Abstract. The theory of graph games with ω-regular winning condi-
tions is the foundation for modeling and synthesizing reactive processes.
In the case of stochastic reactive processes, the corresponding stochastic
graph games have three players, two of them (System and Environment)
behaving adversarially, and the third (Uncertainty) behaving probabilis-
tically. We consider two problems for stochastic graph games: the qual-
itative problem asks for the set of states from which a player can win
with probability 1 (almost-sure winning); and the quantitative problem
asks for the maximal probability of winning (optimal winning) from each
state. We consider ω-regular winning conditions formalized as Müller
winning conditions. We show that both the qualitative and quantitative
problem for stochastic Müller games are PSPACE-complete. We also con-
sider two well-known sub-classes of Müller objectives, namely, upward-
closed and union-closed objectives, and show that both the qualitative
and quantitative problem for these sub-classes are coNP-complete.

1 Introduction

A stochastic graph game [6] is played on a directed graph with three kinds of
states: player-1, player-2, and probabilistic states. At player-1 states, player 1
chooses a successor state; at player-2 states, player 2 chooses a successor state;
and at probabilistic states, a successor state is chosen according to a given prob-
ability distribution. The result of playing the game forever is an infinite path
through the graph. If there are no probabilistic states, we refer to the game as a
2-player graph game; otherwise, as a 21/2-player graph game. There has been a
long history of using 2-player graph games for modeling and synthesizing reactive
processes [1,18]: a reactive system and its environment represent the two play-
ers, whose states and transitions are specified by the states and edges of a game
graph. Consequently, 21/2-player graph games provide the theoretical foundation
for modeling and synthesizing processes that are reactive and stochastic.

For the modeling and synthesis (or “control”) of reactive processes, one tra-
ditionally considers ω-regular winning conditions, which naturally express the
temporal specifications and fairness assumptions of transition systems [15]. In

� This research was supported in part by the the AFOSR MURI grant F49620-00-1-
0327, and the NSF grant CCR-0225610.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 436–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stochastic Müller Games are PSPACE-Complete 437

this work we study the complexity of 21/2-player graph games with respect to a
canonical form of ω-regular winning conditions; namely Müller conditions [19].

In the case of 2-player graph games, where no randomization is involved, a
fundamental determinacy result of Gurevich and Harrington [12] based on LAR
(latest appearance record) construction ensures that, given an ω-regular winning
condition, at each state, either player 1 has a finite-memory strategy to ensure
that the condition holds, or player 2 has a finite-memory strategy to ensure that
the condition does not hold. Thus, the problem of solving 2-player graph games
consists in finding the set of winning states, from which player 1 can ensure
that the condition holds. The elegant algorithm of Zielonka [20] uses the LAR
construction to compute winning sets in 2-player graph games with Müller condi-
tions. In [10] the authors present an insightful analysis of Zielonka’s algorithm to
present optimal memory bounds for winning strategies in 2-player graph games
with Müller conditions. From the analysis of [20] a PSPACE algorithm can be
obtained to compute winning sets in 2-player games with Müller objectives. The
result of [14] proves a matching lower bound and thus deciding the winner in
2-player Müller games is PSPACE-complete.

In the case of 21/2-player graph games, where randomization is present in the
transition structure, the notion of winning needs to be clarified. Player 1 is said
to win surely if she has a strategy that guarantees to achieve the winning condi-
tion against all player-2 strategies. While this is the classical notion of winning
in the 2-player case, it is less meaningful in the presence of probabilistic states,
because it makes all probabilistic choices adversarial (it treats them analogously
to player-2 choices). To adequately treat probabilistic choice, we consider the
probability with which player 1 can ensure that the winning condition is met.
We thus define two solution problems for 21/2-player graph games: the qualitative
problem asks for the set of states from which player 1 can ensure winning with
probability 1; the quantitative problem asks for the maximal probability with
which player 1 can ensure winning from each state (this probability is called the
value of the game at a state). The previous best known algorithm for 21/2-player
Müller games is obtained by an exponential reduction of Müller objectives to
parity objectives [19], and then applying the algorithms for 21/2-player parity
games [5,4]. This approach yields an EXPTIME bound for qualitative analysis
and 2EXPTIME bound for quantitative analysis. An exponential bound on the
memory for optimal strategies in 21/2-player Müller games is known from [2]; and
it follows from [13] that in general optimal strategies require memory of expo-
nential size (even for randomized strategies). Simply fixing optimal strategies for
both players yields an exponential size Markov chain, and then a naive analysis
on the precision of values provides an upper bound of exponentially many bits
to express the values. Thus naive approaches fail to provide PSPACE algorithms
for 21/2-player Müller games. In this work we present PSPACE algorithms for
both qualitative and quantitative problem for 21/2-player Müller games. We now
state the basic idea of our proof.

1. First we present a PSPACE algorithm for qualitative analysis; the algorithm
is a generalization of the algorithm of [20].

438 K. Chatterjee

2. By a detailed analysis of the structure of optimal strategies, we relate the
value of a 21/2-player Müller game with the probability of reaching a set of
states in a Markov chain that is linear in the size of the 21/2-player game.
Thus we obtain a bound on the precision of values that can be expressed
with polynomially many bits in the size of the game. The bound on precision
and the algorithm for qualitative analysis is used to obtain a NPSPACE
algorithm for quantitative analysis.

Thus we obtain the PSPACE algorithms, and the result of [14] provides a match-
ing lower bound to prove PSPACE-completeness for both the problems. We also
consider two well-known sub-classes of Müller objectives, namely, union-closed
and upward-closed objectives. We show that both the qualitative and quantita-
tive problem is coNP-complete for these sub-classes. Our main contribution is
the coNP-upper bound, and the lower bound follows from the results of [14].

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Notation. For a finite set A, a probability distribution on A is a function δ : A →
[0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on

A by D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A |
δ(x) > 0} the support of δ.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S1, S2, S©), δ) consists of a directed graph (S, E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

A set U ⊆ S of states is called δ-closed if for every probabilistic state u ∈ U ∩
S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for every nonprobabilistic
state s ∈ U ∩ (S1 ∪S2), there is a state t ∈ U such that (s, t) ∈ E. A δ-closed and
δ-live subset U of S induces a subgame graph of G, indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the spe-
cial case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs. Markov chains are

Stochastic Müller Games are PSPACE-Complete 439

the special case of 21/2-player game graphs such that S1 = ∅ and S2 = ∅, i.e., it
consists of probabilistic states only.

Plays and Strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗·S1 → D(S) that assigns a probability
distribution to all finite sequences w ∈ S∗ ·S1 of states ending in a player-1 state
(the sequence represents a prefix of a play). Player 1 follows the strategy σ if in
each player-1 move, given that the current history of the game is w ∈ S∗ ·S1, she
chooses the next state according to the probability distribution σ(w). A strategy
must prescribe only available moves, i.e., for all w ∈ S∗, and s ∈ S1 we have
Supp(σ(w · s)) ⊆ E(s). The strategies for player 2 are defined analogously. We
denote by Σ and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

Objectives. An objective for a player consists of an ω-regular set of winning
plays Φ ⊆ Ω [19]. We study zero-sum games, where the objectives of the two
players are complementary; that is, if the objective of one player is Φ, then the
objective of the other player is Φ = Ω \ Φ. We consider ω-regular objectives
specified as Müller objectives. For a play ω = 〈s0, s1, s2, . . .〉, let Inf(ω) be the
set { s ∈ S | s = sk for infinitely many k ≥ 0 } of states that appear infinitely
often in ω. We use colors to define objectives as in [10]. A 21/2-player game
(G, C, χ, F ⊆ P(C)) consists of a 21/2-player game graph G, a finite set C of
colors, a partial function χ : S ⇀ C that assigns colors to some states, and a
winning condition specified by a subset F of the power set P(C) of colors. The
winning condition defines subset Φ ⊆ Ω of winning plays, defined as follows:
Müller(F) = { ω ∈ Ω | χ(Inf(ω)) ∈ F }, that is the set of paths ω such that the
colors appearing infinitely often in ω is in F .

Sure, Almost-Sure, Positive Winning and Optimality. Given a player-1
objective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if
for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. A strategy
σ is almost-sure winning for player 1 from the state s for the objective Φ if for

440 K. Chatterjee

every player-2 strategy π, we have Prσ,π
s (Φ) = 1. A strategy σ is positive winning

for player 1 from the state s for the objective Φ if for every player-2 strategy π,
we have Prσ,π

s (Φ) > 0. The sure, almost-sure and positive winning strategies
for player 2 are defined analogously. Given an objective Φ, the sure winning set
〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1 has a sure winning
strategy. Similarly, the almost-sure winning set 〈〈1〉〉almost (Φ) and the positive
winning set 〈〈1〉〉pos (Φ) for player 1 is the set of states from which player 1 has
an almost-sure winning and a positive winning strategy, respectively. The sure
winning set 〈〈2〉〉sure(Ω\Φ), the almost-sure winning set 〈〈2〉〉almost (Ω\Φ) and the
positive winning set 〈〈2〉〉pos(Ω\Φ) for player 2 are defined analogously. It follows
from the definitions that for all 21/2-player game graphs and all objectives Φ, we
have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉pos(Φ). Computing sure, almost-sure and
positive winning sets and strategies is referred to as the qualitative analysis of
21/2-player games.

Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2, we define
the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as
the following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,π

s (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal strategies for player 2 are
defined analogously. Computing values and optimal strategies is referred to as
the quantitative analysis of 21/2-player games.

Determinacy. For sure winning, the 11/2-player and 21/2-player games coincide
with 2-player (deterministic) games where the random player is interpreted as
an adversary, i.e., as player 2. Theorem 1 states the classical determinacy and
complexity result for 2-player games with Müller objectives. Theorem 2 states
the quantitative determinacy for 21/2-player games with Müller objectives.

Theorem 1 (Qualitative determinacy). The following assertions hold.

1. ([16]). For all 2-player game graphs and Müller objectives Φ, the sure win-
ning sets 〈〈1〉〉sure(Φ) and 〈〈2〉〉sure(Ω \ Φ) = ∅ form a partition of S.

2. ([14]). The problem of deciding whether a state s is a sure winning state,
i.e., s ∈ 〈〈1〉〉sure(Φ), is PSPACE-complete for 2-player game graphs with
Müller objectives.

Theorem 2 (Quantitative determinacy [17]). For all 21/2-player game
graphs, for all Müller objectives Φ, and all states s, we have 〈〈1〉〉val (Φ)(s) +
〈〈2〉〉val (Ω \ Φ)(s) = 1.

3 The Complexity of Stochastic Müller Games

In this section we show that both the qualitative and quantitative problem for
stochastic Müller games can be decided in PSPACE, and from the lower bound

Stochastic Müller Games are PSPACE-Complete 441

for the special case of 2-player games we obtain the completeness result. Due to
space limitations we omit the details of qualitative analysis (proofs are available
in [3]); other proofs omitted for lack of space are also available in [3].

Theorem 3 (Qualitative complexity). Given a 21/2-player game graph G,
a Müller objective Φ, and a state s, it is PSPACE-complete to decide whether
s ∈ 〈〈1〉〉almost (Φ).

We now study the complexity of quantitative analysis of stochastic Müller games.
We start with a few definitions.

Definition 1 (Value classes). Given a Müller objective Φ, for every real
r ∈ [0, 1] the value class with value r is VC(Φ, r) = { s ∈ S | 〈〈1〉〉val (Φ)(s) = r }
is the set of states with value r for player 1. For r ∈ [0, 1] we denote by
VC(Φ, > r) =

⋃
q>r VC(Φ, q) the value classes greater than r and by VC(Φ, <

r) =
⋃

q<r VC(Φ, q) the value classes smaller than r.

Definition 2 (Boundary probabilistic states). Given a set U of states, a
state s ∈ U ∩ S© is a boundary probabilistic state for U if E(s) ∩ (S \ U) �= ∅,
i.e., the probabilistic state has an edge out of the set U . We denote by Bnd(U) the
set of boundary probabilistic states for U . For a value class VC(Φ, r) we denote
by Bnd(Φ, r) the set of boundary probabilistic states of value class r.

Observation. For all Müller objectives Φ, for a state s ∈ Bnd(Φ, r) we have
E(s)∩VC(Φ, > r) �= ∅ and E(s)∩VC(Φ, < r) �= ∅, i.e., the boundary probabilistic
states have edges to higher and lower value classes. For all Müller objectives Φ
we have Bnd(Φ, 1) = ∅ and Bnd(Φ, 0) = ∅.

Reduction of a Value Class. Given a set U of states, such that U is δ-live,
let Bnd(U) be the set boundary probabilistic states for U . We denote by GBnd(U)

the subgame G � U where every state in Bnd(U) is converted to an absorbing
state (state with a self-loop). Since U is δ-live, we have GBnd(U) is a subgame.
Given a value class VC(Φ, r), let Bnd(Φ, r) be the set of boundary probabilistic
states in VC(Φ, r). We denote by GBnd(Φ,r) the subgame where every boundary
probabilistic state in Bnd(Φ, r) is converted to an absorbing state. We denote by
GΦ,r = GBnd(Φ,r) � VC(Φ, r): this is a subgame since every value class is δ-live,
and δ-closed as all states in Bnd(Φ, r) are converted to absorbing states. We now
state two lemmas proved in [2].

Lemma 1 (Almost-sure reduction[2]). Let G be a 21/2-player game graph
and F ⊆P(C) be a Müller winning condition. Let Φ = Müller(F). For 0<r<1,
the following assertions hold.

1. Player 1 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in GΦ,r.

2. Player 2 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈2〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in GΦ,r.

442 K. Chatterjee

Lemma 2 (Almost-sure to optimality[2]). Let G be a 21/2-player game
graph and F ⊆ P(C) be a Müller winning condition. Let Φ = Müller(F). Let σ
be a strategy such that (a) σ is an almost-sure winning strategy from the almost-
sure winning states (〈〈1〉〉almost (Φ) in G); and (b) σ is an almost-sure winning
strategy for objective Φ ∪ Reach(Bnd(Φ, r)) in the game GΦ,r, for all 0 < r < 1.
Then σ is an optimal strategy.

Lemma 3. For all 21/2-player game graphs, for all Müller objectives Φ, there
exist optimal strategies σ and π for player 1 and player 2 such that the following
assertions hold:

1. for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1;

2. for all s ∈ S we have (a) Prσ,π
s (Reach(W1 ∪ W2)) = 1;

(b) Prσ,π
s (Reach(W1)) = 〈〈1〉〉val (Φ)(s); and (c) Prσ,π

s (Reach(W2)) =
〈〈2〉〉val (Φ)(s); where W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ).

Proof. Consider an optimal strategy σ that satisfies the conditions of Lemma 2,
and a strategy π that satisfies analogous conditions for player 2. Such strategies
exist by Lemma 1. For all r ∈ (0, 1), the strategy σ is almost-sure winning for
the objective Φ∪Reach(Bnd(Φ, r)) and the strategy π is almost-sure winning for
the objective Φ ∪ Reach(Bnd(Φ, r)), in the game GΦ,r. Thus we obtain that for
all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have (a) Prσ,π

s (Φ ∪ Reach(Bnd(Φ, r))) = 1;
and (b) Prσ,π

s (Φ ∪ Reach(Bnd(Φ, r))) = 1. It follows that for all r ∈ (0, 1), for all
s ∈ VC(Φ, r) we have Prσ,π

s (Reach(Bnd(Φ, r))) = 1. From the above condition
it easily follows that for all s ∈ S we have Prσ,π

s (Reach(W1 ∪ W2)) = 1. Since
σ and π are optimal strategies, all the requirements of the second condition are
fulfilled. Thus the strategies σ and π are witness strategies to prove the result.

Characterizing Values for 2 1/2-Player Müller Games. We now relate the
values of 21/2-player game graphs with Müller objectives with the values of a
Markov chain, on the same state space, with reachability objectives. Once the
relationship is established we obtain bound on preciseness of the values. We use
Lemma 3 to present two transformations to Markov chains.

Markov Chain Transformation. Given a 21/2-player game graph G with a
Müller objective Φ, let W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ) be the set of
almost-sure winning states for the players. Let σ and π be optimal strategies for
the players (obtained from Lemma 3) such that

1. for all r ∈ (0, 1), for all s ∈ VC(Φ, r) we have Prσ,π
s (Reach(Bnd(Φ, r))) = 1;

2. for all s ∈ S we have (a) Prσ,π
s (Reach(W1 ∪ W2)) = 1;

(b) Prσ,π
s (Reach(W1)) = 〈〈1〉〉val (Φ)(s); and (c) Prσ,π

s (Reach(W2)) =
〈〈2〉〉val (Φ)(s).

We first consider a Markov chain that mimics the stochastic process under σ
and π. The Markov chain G̃ = (S, δ̃) = MC1(G, Φ) with the transition function
δ̃ is defined as follows:

Stochastic Müller Games are PSPACE-Complete 443

1. for s ∈ W1 ∪ W2 we have δ̃(s)(s) = 1;
2. for r∈(0, 1) and s∈VC(Φ, r)\Bnd(Φ, r) we have δ̃(s)(t)=Prσ,π

s (Reach({t})),
for t∈Bnd(Φ, r) (since for all s∈VC(Φ, r) we have Prσ,π

s (Reach(Bnd(Φ, r)))
=1, the transition function δ̃ at s is a probability distribution);

3. for r ∈ (0, 1) and s ∈ Bnd(Φ, r) we have δ̃(s)(t) = δ(s)(t), for t ∈ S.

The Markov chain G̃ mimics the stochastic process under σ and π and yields
the following lemma.

Lemma 4. For all 21/2-player game graphs G and all Müller objectives Φ,
consider the Markov chain G̃ = MC1(G, Φ). Then for all s ∈ S we have
〈〈1〉〉val (Φ)(s) = Prs(Reach(W1)), that is, the value for Φ in G is equal to the
probability to reach W1 in the Markov chain G̃.

Second Transformation. We now transform the Markov chain G̃ to another
Markov chain Ĝ. We start with the observation that for r ∈ (0, 1), for all
states s, t ∈ Bnd(Φ, r) in the Markov chain G̃ we have Prs(Reach(W1)) =
Prt(Reach(W1)) = r. Moreover, for r ∈ (0, 1), every state s ∈ Bnd(Φ, r) has
edges to higher and lower value classes. Hence for a state s ∈ VC(Φ, r)\Bnd(Φ, r)
if we chose a state tr ∈ Bnd(Φ, r) and make the transition probability from s to
tr to 1, the probability to reach W1 does not change. This motivates the follow-
ing transformation: given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ)
with a Müller objective Φ, let W1 = 〈〈1〉〉almost (Φ) and W2 = 〈〈2〉〉almost (Φ)
be the set of almost-sure winning states for the players. The Markov chain
Ĝ = (S, δ̂) = MC2(G, Φ) with the transition function δ̂ is defined as follows:

1. for s ∈ W1 ∪ W2 we have δ̂(s)(s) = 1;
2. for r ∈ (0, 1) and s ∈ VC(Φ, r)\Bnd(Φ, r), pick t ∈ Bnd(Φ, r) and δ̂(s)(t) = 1;
3. for r ∈ (0, 1) and s ∈ Bnd(Φ, r) we have δ̂(s)(t) = δ(s)(t), for t ∈ S.

Observe that for δ>0 = { δ(s)(t) | s ∈ S©, t ∈ S, δ(s)(t) > 0 } and δ̂>0 =
{ δ̂(s)(t) | s ∈ S, t ∈ S, δ̂(s)(t) > 0}, we have δ̂>0 ⊆ δ>0∪{1}, i.e., the transition
probabilities in Ĝ are subset of transition probabilities in G. The following lemma
is immediate from Lemma 4 and the equivalence of the probabilities to reach W1

in G̃ and Ĝ. Lemma 6 follows from Lemma 5 and the results of [7,21]. Lemma 7
presents the basic ingredients of the algorithm for the quantitative analysis of
21/2-player Müller games.

Lemma 5. For all 21/2-player game graphs G and all Müller objectives Φ,
consider the Markov chain Ĝ = MC2(G, Φ). Then for all s ∈ S we have
〈〈1〉〉val (Φ)(s) = Prs(Reach(W1)), that is, the value for Φ in G is equal to the
probability to reach W1 in the Markov chain Ĝ.

Lemma 6. For all 21/2-player game graphs G = ((S, E), (S1, S2, S©), δ) and
all Müller objectives Φ, for all states s ∈ S\(W1∪W2) we have 〈〈1〉〉val (Φ)(s) =

p

q

444 K. Chatterjee

where p, q are integers with 0 < p < q ≤ δ
4·|E|
u , where δu = max{ q | δ(s)(t) =

p
q for p, q ∈ N, s ∈ S© and δ(s)(t) > 0 }; and W1 and W2 are the almost-sure
winning states for player 1 and player 2, respectively.

Lemma 7. Let G = ((S, E), (S1, S2, S©), δ) be a 21/2-player game with a Müller
objective Φ. Let P = (V0, V1, . . . , Vk) be a partition of the state space S, and let
r0 > r1 > r2 > . . . > rk be k-real values such that the following conditions hold:

1. V0 = 〈〈1〉〉almost (Φ) and Vk = 〈〈2〉〉almost (Φ);
2. r0 = 1 and rk = 0;
3. for all 1 ≤ i ≤ k − 1 we have Bnd(Vi) �= ∅ and Vi is δ-live;
4. for all 1 ≤ i ≤ k − 1 and all s ∈ S2 ∩ Vi we have E(s) ⊆

⋃
j≤i Vj;

5. for all 1 ≤ i ≤ k−1 we have Vi = 〈〈1〉〉almost (Φ∪Reach(Bnd(Vi))) in GBnd(Vi);
6. let xs = ri, for s ∈ Vi, and for all s ∈ S©, let xs satisfy xs =

∑
t∈E(s) xt ·

δ(s)(t).

Then we have 〈〈1〉〉val (Φ)(s) ≥ xs for all s ∈ S.

Algorithm for Quantitative Analysis. We now present a PSPACE algorithm
for quantitative analysis for 21/2-player games with Müller objectives Müller(F).
A PSPACE lower bound is already known for the qualitative analysis of 2-
player games with Müller objectives [14]. To obtain an upper bound we present
a NPSPACE algorithm. The algorithm is based on Lemma 7. Given a 21/2-
player game G = ((S, E), (S1, S2, S©), δ) with a Müller objective Φ, a state
s and a rational number r, the following assertion hold: if 〈〈1〉〉val (Φ)(s) ≥ r,
then there exists a partition P = (V0, V1, V2, . . . , Vk) of S and rational values
r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u , such that condi-

tions of Lemma 7 are satisfied, and s ∈ Vi with ri ≥ r. The witness P is the value
class partition and the rational values represent the values of the value classes.
From the above observation we obtain the algorithm for quantitative analysis
as follows: given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ) with a
Müller objective Φ, a state s and a rational r, to verify that 〈〈1〉〉val (Φ)(s) ≥ r, the
algorithm guesses a partition P = (V0, V1, V2, . . . , Vk) of S and rational values
r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u , and then verifies

that all the conditions of Lemma 7 are satisfied, and s ∈ Vi with ri ≥ r. Observe
that since the guesses of the rational values can be made with O(|G| · |S| · |E|)
bits, the guess is polynomial in size of the game. The condition 1 and the con-
dition 5 of Lemma 7 can be verified in PSPACE by the PSPACE qualitative
algorithms (see Theorem 3), and all the other conditions can be checked in poly-
nomial time. Since NPSPACE=PSPACE we obtain a PSPACE upper bound
for quantitative analysis of 21/2-player games with Müller objectives. The result
improves the previous 2EXPTIME algorithm (obtained by an exponential re-
duction of Müller objectives to parity objectives [19] and applying algorithms of
quantitative analysis for parity objectives [4]) for the quantitative analysis for
21/2-player games with Müller objectives.

Stochastic Müller Games are PSPACE-Complete 445

Theorem 4 (Quantitative complexity). Given a 21/2-player game graph G,
a Müller objective Φ, a state s, and a rational r in binary, it is PSPACE-complete
to decide if 〈〈1〉〉val (Φ)(s) ≥ r.

4 Union-Closed and Upward-Closed Objectives

We now consider two special classes of Müller objectives: namely, union-closed
and upward-closed objectives. We will show the quantitative analysis of both
these classes of objectives in 21/2-player games under succinct representation is
co-NP-complete. We first present these conditions.

1. Union-closed and basis conditions. A Müller winning condition F ⊆ P(C)
is union-closed if for all I, J ∈ F we have I ∪ J ∈ F . A basis condition
B ⊆ P(C), given as a set B specifies the winning condition F = { I ⊆ C |
∃B1, B2, . . . , Bk ∈ B.

⋃
1≤i≤k Bi = I }. A Müller winning condition F can

be specified as a basis condition only if F is union-closed.
2. Upward-closed and superset conditions. A Müller winning condition F ⊆

P(C) is upward-closed if for all I ∈ F and I ⊆ J ⊆ C we have J ∈ F . A
superset condition U ⊆ P(C), specifies the winning condition F = { I ⊆ C |
J ⊆ I for some J ∈ U }. A Müller winning condition F can be specified as a
superset condition only if F is upward-closed. Any upward-closed condition
is also union-closed.

The results of [14] showed that the basis and superset conditions are more suc-
cinct ways to represent union-closed and upward-closed conditions, respectively,
than the explicit representation. The following proposition was also shown in [14]
(see [14] for the formal description of the notion of succinctness and translabil-
ity). Proposition 2 follows from the results of [2].

Proposition 1 ([14]). A superset condition is polynomially translatable to an
equivalent basis condition.

Proposition 2. For all union-closed winning conditions F we have pure mem-
oryless optimal strategies exist for objective Müller(F) for all 21/2-player game
graphs, where a pure memoryless strategy uniquely chooses a successor at every
state independent of the history of the play.

Complexity of Basis and Superset Conditions. The results of [14] estab-
lished that deciding the winner in 2-player games (that is qualitative analysis
for 2-player game graphs) with union-closed and upward-closed conditions spec-
ified as basis and superset conditions is coNP-complete. The lower bound for
the special case of 2-player games, yields a coNP lower bound for the quanti-
tative analysis of 21/2-player games with union-closed and upward-closed condi-
tions specified as basis and superset conditions. We will prove a matching upper
bound. We prove the upper bound for basis conditions, and by Proposition 1 the
result also follows for superset conditions.

The Upper Bound for Basis Games. We present a coNP upper bound for
the quantitative analysis for basis games. Given a 21/2-player game graph and a

446 K. Chatterjee

Müller objective Φ = Müller(F), where F is union-closed and specified as a basis
condition defined by B, let s be a state and r be a rational given in binary. We
show that the problem whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in coNP. We
present a polynomial witness and polynomial time verification procedure when
the answer to the problem is “NO”. Since F is union-closed, it follows from
Proposition 2 that pure memoryless optimal strategy π exists for player 2. The
pure memoryless optimal strategy is the polynomial witness to the problem, and
once π is fixed we obtain a 11/2-player game graph Gπ . To present a polynomial
time verification procedure we present a polynomial time algorithm to compute
values in an MDP (or 11/2-player games) with basis condition B. We develop
some facts on end components [8,9] that will be useful for analysis of MDPs.

Definition 3 (End component). A set U ⊆ S of states is an end component
if U is δ-closed and the subgame graph G � U is strongly connected.

Lemma 8. [8,9] For all states s ∈ S and strategies σ ∈ Σ, we have
Prσ

s (Müller(E)) = 1, where E is the set of all end components of G.

Given a Müller condition F , let U = E ∩ { F ⊆ S | χ−1(F) ∈ F } be the set of
end components that are Müller sets. These are the winning end components.
Let Tend =

⋃
U∈U U be their union. Lemma 9 follows from Lemma 8.

Lemma 9. For all 11/2-player games and for all Müller objectives Müller(F)
we have 〈〈1〉〉val (Müller(F)) = 〈〈1〉〉val (Reach(Tend)).

Maximal End Components. An end component U ⊆ S is maximal in V ⊆ S
if U ⊆ V , and if there is no end component U ′ with U ⊂ U ′ ⊆ V . Given
a set V ⊆ S, we denote by MaxEC(V) the set consisting in all maximal end
components U such that U ⊆ V .

Polynomial Time Algorithm for MDPs with Basis Condition. Given
an 11/2-player game graph G, let E be the set of end components. Consider
a basis condition B = { B1, B2, . . . , Bk } ⊆ P(C), and let F be the union-
closed condition generated from B. The set of winning end-components are U =
E ∩ { F ⊆ S | χ−1(F) ∈ F }, and let Tend =

⋃
U∈U U . It follows from above that

the value function in G can be computed by computing the maximal probability
to reach Tend . Once the set Tend is computed, the value function for reachability
objective in 11/2-player game graphs can be computed in polynomial time by
linear-programming [11]. To complete the proof we present a polynomial time
algorithm to compute Tend .

Computing Winning End Components. The algorithm is as follows. Let
B be the basis for the winning condition and G be the 11/2-player game graph.
Initialize B0 = B and repeat the following:

1. let Xi =
⋃

B∈Bi
χ−1(B);

2. partition the set Xi into maximal end components MaxEC(Xi);
3. remove an element B of Bi such that χ−1(B) is not wholly contained in a

maximal end component to obtain Bi+1;

Stochastic Müller Games are PSPACE-Complete 447

until Bi = Bi−1. When Bi = Bi−1, let X = Xi, and every maximal end compo-
nent of X is an union of basis elements (all Y in X are members of basis elements,
i.e., χ−1(Y) ∈ B, and an basis element not contained in any maximal end com-
ponent of X is removed in step 3). Moreover, any maximal end component of G
which is an union of basis elements is a subset of an maximal end component
of X , since the algorithm preserves such sets. Hence we have X = Tend . The
algorithm requires |B| iterations and each iteration requires the decomposition
of an 11/2-player game graph into the set of maximal end components, which can
be achieved in O(|S| · |E|) time [9]. Hence the algorithm works in O(|B| · |S| · |E|)
time. This completes the proof and yields the following result.

Theorem 5. Given a 21/2-player game graph and a Müller objective Φ =
Müller(F), where F is an union-closed condition specified as a basis condition
defined by B or F is an upward-closed condition specified as a superset condi-
tion U , a state s and a rational r given in binary, it is coNP-complete to decide
whether 〈〈1〉〉val (Φ)(s) ≥ r.

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the AMS 138, 295–311 (1969)

2. Chatterjee, K.: Optimal strategy synthesis for stochastic Müller games. In: Seidl, H.
(ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 138–152. Springer, Heidelberg (2007)

3. Chatterjee, K.: The complexity of stochastic Müller games. Technical Report, UC
Berkeley, UCB/EECS-2007-110 (2007)

4. Chatterjee, K., Henzinger, T.A.: Strategy improvement and randomized subexpo-
nential algorithms for stochastic parity games. In: Durand, B., Thomas, W. (eds.)
STACS 2006. LNCS, vol. 3884, pp. 512–523. Springer, Heidelberg (2006)

5. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games.
In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113.
Springer, Heidelberg (2003)

6. Condon, A.: The complexity of stochastic games. Information and Computa-
tion 96(2), 203–224 (1992)

7. Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory. American Mathematical Society, vol. 13, pp. 51–73
(1993)

8. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443,
pp. 336–349. Springer, Heidelberg (1990)

9. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

10. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to
win infinite games? In: LICS 1997, pp. 99–110. IEEE Computer Society Press, Los
Alamitos (1997)

11. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

12. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC 1982,
pp. 60–65. ACM Press, New York (1982)

448 K. Chatterjee

13. Horn, F.: Dicing on the Streett. In: IPL (2007)
14. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: Jedrzejowicz,

J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 495–506. Springer,
Heidelberg (2005)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

16. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
17. Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic

Logic 63(4), 1565–1581 (1998)
18. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event

processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)
19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,

vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)
20. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. TCS 200(1-2), 135–183 (1998)
21. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs.

TCS 158, 343–359 (1996)

Solving Parity Games in Big Steps�

Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. This paper proposes a new algorithm that improves the com-
plexity bound for solving parity games. Our approach combines Mc-
Naughton’s iterated fixed point algorithm with a preprocessing step,
which is called prior to every recursive call. The preprocessing uses rank-
ing functions similar to Jurdziński’s, but with a restricted codomain, to
determine all winning regions smaller than a predefined parameter. The
combination of the preprocessing step with the recursive call guaran-
tees that McNaughton’s algorithm proceeds in big steps, whose size is
bounded from below by the chosen parameter. Higher parameters result
in smaller call trees, but to the cost of an expensive preprocessing step.
An optimal parameter balances the cost of the recursive call and the pre-
processing step, resulting in an improvement of the known upper bound

for solving parity games from approximately O(mn
1
2 c) to O(m n

1
3 c).

1 Introduction

Parity games have many applications in model checking [1,2,3,4,5,6] and syn-
thesis [5,1,7,8,9,10]. In particular, modal and alternating-time μ-calculus model
checking [5,4], synthesis [10,9] and satisfiability checking [5,1,7,8] for reactive
systems, module checking [6], and ATL* model checking [3,4] can be reduced to
solving parity games. This relevance of parity games led to a series of different
approaches to solving them [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25].

The complexity of solving parity games is still an open problem. All current
deterministic algorithms have complexity bounds which are (at least) exponen-
tial in the number of colors [11,12,15,16,17,19,25] (nO(c)), or in the squareroot
of the number of game positions [13,24,25] (nO(

√
n)). Practical considerations

suggest to assume that the number of colors is small compared to the number
of positions. Indeed, all listed applications but μ-calculus model checking are
guaranteed to result in parity games where the number of states is exponential
in the number of colors. In μ-calculus model checking, the size of the game is de-
termined by the product of the transition system under consideration (which is
usually large), and the size of the formula (which is usually small). The number
of colors is determined by the alternation depth of the specification, which, in
turn, is usually small compared to the specification itself. Algorithms that are
exponential only in the number of colors are thus considered the most attractive.
� This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 449–460, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

450 S. Schewe

The first representatives of algorithms in the complexity class nO(c) follow
the iterated fixed point structure induced by the parity condition [11,12,17].
The iterated fixed point construction leads to a time complexity of O(m nc−1)
for parity games with m edges, c colors, and n game positions. The upper com-
plexity bound for solving parity games was first reduced by Browne et al. [16] to
O

(
mn�0.5c�+1

)
, and slightly further by Jurdziński [19] to O

(
c m (n

�0.5c�)
�0.5 c�).

The weakness of recursive algorithms that follow the iterated fixed point struc-
ture [11,12,17] is the potentially incremental update achieved by each recur-
sive call. Recently, a big-step approach [24] has been proposed to reduce the
complexity of McNaughton’s algorithm for games with a high number of colors
(c ∈ ω(

√
n)) to the bound nO(

√
n) known from randomized algorithms [13,25].

We discuss a different big-step approach that improves the complexity for
the relevant lower end of the spectrum of colors, resulting in the complex-
ity O

(
m

(
κ n
c

)γ(c)) for solving parity games, where κ is a small constant and
γ(c) = c

3 + 1
2 − 1

3c − 1
� c

2 �� c
2 � if c is even, and γ(c) = c

3 + 1
2 − 1

� c
2 �� c

2 � if c is odd.
To guarantee big update steps, we use an algorithm which is inspired by

Jurdziński’s [19] approach for solving parity games. His approach is adapted by
restricting the codomain of the used ranking function. The resulting algorithm
is exploited in a preprocessing step for finding winning regions bounded by the
size of a parameter. Compared to [24], this results in a significant cut in the cost
for finding small winning regions, since the running time for the preprocessing
algorithm is polynomial in the parameter, and exponential only in the number
of colors (O

(
(π+�0.5c�

π)
)
). Using a parameter of approximately 3

√
c n2 results in

the improved O
(
m

(
κ n
c

)γ(c)) complexity bound for solving parity games.

2 Preliminaries

2.1 Parity Games

A parity game P = (Veven , Vodd , E, α) consists of a finite directed game graph
D = (Veven �Vodd , E) without sinks, whose vertices are partitioned into two sets
Veven and Vodd , called the game positions of player even and odd, respectively,
and an evaluation function α : Veven � Vodd → N that maps each game position
v to an integer value α(v), called the color of v. For technical reasons we addi-
tionally require that the minimal color is 0, and use games with highest color d
and games with c = d + 1 colors as synonyms. We use V = Veven � Vodd for the
game positions, and extend the common intersection and subtraction operations
on digraphs to parity games. (P ∩ F and P � F thus denote the parity games
resulting by restricting the game graph D of P to D∩F and D�F , respectively.)

Plays. Intuitively, a game is played by placing a pebble on a vertex v ∈ Veven �
Vodd of D. Whenever the pebble is on a position v ∈ Veven , player even chooses an
edge e = (v, v′) ∈ E originating in v, and moves the pebble to v′. Symmetricly, if
the pebble is on a position v ∈ Vodd , player odd chooses an edge e = (v, v′) ∈ E

Solving Parity Games in Big Steps 451

originating in v, and moves the pebble to v′. In this way, they successively
construct an infinite play π = v0v1v2v3 . . . ∈ (Veven � Vodd)ω .

A play is evaluated by the highest color that occurs infinitely often. Player
even (odd) wins a play π = v0v1v2v3 . . . if the highest color occurring infinitely
often in the sequence α(π) = α(v0)α(v1)α(v2)α(v3) . . . is even (odd).

Strategies. Let D = (Veven � Vodd , E) be a finite game graph with positions
V = Veven � Vodd . A strategy for player even is a function f : V ∗Veven → V
which maps each finite history of a play that ends in a position v ∈ Veven to a
successor v′ of v. (That is, there is an edge (v, v′) ∈ E from v to v′.) A play is
f -conform if every decision of player even in the play is in accordance with f .
A strategy is called memoryless if it only depends on the current position. A
memoryless strategy for even can be viewed as a function f : Veven → V such
that (v, f(v)) ∈ E for all v ∈ Veven . For a memoryless strategy f of player even,
we denote with Df = (Veven � Vodd , Ef) the game graph obtained from D by
deleting all transitions from states in Veven that are not in accordance with f .
(That is, Df is a directed graph where all positions owned by player even have
outdegree 1.) The analogous definitions are made for player odd.

A strategy f of player even (odd) is called v-winning if all f -conform plays
that start in v are winning for player even (odd). A position v ∈ V is v-winning
for player even (odd) if even (odd) has a v-winning strategy. We call the sets
of v-winning positions for player even (odd) the winning region of even (odd).
Parity games are memoryless determined:

Theorem 1. [11] For every parity game P, the game positions are partitioned
into a winning region Weven of player even and a winning region Wodd of
player odd. Moreover, player even and odd have memoryless strategies that
are v-winning for all positions in their respective winning region.

Dominions and Attractors. We call a subset D ⊆ Wσ of a winning region
a dominion of player σ ∈ {even,odd}, if player σ has a memoryless strategy f
that is v-winning for all v ∈ D, such that D is not left in any f -conform play
(Ef ∩D×V �D = ∅). The σ-attractor A ⊆ V of a set F ⊆ V of game positions is
the set of those game positions, from which player σ has a memoryless strategy
to force the pebble into a position in F . The σ-attractor A of a set F can be
defined as the least fixed point of sets that contain F , and that contain a game
position v of player σ (σ) if they contain some successor (all successors) of v.
(For convenience, we use odd and even for even and odd, respectively.)

Constructing this least fixed point is obviously linear in the number of edges
of the parity game, and we can fix a memoryless strategy (the attractor strategy)
for player σ to reach F in finitely many steps during this construction.

Lemma 1. For a given parity game P = (Veven , Vodd , E, α), and a set F of game
positions, we can compute the σ-attractor A of F and a memoryless strategy for
σ on A � F to reach F in finitely many steps in time O(m). 	

For a given dominion D for player σ in a parity game P , we can reduce solving
P to computing the σ-attractor A of D, and solving P � A.

452 S. Schewe

Lemma 2. [24] Let P be a parity game, D a dominion of player σ ∈ {even, odd}
for P with σ-attractor A. Then the winning region (and strategy) of player σ in P
is her winning region (and strategy) in the subgame P �A. The winning strategy
of player σ can be composed by her winning strategy on P � A, her attractor
strategy (on A � D), and her winning strategy on her dominion (in P ∩ D).

2.2 A Ranking Function Based Approach to Solving Parity Games

So far, Jurdziński’s algorithm [19] for solving parity games has been the technique
with the best complexity bound. His algorithm draws from the comparably small
codomain of the used ranking function (the progress measure).

The method for computing small dominions discussed in Section 3 adopts
his techniques by restricting the codomain of the ranking function, sacrificing
completeness. Some of the theorems stated in this subsection are thus slightly
more general than the theorems in [19], but they are arranged such that the
proofs provided in [19] can be applied without changes.

For a parity game P = (Veven , Vodd , E, α) with maximal color d, a σ-
progress measure is, for σ ∈ {even, odd}, a function ρ : Veven � Vodd → Mσ

whose codomain Mσ ⊆ {f :{0, . . . , d} → N | f(c)=0 if c is σ, and f(c) ≤
|α−1(c)| otherwise}∪{} contains a maximal element and a set of functions
from {0, . . . , d} to the integers. The codomain Mσ satisfies the requirements that
every σ (∈ {even,odd}) integer ≤ d is mapped to 0, while all other integers c are
mapped to a value bounded by the number |α−1(c)| of c-colored game positions.
(Jurdziński uses the maximal codomain Mσ∞ defined by replacing containment
with equality.) For simplicity, we require downward closedness: if Mσ contains
a function f ∈ Mσ, then every function f ′ which is pointwise smaller than f
(f ′(c) ≤ f(c)∀c ≤ d) is also contained in Mσ.

For each color c ≤ d, we define a relation �c ⊆ Mσ × Mσ. �c is the smallest
relation that contains {} × Mσ and a pair of functions (f, f ′) ∈ �c if there
is a color c′ ≥ c such that f(c′) > f ′(c′), and f(c′′) = f ′(c′′) holds true for all
colors c′′ > c′, or if c is σ and f(c′) = f ′(c′) holds true for all c′ ≥ c. That is,
�c is defined by using the lexicographic order, ignoring all colors smaller than
c. f needs to be greater than f ′ by this order, and strictly greater if c is σ. �0

defines an order � on Mσ (the lexicographic order). From this order, we infer
the preorder � on progress measures, which requires that � is satisfied pointwise
(ρ � ρ′ ⇔ ∀v ∈ V. ρ(v) � ρ′(v)). We call a σ progress measure ρ valid iff every
position v ∈ Vσ has some successor v′ ∈ V with ρ(v)�α(v) ρ(v′), and if, for every
position v ∈ Vσ and every successors v′ ∈ V of v, ρ(v) �α(v) ρ(v′) holds true.

Let, for a σ progress measure ρ, ‖ρ‖ = V � ρ−1() denote the game positions
that are not mapped to the maximal element of Mσ. A valid σ progress
measure ρ serves as a witness for a winning strategy for player σ on ‖ρ‖: If we
fix a memoryless strategy f for player σ that satisfies ρ(v) �α(v) ρ(f(v)) for all
v ∈ Vσ, then every cycle v1v2 . . . vl = v1 with maximal color cmax = α(v1) that is
reachable in an f -conform play satisfies ρ(v1)�α(v1)ρ(v2)�α(v2) . . .�α(vl−1)ρ(vl).
If cmax is not σ, this can be relaxed to ρ(v1) �cmax ρ(v2) �cmax−1 ρ(v3) �cmax−1

. . . �cmax−1 ρ(vl), which is only satisfied if ρ(vi) = holds for all i = 1, . . . , l.

Solving Parity Games in Big Steps 453

Theorem 2. [19] Let P = (Veven , Vodd , E, α) be a parity game with valid
σ progress measure ρ. Then player σ wins on ‖ρ‖ with any memoryless winning
strategy that maps a position v ∈ ‖ρ‖ ∩ Vσ to a position v′ with ρ(v) �α(v) ρ(v′).

Such a successor must exist, since the progress measure is valid. The �-least
valid σ progress measure is well defined and can be computed efficiently.

Theorem 3. [19] The �-least valid σ progress measure ρμ exists and can, for
a parity game with m edges and c colors, be computed in time O(c m |Mσ|).

When using the maximal codomain Mσ
∞, which contains the function ρ that

assigns each σ value c to ρ(c) = |α−1(c)|, for the progress measures, the �-least
valid σ progress measure ρμ determines the complete winning region of player σ.

Theorem 4. [19] For a parity game P = (Veven , Vodd , E, α), and for the
codomain Mσ

∞ for the progress measures, ‖ρμ‖ coincides with the winning region
Wσ of player σ for the �-least valid σ progress measure ρμ.

For parity games with c colors, the size |Mσ
∞| of the maximal codomain can be

estimated by (n
�0.5c�)

�0.5c� + 1 if σ is even, and by (n
�0.5c�)

�0.5c� + 1 if σ is odd.

Corollary 1. [19] Parity games with three colors can be solved and a winning
strategy for the player who wins on the highest color constructed in time O(m n).

3 Computing Small Dominions

Computing small dominions efficiently is an essential step in the algorithm in-
troduced in Section 4. In this section, we show that we can efficiently compute
a dominion of either player, which is guaranteed to contain all dominions with
size bounded by a parameter π. To compute such a dominion, we draw from the
efficient computation of the �-least valid σ progress measure (Theorem 3).

Instead of using Jurdziński’s codomain Mσ∞, we use the smaller codomain
Mσ

π for the progress measures, which contains only those functions f that satisfy
∑d

c=0 f(c) ≤ π for some parameter π ∈ N. (d denotes the highest color of the
parity game). The size of Mσ

π can be estimated by |Mσ
π| ≤ (π + �0.5(d + 1)�

π) + 1.
Using Mσ

π instead of Mσ∞, ‖ρμ‖ contains all dominions of player σ of size
≤ π + 1 (where ρμ denotes the �-least valid σ progress measures).

Theorem 5. Let P = (Veven , Vodd , E, α) be a parity game, and let D ⊆ V be a
dominion of player σ ∈ {even, odd} of size |D| ≤ π + 1. Then there is a valid σ
progress measure ρ : V → Mσ

π with F = ‖ρ‖.

Proof. Let P ′ = P ∩ D be the restriction of P to D. To solve P ′, we can use
the maximal codomain Mσ

∞
′. Since D is a dominion of player σ for P , she has

a winning strategy f on the complete subgame P ′, and the �′-least progress
measure ρ′μ for this codomain satisfies ‖ρ′μ‖ = D by Theorem 4. Since D has size
|D| ≤ π + 1, it contains at most π postions with σ color (at least one position
needs to have σ color), and thus ρ′μ is in Mσ

π
′ (and Mσ

π
′ = Mσ

∞
′ holds true).

454 S. Schewe

Since D is a dominion of player σ for P , all positions in Vσ ∩ D have only
successors in D, and we can extend ρ′μ to a valid σ progress measue ρ for P by
setting ρ(v) = ρ′μ(v) for all v ∈ D, and ρ(v) = otherwise. ρ is by construction
a valid σ progress measure in Mσ

π that satisfies ‖ρ‖ = D. 	

By Theorem 3, we can compute the �-least valid σ progress measure ρμ in time
O(c m |Mσ

π|), and by Theorem 2, we can construct a winning strategy for player
σ on ‖ρμ‖ within the same complexity bound.

Corollary 2. For a given parity game P with c colors and m edges, we can
construct a forced winning region F for player σ that contains all forced winning
regions F ′ of size |F ′| ≤ π + 1 in time O

(
c m (π + �0.5c�

π)
)
. A winning strategy

for player σ on F can be constructed within the same complexity bound. 	

4 Solving Parity Games in Big Steps

The algorithm proposed in this paper accelerates McNaughton’s iterated fixed
point approach for solving parity games [11,12,17] by using the approximation
technique discussed in the previous section to restrict the size of the call tree.

McNaughton’s Algorithm. McNaughton’s algorithm, as depicted below in
Procedure McNaughton, takes a parity game P = (Veven , Vodd , E, α) as input
and returns the ordered pair (Weven , Wodd) of winning regions for both players.

Procedure McNaughton(P):

1. set d to the highest color occurring in P
2. if d = 0 then return (V, ∅)
3. set (σ, σ) to (even,odd) if d is even, and to (odd,even) otherwise
4. set Wσ to ∅
5. repeat

(a) set P ′ to P� σ-Attractor(α−1(d),P)
(b) set (W ′

even , W ′
odd) to McNaughton(P ′)

(c) if W ′
σ = ∅ then

i. set Wσ to V � Wσ

ii. return (Weven , Wodd)
(d) set Wσ to Wσ∪ σ-Attractor(W ′

σ , P)
(e) set P to P� σ-Attractor(W ′

σ , P)

Evaluating one-color games is trivial, and Procedure McNaughton returns
the winning regions for this case without further computations (line 2, this case
servers as induction basis for the correctness prove).

Procedure McNaughton computes in every recursive call (line 5b) a dominion
of player σ for P : Player σ has (by induction hypothesis) a winning strategy f
for Wσ in P ′ and no f -conform strategy starting in the statespace V ′ of P ′ can
leave V ′ in P , since V ′ is the complement of a σ-attractor (line 5a). Solving P
can thus be reduced to constructing the σ-attractor Aσ of Wσ (line 5d), and
solving P � Aσ (line 5e).

Solving Parity Games in Big Steps 455

If the recursive call (line 5b) provides the result that player σ wins from every
position in P ′, she wins from every position in P (following her winning strategy
for P ′ in V ′ and an attractor strategy to d-colored positions (line 5a) otherwise),
and Procedure McNaughton terminates (lines 5c − 5cii).

Proceeding in Big Steps. As observed by Jurdziński, Paterson and Zwick [24],
McNaughton’s algorithm can be adopted by computing any dominion of player
σ (instead of the particular dominion returned by the recursive call). In [24],
this observation is exploited by performing a brute-force search for dominions of
size

√
n (where n = |P| denotes the number of game positions), and performing

a recursive call only if no such dominion exists. The cost for each brute-force
search is n

√
n, which coincides with the upper bound on the size of the call tree,

improving the complexity bound for the theoretical case of parity games with a
high number of colors – c ∈ ω(

√
n) – to O(n

√
n).

Brute-force search, however, is too expensive, and does not improve the com-
plexity bound for the common case that the number of colors is small. We there-
fore propose to use the efficient approximation technique introduced in Section 3
instead. As a further difference, we propose to perform a recursive call after each

Procedure Winning-Regions(P):

1. set d to the highest color occurring in P
2. if d = 0 then return (V, ∅) – one color ⇒ use McNaughton’s [11,12,17] algorithm

3. set (σ, σ) to (even,odd) if d is even, and to (odd,even) otherwise
4. set n to the size |V | of P
5. if d = 2 then – three colors ⇒ use Jurdziński’s [19] algorithm

(a) set Weven to Approximate(P , n, even) – c.f. Corollary 1

(b) return (Weven , V � Weven)
6. set Wσ to ∅
7. repeat

(a) if d > 2 then – two colors ⇒ use McNaughton’s [11,12,17] algorithm

i. set W ′
σ to σ-Attractor(Approximate(P , π(n, d + 1), σ), P) – c.f. Corollary 2

ii. set Wσ to Wσ ∪ W ′
σ

iii. set P to P � W ′
σ

(b) set P ′ to P� σ-Attractor(α−1(d), P)
(c) set (W ′

even , W ′
odd) to Winning-Regions(P ′)

(d) if W ′
σ = ∅ then

i. set Wσ to V � Wσ

ii. return (Weven , Wodd)
(e) set Wσ to Wσ∪ σ-Attractor(W ′

σ , P)
(f) set P to P� σ-Attractor(W ′

σ , P)

Fig. 1. Procedure Winning-Regions(P) returns the ordered pair (Weven , Wodd) of win-
ning regions for player even and odd, respectively. V and α denote the game positions
and the coloring function of the parity game P . Approximate(P , π, σ) computes a do-
minion for player σ, which contains all dominions of player σ of size less than or equal
to π + 1 (c.f. Corollary 2). σ-Attractor(F, P) computes the respective σ-attractor of a
set F of game positions in a game parity P (c.f. Lemma 1).

456 S. Schewe

approximation step, resulting in the guarantee that the progress (that is, the set
of evaluated positions) in each iteration step exceeds the size defined by the
chosen parameter. The resulting algorithm is depicted in Figure 1.

The set W ′
σ computed in line 7ai is the σ-attractor of the dominion of player

σ in P computed by the approximation procedure (c.f. Corollary 2) introduced
in Section 3, and thus itself a dominion of player σ. The set W ′′

σ computed
in the recursive call (line 7c) is a dominion of player σ in P � W ′

σ, and thus
D = W ′

σ ∪ W ′′
σ is a dominion in P . If the size of D does not exceed the chosen

parameter by at least two, D must be contained in the dominion computed in
Approximate(P , π(n, d + 1), σ), and W ′′

σ is empty. In this case, the procedure
terminates (line 7d), otherwise, we obtain a progress of at least π(n, d + 1) + 2.

While bigger parameters slow down the approximation procedure (c.f. Corol-
lary 2), they thus restrict the size of the call tree. The best results are obtained
if the parameter is chosen such that the cost of calling the approximation pro-
cedure (line 7ai) and the cost of the recursive call (line 7c) are approximately
equivalent. If c is of reasonable size (that is, in O(

√
n)), this is the case if we set

the parameter approximately to 3
√

c n2. (The function β defined below for the
proof of the complexity quickly converges to 2

3 .)
Starting point for the complexity estimation is the case of three colors, where

we use Jurdziński’s algorithm [19] (Corollary 1). (Skipping lines 5 − 5b moves
the induction basis further down, resulting in the complexity of O(m n1.5) for
the case of three colors. The optimization obtained by using [19] for three-color
games accounts for the − 1

�0.5c��0.5c� part of the function γ introduced below.)
For fixed numbers of colors, the resulting complexities evolve as follows:

number of colors 3 4 5 6 7 8 · · ·
approximation complexity - O(m n) O(m n1 1

2) O(m n2) O(m n2 1
3) O(m n2 3

4) · · ·
chosen parameter πc(n) -

√
n

√
n

3√
n2 12√

n7 16√
n11 · · ·

number of iterations n
πc(n) -

√
n

√
n 3√n

12√
n5 16√

n5 · · ·
solving complexity O(m n) O(m n1 1

2) O(m n2) O(m n2 1
3) O(m n2 3

4) O(m n3 1
16) · · ·

The approximation complexity for c + 1 colors is chosen to coincide with
the complexity of solving a game with c colors. (Its complexity thus coincides
with the complexity of each iteration of the repeat loop). The parameter πc(n) is
chosen to result in this complexity, and the number of iterations is ic(n) = n

πc(n) ,
results from this choice. Finally, the resulting complexity for solving games with
c + 1 colors is ic(n) times the complexity for solving parity games with c colors.

Correctness. In this paragraph, we demonstrate that Procedure Winning-
Regions computes the winning regions correctly.

Theorem 6. For a given parity game P, Procedure Winning-Regions computes
the complete winning regions of both players.

Proof. We prove the claim by induction. Let d denote the highest color of P .

Induction Basis (d = 0, d = 2): For d = 0, the highest color on every path
is obviously 0, and every strategy for player even is winning. For d = 2, the
algorithm follows Jurdziński’s [19] algorithm (c.f. Theorem 4 and Corollary 1).

Solving Parity Games in Big Steps 457

Induction Step (d �→ d + 1): Let P be a parity game with highest color d + 1.
The call of the Procedure Approximate in line 7ai provides a (possibly empty)

dominion D for player σ (Theorem 5). The σ-attractor of this set is then added
to the winning region of σ (line 7aii), and subtracted from P , which is safe by
Lemma 2.

In line 7b, the σ-attractor A of the set of states with color d + 1 is subtracted
from P , and the resulting parity game P ′ = P � A is solved by recursively
calling the Procedure Winning-Regions (line 7c). Since the highest color of P ′
is ≤ d, the resulting winning regions are correct by induction hypothesis. W ′′

σ is
a dominion of player σ in P ′, and, due to the σ-attractor construction, also in
P . If W ′′

σ is non-empty, then the σ-attractor of this set is added to the winning
region of σ (line 7e), and subtracted from P (line 7f), which is safe by Lemma 2.

Since the size of P is strictly reduced in every iteration of the loop, the set
W ′′

σ returned after the recursive call in line 7c is eventually empty, and the
procedure terminates. When W ′′

σ is empty, player σ wins from all positions in
(the remaining) parity game P by following a memoryless strategy that agrees
on every position in P ′ with a memoryless winning strategy f on P ′, makes an
arbitrary (but fixed) choice for positions with color d+1, and follows an attractor
strategy (from the σ-attractor construction of line 7b) on the remaining positions.
An f -conform play either eventually stays in P ′, in which case it is winning for
player σ by induction hypothesis, or always eventually visits a position with
color d + 1, in which case d + 1 is the highest color that occurs infinitely many
times. Since d + 1 is σ, player σ wins in this case, too. 	

Complexity. While the correctness of the algorithm is independent of the cho-
sen parameter, its complexity crucially depends on this choice. We will choose
the parameter such that the complexity for the recursive call (line 7c) coincides
with the complexity of computing the approximation (line 7ai).

First, we show that the Procedure Winning-Regions proceeds in big steps.

Lemma 3. For every parameter π(n, c), the main loop of the algorithm is iter-
ated at most

⌊
n

π(n,c)+2

⌋
+ 1 times.

Proof. The σ-attractor W ′
σ of the computed approximation D (line 7ai) and the

winning region W ′′
σ of σ are dominions for σ on P and P � W ′

σ, respectively.
Thus, their union U = W ′

σ ∪ W ′′
σ is a dominion on P . If the size of U does not

exceed π+1, than U is contained in D by Corollary 2. In this case, W ′′
σ is empty,

and the loop terminates. Otherwise, a superset of U is subtracted from P during
the iteration (line 7aiii and 7f), which can happen at most

⌊
n

π(n,c)+2

⌋
times. 	

Building on this lemma, it is simple to define the parameter π such that
the requirement of equal complexities is satisfied: We fix the function γ such
that γ(c)= c

3+1
2− 1
�0.5c��0.5c� if c is odd, and γ(c)= c

3+ 1
2− 1

3c− 1
�0.5c��0.5c� if c is

even, and β(c) = γ(c−1)
�0.5c� . Finally, we choose π(n, c) to be the smallest natural

number that satisfies n
π(n,c)+2 < n1−β(c)

2 3√c
− 1 (π(n, c) ≈ 2 3

√
cnβ(c)).

458 S. Schewe

Theorem 7. Solving a parity game P with c > 2 colors, m edges, and n game
positions can be performed in time O

(
m

(
κ n
c

)γ(c)). (κ is a small constant.)

Proof. First we estimate the running time of the procedure without the recursive
calls. To estimate the running time of the approximation algorithm (π(n, c) +
�0.5c�)�0.5c� can be estimated by κ1(κ2π(n, c))�0.5c�, and the running time of
each iteration step (plus the part before the loop (lines 1 − 6) and minus the
recursive call) can be estimated by κ3 m

3
√

(c−1)!
(κ4 n)γ(c−1). (κ1, κ2, κ3 and κ4 are

suitable constants.) We show by induction that the overall running time of the
procedure can be estimated by κ3 m

3√
c!

(κ4 n)γ(c).

Induction Basis (c ≤ 3): For parity games with one or two and with three colors,
we use the algorithms of McNaughton and Jurdziński, respectively, resulting in
the complexities O(n), O(m n) and O(m n) = O(m nγ(3)), respectively.

Induction Step (c �→ c + 1): By induction hypothesis, the cost of every recursive
call can (as well as the remaining cost of each iteration step) be estimated by

κ3 m
3
√

(c−1)!
(κ4 n)γ(c−1). Since Lemma 3 implies that the loop is iterated at most

⌊
n1−β(c)

2 3√c

⌋
times, the claim follows immediately (γ(c) = γ(c − 1) + 1 − β(c)). 	

If we impose the restriction that c is not linear in
√

n, that is, if we assume that
c ∈ o(

√
n), this coarse estimation already suffices to show that we can choose

any value higher than 1, 2
√

2e, and (2e)1.5 for κ2, κ4, and κ, respectively.

Strategies. If we want to construct the winning strategies of one or both play-
ers, the complexity is left unchanged in most cases. The only exception is the
construction of winning strategies for player odd in three-color games.

Theorem 8. The algorithm can be extended to compute the winning strategies
for both players. The winning strategy for player odd on her complete winning
region in s parity game with three colors can be constructed in time O(m n1.5).
In all other cases, constructing the winning strategies does not increase the com-
plexity of the algorithm.

Proof. Extending the procedure to return winning strategies for both players on
their respective winning regions only comprises fixing an arbitrary strategy for
player odd in the trivial case of single-color games (line 2), computing winning
strategies for both players for three-color games (line 5a), computing winning
strategies for player σ in the approximation procedure in line 7ai, computing
the attractor strategies in lines 7ai, 7b, and 7e, and fixing arbitrary strategies
for d-colored positions prior to returning the winning regions in line 7aiii. By
the Corollaries 1 and 2, and by Lemma 1, all these extension with the exception
of constructing the winning strategy of player odd for games with three colors
(line 5a) can be made without changing the complexity.

Computing the winning strategy of player odd immediately would increase
the complexity of the algorithm. For these three-color games, we therefore post-
pone computing the strategies of player odd till after solving the complete game
by pushing the respective three-color game (or rather its intersection with the

Solving Parity Games in Big Steps 459

winning region of player odd) on a solve-me-later stack. While postponing the
construction of the strategies for player odd in these subgames, we compute a
partial strategy for player odd that can be completed to a winning strategy on
her complete winning region by filling in winning strategies for these subgames.

Completing the strategies after solving the complete game is cheaper, because
solving most of the three-color games becomes obsolete: If the recursive call (line
7c) returns a non-empty set W ′′

σ , then the set W ′′
σ is discarded, and it is safe to

delete all those games from the top of the solve-me-later stack that refer to W ′′
σ .

As a result, we only need to solve the subgames remaining on the stack after
the parity game P has been solved to complete the winning strategies. Since the
sum of the sizes of these games is bounded by the size of the complete game
P , this step can be performed in time O(m n1.5) (using the just established
complexity bound for solving games with four colors) if P has n game positions
and m edges, independent of the number of colors of P . 	

5 Conclusions

We proposed a novel approach to solving parity games, which reduces the
complexity bound for solving parity games from O

(
c m (n

�0.5c�)
�0.5 c�) [19] to

O
(
m

(
κ n
c

)γ(c)) for γ(c) = c
3+ 1

2− 1
3c − 1

� c
2 �� c

2 � if c is even, and γ(c) = c
3+ 1

2− 1
� c

2 �� c
2 �

if c is odd. (κ is a small constant that can be fixed to approximately (2e)1.5).
This reduces the exponential factor from � c

2� to less than c
3 + 1

2 . It is, after
the reduction from c − 1 [11,12,17] to � c

2� + 1 by Browne et al. [16], the second
improvement that reduces the exponential growth with the number of colors.

Besides solving parity games, we are often interested in winning strategies
for the players, since they serve as witnesses and counter examples in model
checking, and as models in synthesis. When constructing these strategies, the
improvement in the complexity of the discussed approach is even higher. Con-
structing winning strategies for both players increase the complexity of the pro-
posed algorithm only for parity games with three colors, where the complexity
increases slightly from O(m n) to O(m n1.5). The best previously known bound
for constructing winning strategies [19] has been O

(
c m (n

�0.5c�)
�0.5 c�).

The suggested approach thus provides a significantly improved complexity
bound for solving parity games with more than 2, and up to o(

√
n) colors.

References

1. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27,
333–354 (1983)

2. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of
μ-calculus. In: CAV, pp. 385–396 (1993)

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control:
Dynamic programs for omega-regular objectives. In: Proc. LICS, June 2001, pp.
279–290. IEEE Computer Society Press, Los Alamitos (2001)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

460 S. Schewe

5. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

6. Kupferman, O., Vardi, M.Y.: Module checking revisited. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997)

7. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

8. Schewe, S., Finkbeiner, B.: The alternating-time μ-calculus and automata over
concurrent game structures. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp.
591–605. Springer, Heidelberg (2006)

9. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. LICS, pp. 255–264. IEEE Computer Society Press, Los
Alamitos (2006)

10. Schewe, S., FinkbUeiner, B.: Synthesis of asynchronous systems. In: LOPSTR 2006,
pp. 127–142. Springer, Heidelberg (2006)

11. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl.
Logic 65(2), 149–184 (1993)

12. Emerson, E.A., Lei, C.: Efcient model checking in fragments of the propositional μ-
calculus. In: Proc. LICS, pp. 267–278. IEEE Computer Society Press, Los Alamitos
(1986)

13. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Inf. Comput. 117(1), 151–155 (1995)

14. Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis, Com-
puter Science Department, University of California, Berkeley (1995)

15. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158(1–2), 343–359 (1996)

16. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algorithm
for the evaluation of fixpoint expressions. Theoretical Computer Science 178(1–2),
237–255 (1997)

17. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

18. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters 68(3), 119–124 (1998)

19. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Ti-
son, S. (eds.) STACS2000.LNCS, vol. 1770, pp. 290–301. Springer,Heidelberg (2000)

20. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

21. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer,
Heidelberg (2003)

22. Lange, M.: Solving parity games by a reduction to SAT. In: Majumdar, R., Jur-
dziski, M. (eds.) Proc. Int. Workshop on Games in Design and Verification (2005)

23. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 436–524.
Springer, Heidelberg (2006)

24. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proc. SODA, ACM/SIAM, pp. 117–123 (2006)

25. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2),
210–229 (2007)

Efficient and Expressive Tree Filters

Michael Benedikt1 and Alan Jeffrey2

1 Computing Laboratory, Oxford University
2 Bell Labs, Alcatel-Lucent

Abstract. We investigate streaming evaluation of filters on XML
documents, evaluated both at the root node and at an arbitrary node.
Motivated by applications in protocol processing, we are interested in
algorithms that make one pass over the input, using space that is inde-
pendent of the data and polynomial in the filter. We deal with a logic
equivalent to the XPath language, and also an extension with an Until
operator. We introduce restricted sublanguages based on looking only at
“reversed” axes, and show that these allow polynomial space streaming
implementations. We further show that these fragments are expressively
complete. Our results make use of techniques developed for the study of
Linear Temporal Logic, applied to XML filtering.

1 Introduction

The eXtensible Markup Language (XML) is a common standard for data ex-
change on the Web. In a common scenario an application is required to ma-
nipulate an incoming XML document online, processing it as a stream of tags,
using limited memory. This can occur in XML-based subscription services: an
application registers for one or more XML feeds, and filters from within these
the XML data that is of interest. A very different sort of application is in mon-
itoring XML-based protocols; here the goal is to determine of the data as a
whole (that is, the protocol message) whether it should be forwarded for further
processing. What both scenarios have in common is the need for a flexible filter-
ing description mechanism and a stream processor that can enforce these filter
descriptions.

In terms of the description mechanism, the typical assumption is that filtering
will be specified in some variant of the XPath language [25]. In this work we will
look at filters defined in several languages:

– HML, a logic equivalent in expressiveness to Navigational XPath – the frag-
ment of XPath in which only the tag structure of the document is utilized,
ignoring the attribute and PCDATA content.

– +HML, a fragment of HML which is equivalent in expressiveness to Positive
XPath, the subset of Navigational XPath without negation.

– Xuntil, an extension of HML equivalent in expressiveness to Marx’s [17,18]
Conditional XPath, given by adding strong until to Navigational XPath.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 461–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

462 M. Benedikt and A. Jeffrey

Filters select a subset of the nodes in an XML document, for example, the
Positive XPath filters:

F1 = [child::A] F2 = [preceding-sibling::A] F3 = [following-sibling::A]

select all nodes that have an A element as a child, left- or right-sibling.
In the context of streaming, we must consider what it means to evaluate

a filter. We will consider both root semantics and nodeset semantics. In root
semantics, the stream processor takes in a streamed XML document and at the
close of the stream returns true or false, depending on whether or not the filter
holds at the root. For example, on the stream given as:

S1 = 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

the processor should return true for F1 and false for F2 and F3.
In the case of a query returning a set of nodes, we will consider the begin-tag

marking problem that produces an output stream marking the begin tags of the
selected nodes. For example, the output for F1, F2, F3 on input S1 is:

F1 : 〈B∗〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉
F2 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D∗〉〈/D〉〈/B〉
F3 : 〈B〉〈C∗〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

We will also consider the corresponding end-tag marking problem, with output:

F1 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D〉〈/B∗〉
F2 : 〈B〉〈C〉〈/C〉〈A〉〈/A〉〈D〉〈/D∗〉〈/B〉
F3 : 〈B〉〈C〉〈/C∗〉〈A〉〈/A〉〈D〉〈/D〉〈/B〉

Moreover, we are interested in zero-lookahead algorithms for the marking prob-
lem, that generate one token of output upon reading each token of input. Note
that there is no zero-lookahead algorithm for begin-tag marking of F1 or F3:

F1 : 〈B?〉〈C〉〈/C〉 · · ·
F3 : 〈B〉〈C?〉〈/C〉 · · ·

and no zero-lookahead algorithm for end-tag marking of F3:

F3 : 〈B〉〈C〉〈/C?〉 · · ·

We shall call filters for which zero-lookahead begin-tag or end-tag markings
exist begin-tag determined or end-tag determined. From a begin-tag marking
algorithm, it is trivial to produce an algorithm to output the selected nodeset in
constant additional space, as no buffering is required. From an end-tag marking
algorithm, the space required for buffering is proportional to the size of the
largest node to be output – in many applications this will be significantly smaller
than the whole input document.

There has been a significant amount of work on these problems within the
database community. The most common approach has been to compile expres-
sions into machines that use an unbounded amount of memory to keep track of

Efficient and Expressive Tree Filters 463

state. They may, for example, compile an expression into a deterministic push-
down automaton (DPDA)1. The use of unbounded memory results from the fact
that the set of streams that satisfy a given Navigational XPath expression, even
at a fixed node, is not necessarily regular [24].

In this work we are interested in algorithms that can be done in space and
per-token time that is bounded independently of the input tree, and depending
only polynomially on the expression and alphabet. By the results above, the re-
quirement that the space be independent of the input already requires some
restriction on target trees. One key observation is that many applications that
require stream-processing are concerned with content that is “data-oriented” [8];
in particular, it is common that the input data is un-nested, in the sense that
an element does not occur nested inside another element with the same tag. We
will restrict our attention to un-nested documents; equivalently, we assume that
our trees satisfy a “non-recursive DTD” – one in which the dependency relation
between tags is acyclic.

We will show that over un-nested trees Xuntil filters can be compiled into
bounded-space machines under the root semantics, but that the bound may be
exponential in the size of the formula. We will present a subset of the Xuntil

filters that can be implemented in space usage polynomial in the formula and
alphabet. We will also show that this subset is expressively complete for Xuntil

over un-nested trees. We will get similar results for +HML, and for determined
filters under nodeset semantics.

Our approach for getting space usage polynomial in the formula and alphabet
will be to compile filters into polynomial-sized finite state transducer networks.
This is a refinement of the approach of Olteanu [21] and Peng and Chawathe [22],
where XPath expressions are compiled into a pushdown transducer network –
consisting of pushdown automata that can output signals to other automata. A
more detailed discussion of related work can be found in Section 5.

In summary, our contributions are:

– For the root semantics over un-nested trees, we identify fragments of +HML
and Xuntil that are expressively complete, and have streaming implementa-
tions using time and space polynomial in the formula and alphabet.

– For the nodeset semantics over un-nested trees, we identify fragments of
+HML and Xuntil that can express all begin-tag (resp. end-tag) determined
queries, and have streaming begin-tag (resp. end-tag) marking implementa-
tions using both time and space polynomial in the formula and alphabet.

These results are proved for +HML and Xuntil, but are applicable to Positive
XPath and Conditional XPath.

Organization. Section 2 gives preliminaries and definitions. Sections 3 and 4
investigate streaming algorithms for boolean and nodeset queries respectively.
All proofs are in the full paper [5].
1 For simple subsets of XPath, these DPDAs can be represented using a finite state

machine [12,1,7]. However, a stack is still needed at runtime to store the path from
the root to the current node being processed.

464 M. Benedikt and A. Jeffrey

2 Notation

2.1 Trees

XML documents consist of ordered labeled trees with additional data attached
at nodes, either as attributes or as leaf content (‘PCDATA’). In this work we
will be considering filtering specifications that only deal with the ordered tree
structure, so we can use a simple data model of an ordered tree:

Definition 1 (Ordered tree). An ordered tree T with labels Σ is a finite set
N together with a function λ ∈ N → Σ and two partial orders

down∗
� ,

right∗� ⊆
(N × N) such that:

–
right� ,

left� and
up� are partial functions N → N ,

–
down� = (

down� right∗�) = (
down� left∗

�), and

– (
up∗
� down∗

�) = (N × N),

where we write (for π ∈ {left, right, up, down}):

–
up� for

down−1
� and

left� for
right−1

� ,

– n
π+
� m whenever n

π∗
� m and n �= m, and

– n
π� m whenever n

π+
� m but not n

π+
� π+

� m.

Note that any ordered tree has a root node n0.

In many applications that require stream processing, the underlying documents
do not have repeated instances of a tag within any downward path. This is the
case, for example, of XML documents validated against a non-recursive DTD.
Most of the results of this paper will hold only for these “un-nested trees”.

Definition 2 (Un-nested tree). An ordered tree is un-nested whenever

n
down+

� m implies λ(n) �= λ(m).

Stream processing will deal with the standard serialization of XML documents,
as a sequence of begin and end tags:

Definition 3 (Streamed tree). Define the alphabet of a streamed tree with
labels Σ as:

Tags(Σ) = {〈A〉, 〈/A〉 | A ∈ Σ}

For any ordered tree T with node labels Σ, define stream(T) ∈ (Tags(Σ))∗ as
stream(n0), given by:

stream(n) = 〈A〉 stream(n1) . . . stream(nk) 〈/A〉

where ∀i ≤ k . n
down� ni and /�left

n1
right� · · · right� nk /

right� and λ(n) = A.

Efficient and Expressive Tree Filters 465

2.2 Filtering Specifications

In this paper, we will consider specifications for nodeset queries using Marx’s [17]
Xuntil logic, which is a modal logic with a strong until operation. It extends
Linear Time Temporal Logic (LTL, [9]) by allowing more than one partial order
(LTL considers only one order of time). By restricting uses of until, we recover
Hennessy-Milner Logic (HML) [14] as a special case.

Definition 4 (Xuntil, HML and +HML). Let Xuntil over labels Σ be defined:

φ, ψ, χ ::= A |
 | ⊥ | ¬φ | φ ∧ ψ | φ ∨ ψ | π(φ, ψ)

where π ranges over {left, right, up, down}, and A ranges over Σ. The satisfaction
relation for Xuntil is defined with the usual logical operations, together with:

– T, n � A whenever λ(n) = A, and

– T, n � π(φ, ψ) whenever there exists an � such that n
π+
� � and T, � � φ

and for all m such that n
π+
� m

π+
� � it holds that T, m � ψ.

We will write 〈π〉φ for π(φ, ⊥) and 〈π+〉φ for π(φ,
). Let HML be the fragment
of Xuntil where all modalities are of the form 〈π〉φ or 〈π+〉φ. Let +HML be the
negation-free fragment of HML.

Marx [18] has shown that Conditional XPath filters (an extension of Naviga-
tional XPath with until) are equal in expressive power to Xuntil formulae, and
that these both are equal in expressive power to first-order logic over the axis
relations. Navigational XPath filters [4] are equal in expressive power to HML
formulae. Positive XPath filters (negation-free Navigational XPath filters) are
equal in expressive power to +HML formulae. An easy extension of Benedikt
et al.’s argument [4] shows that +HML has the same expressive power as posi-
tive existential first-order logic over the axis relations.

We will now proceed to show results about fragments of Xuntil, knowing that
they can be applied to the appropriate fragment of Conditional XPath.

2.3 The Streaming Problem

A logical formula φ (in, for example, Xuntil) defines several streaming problems.
The root filtering problem is to determine, given T , whether or not φ holds

at the root. Gottlob and Koch [11] have shown that this can be done in time
linear in the combined sizes of φ and T , if one allows the tree T to be stored in
memory. In contrast, we want an algorithm that has limited access to T .

A root stream processor is a Turing machine TM with one input tape and one
working tape, such that TM can only move forward on its input tape. Such a
TM is a root streaming implementation of φ if TM accepts on input stream(T)
iff T satisfies φ at the root. The runtime space usage of such a TM on an input
s is the number of workspace tape elements used. The total space usage is the
runtime space usage plus the size of the TM. The per-token time usage of such
a TM on an input s is the number of steps taken, divided by |s|.

466 M. Benedikt and A. Jeffrey

In Section 3, we will show that every formula has a root streaming imple-
mentation with total space and per-token time that is independent of the tree.
Implementations which use polynomial total space and per-token time do not
exist for every formula, but we will find a fragment of Xuntil which does support
polynomial implementation, and moreover with no loss of expressive power.

We now turn to nodeset queries given by filters – that is to filters not re-
stricted to the root node. In main-memory processing, the entire set of subtrees
of nodes satisfying the filter would be returned. In a streaming setting, we may
be interested in an output stream that includes indicators of which nodes are
in the solution nodeset. We will consider adding these indicators to either the
begin tags or to the end tags.

Definition 5 (Streamed document tree with selected begin tags). For
any ordered tree T with node labels Σ, and any formula φ, define bstream(T, φ) ∈
(Tags(Σ) × 2)∗ as bstream(n0, φ), given by:

bstream(n, φ) = (〈A〉, b) bstream(n1, φ) . . . bstream(nk, φ) (〈/A〉, ⊥)

where ∀i ≤ k . n
down� ni and /�left

n1
right� · · · right� nk /

right� and λ(n) = A
and T, n � φ ↔ b (where 2 = {
, ⊥}, the boolean constants).

The begin-tag filtering problem is, given as input φ and stream(T), to output
bstream(T, φ). We can similarly define the end-tag filtering problem, defining
the stream estream(T, φ) analogously to bstream above, but with booleans an-
notating end-tags.

A nodeset stream processor is a Turing machine TM with one read-only input
tape, one working tape, and one write-only output tape such that TM can only
move forward on its input tape, and only add symbols to the end of its output
tape. Such a processor has zero-lookahead if it produces exactly one output
symbol whenever it moves its head on the input tape. Such a processor TM is a
begin-tag streaming implementation of φ if TM outputs bstream(T, φ). We can
similarly talk about an end-tag streaming implementation. The notions of space
and per-token time efficiency in a processor are as before.

In Section 4, we will show that not every formula has a begin-tag or end-tag
streaming implementation with total space and per-token time that is indepen-
dent of the tree. Again, we will find a fragment of Xuntil which does admit efficient
implementations, with no loss of expressive power.

3 Filtering of Boolean Queries

We first show that every formula has a root streaming implementation with total
space and per-token time independent of the input tree.

Proposition 1. For every Xuntil formula φ over labels Σ there is a number k
and a root streaming implementation TMφ,Σ over un-nested ordered trees with
labels Σ using at most k total space and per-token time.

Efficient and Expressive Tree Filters 467

Even for simple queries, we may not be able to get space-efficient implementa-
tions. Consider the formulae φn over labels {A, B, C, T1, F1, . . . , Tn, Fn} defined:

φn = 〈down〉(A ∧ ψ1 ∧ · · · ∧ ψn)
ψi = (〈down〉Ti ∧ 〈right+〉(B ∧ 〈down〉Ti))

∨ (〈down〉Fi ∧ 〈right+〉(B ∧ 〈down〉Fi))

evaluated over trees with streaming representations of the form:

〈C〉〈A〉s1〈/A〉 · · · 〈A〉sk〈/A〉〈B〉s〈/B〉〈/C〉
where s, s1, . . . , sk ∈ {〈T1/〉, 〈F1/〉} × · · · × {〈Tn/〉, 〈Fn/〉}

It is clear that such a tree satisfies φn precisely when s ∈ {s1, . . . , sk}, and there
are 22n

such sets, and so there is no polynomial space implementation of +HML:

Proposition 2. There is no subexponential F such that every +HML formula φ
over labels Σ has a root streaming implementation TMφ,Σ over un-nested ordered
trees with labels Σ using at most F (|φ|, |Σ|) total space.

We must thus look for a sublanguage of Xuntil that has efficient implementations.
The notion of a subformula of a formula is as usual. A top-level subformula

is one which does not occur inside a subformula of the form π(φ, ψ).

Definition 6 (Backward Xuntil). Backward Xuntil is the fragment of Xuntil in
which:

– all occurrences of up are of the form up(φ, ψ), where φ and ψ have no top-
level occurrences of down, and

– all occurrences of right are of the form down(φ ∧ ¬〈right〉
, ψ).

Note that the restriction on right disallows examples such as those used in the
proof of Proposition 2, and that the restriction on up bans the similar formula
where 〈right+〉 is replaced by 〈up〉〈down〉. Also note that we cannot completely
ban right, as there is no right-free backward equivalent of 〈down〉(A ∧¬〈right〉
)
(“my last child is an A”). Our first main result is:

Theorem 1. There is a polynomial P such that every backward Xuntil formula
φ over labels Σ has a root streaming implementation TMφ,Σ over un-nested
ordered trees with labels Σ using at most P (|φ|, |Σ|) total space and per-token
time. Furthermore, one can produce TMφ,Σ from φ and Σ in polynomial time.

The construction of TMφ,Σ is given by building an appropriate synchronous
transducer network, an acyclic collection of synchronous transducers [6] where
the output of one transducer is allowed as input to another. Transducers whose
input-output relation is a function are called sequential, and networks built from
sequential transducers generate deterministic automata, so can be executed in
polynomial space and per-token time.

The construction makes use of named Xuntil formulae, which require every
modality to specify the label of one of the nodes involved (for down and up, the
parent node is named, and for left and right, the parent of the context node is).

468 M. Benedikt and A. Jeffrey

Definition 7 (Named Xuntil). Named Xuntil is the fragment of Xuntil in which:

– all occurrences of down are of the form A ∧ down(φ, ψ), where A ∈ Σ
– all occurrences of up are of the form up(A ∧ φ, ψ),
– all occurrences of left are of the form 〈up〉A ∧ left(φ, ψ), and
– all occurrences of right are of the form 〈up〉A ∧ right(φ, ψ).

Theorem 2. Every Xuntil formula φ over labels Σ has an implementation
TNφ,Σ as a network of O(|φ| × |Σ|) synchronous transducers, each of which
has O(|Σ|) states. If φ is in named Xuntil, then TNφ,Σ contains O(|φ|) transduc-
ers. If φ is in backward Xuntil, then TNφ,Σ is sequential. Furthermore, TNφ,Σ

can be constructed in polynomial time.

What do we give up from staying within backward Xuntil? The next result shows
that, in terms of expressiveness over un-nested trees, we lose nothing, and in fact
we can be even more restrictive, and only require downward formulae:

Definition 8 (Downward Xuntil). Downward Xuntil is the fragment of Xuntil

in which:

– there are no occurrences of up, and
– there are no top-level occurrences of left or right.

Theorem 3. Every Xuntil formula φ has a backward downward Xuntil formula
ψ which agrees with φ on the root node of any un-nested ordered tree.

The proof makes use of an analog of Marx’s variant [17] of Gabbay’s Separation
Theorem [10] for ordered trees, showing that Xuntil formulas can be rewritten into
“strict backward”, “strict forward”, and “backward downward” formulae. For
formulae evaluated at the root node, we can then eliminate the strict backward
and forward components. A similar completeness result holds within positive
HML, but without any restriction on nesting:

Theorem 4. For every +HML formula φ there is a backward downward +HML
formula ψ which agrees with φ on the root node of any ordered tree.

This result is proven using a simpler argument, a variant of that used in [20]
and Theorem 5.1 of [4]. We translate +HML queries to logical formulas, and
then show that these formulas can be normalized to be of a special form. This
normal form is a variant of the “tree pattern queries” of [4]. Given a normalized
formula, we can apply root-equivalence, end-equivalence, or begin-equivalence
to the normalized formula, arriving at a logical formula in which all the bound
variables are restricted to lie in a certain relation to the free variable. Finally,
we translate the syntactic restrictions back into +HML, where they produce a
formula that is backward and downward. It is interesting that the analogous
completeness result does not hold for HML (or for Navigational XPath).

Theorem 5. The HML filter 〈down〉(B ∧ ¬〈right+〉A) is not equivalent to any
filter in backward HML.

Efficient and Expressive Tree Filters 469

The proof uses trees T and T ′ parameterized by a bound K:

stream(T) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈A/〉〈C/〉K−1〈/R〉
stream(T ′) = 〈R〉(〈A/〉〈C/〉K−1〈B/〉〈C/〉K−1)K〈/R〉

Clearly the formula 〈down〉(B ∧¬〈right+〉A) is false at the root of T and true at
the root of T ′. Using a bisimulation argument, we can show that no backward
formula with size bounded by K can distinguish T from T ′.

4 Filtering of Nodeset Queries

We now turn to nodeset queries, and begin with a negative result. Even with-
out requiring zero-lookahead, it is not always possible to implement filters (for
example 〈right+〉A) in space independent of the tree.

Proposition 3. There is a +HML formula φ over labels Σ such that for no k
is there a begin-tag or end-tag streaming implementation TM that uses at most
k total space over un-nested ordered trees with labels Σ.

We shall call the formulae which have zero-lookahead end-tag streaming imple-
mentations “end-tag determined”, and similarly for “begin-tag determined”.

Definition 9 (Determined formulae). For any tree T with node n ∈ T , the
subtrees btree(T, n) and etree(T, n) are such that:

n′ ∈ btree(T, n) whenever n
up∗
� n′ or n

up∗
� left+� down∗

� n′ in T

n′ ∈ etree(T, n) whenever n′ ∈ btree(T, n) or n
down∗

� n′ in T

A formula φ is end-tag determined whenever, for all n ∈ T and n′ ∈ T ′ with
etree(T, n) isomorphic to etree(T ′, n′), we have T, n � φ precisely when T ′, n′ �
φ. The begin-tag determined formulae are defined similarly.

It is easy to see that a filter has a zero-lookahead end-tag (resp. begin-tag)
streaming implementation precisely when it is end-tag (resp. begin-tag) deter-
mined. It is also easy to see that backward Xuntil formulae are end-tag deter-
mined, since they only look at the nodes in the end-tag preceding subtree of the
input node, and that strict backward Xuntil formulae are begin-tag determined:

Definition 10 (Strict backward Xuntil). A formula is in strict backward
Xuntil if it is in backward Xuntil and has no top-level occurrences of down.

Our transducer network results show that backward (resp. strict backward) Xuntil

formulae have efficient end-tag (resp. begin-tag) streaming implementations:

Theorem 6. There is a polynomial P such that every backward (resp. strict
backward) Xuntil formula φ over labels Σ has an end-tag (resp. begin-tag) stream-
ing implementation TMφ,Σ over un-nested ordered trees with labels Σ using at
most P (|φ|, |Σ|) total space and per-token time. Furthermore, one can produce
TMφ,Σ from φ and Σ in polynomial time.

The notion of begin-tagged and end-tagged determined turns out to be decid-
able: convert a formula into a deterministic automaton with no sink states, then

470 M. Benedikt and A. Jeffrey

check whether any state has transitions on both marked and unmarked variants
of the same tag. However, checking that a formula is determined cannot be done
efficiently; it can be shown, by reduction to the satisfiability problem for XPath
[3], that the problem is PSPACE-hard. We now show that working within back-
ward Xuntil does not restrict our ability to express determined queries, and in
fact we can be even more restrictive, requiring only oscillation-free formulae:

Definition 11 (Oscillation-free Xuntil). Oscillation-free Xuntil is the fragment
of Xuntil in which all occurrences of down contain no occurrences of up.

Theorem 7. Every end-tag (resp. begin-tag) determined Xuntil formula φ has a
backward (resp. strict backward) oscillation-free Xuntil formula ψ which agrees
with φ on any node of any un-nested ordered tree.

The proof is similar to that of Theorem 3. For positive HML, we can again get
a stronger completeness result:

Theorem 8. Every end-tag (resp. begin-tag) determined +HML formula φ has
an backward (resp. strict backward) oscillation-free +HML formula ψ which
agrees with φ on any node of any ordered tree.

This result also uses a rewriting argument, analogous to those of Benedikt
et al. [4] or Olteanu [20]. The analogous completeness results do not hold for
HML (for example, it is not true that end-tag determined HML formulas can be
rewritten into backward HML) – the argument is along the lines of Theorem 5.

5 Related Work

Much of the preceding work deals with XPath expressions rather than filters;
expressions are functions that take a node and return a nodeset: for example
descendant::A returns all A-tagged descendants of a given node. It is known
from Marx [19] that the expressiveness of Navigational XPath filters is the same
as that of Navigational XPath expressions evaluated at the root node. This
distinction between filters and expressions is what accounts for the emphasis on
reverse axes in our work, versus forward axes in the work of Olteanu [20].

As mentioned above, work on XPath filtering generally assumes that docu-
ments may have nested tags, and thus looks for streaming models that require an
unbounded stack. Bar-Yossef et al. [2] and Grohe et al. [13] prove lower-bounds
on the memory usage in streaming algorithms; for example Grohe et al. show
that any streaming algorithm for XPath on general XML documents requires
space at least proportional to the tree depth.

In contrast, there has been work on constant-space evaluation of constraints
expressed by DTDs and XML Schemas. Segoufin and Vianu [24] investigate
which DTDs can be validated in constant space on streams, and observes that a
DTD can be validated in constant space if all trees that satisfy it are un-nested.

Begin-tag and end-tag determined XPath filters have not previously been
investigated, although they have been studied in the context of XML Schemas
by Martens et al. [16] and Madhusadan et al. [15].

Efficient and Expressive Tree Filters 471

The two main components of our work: transducer networks and rewriting,
both appear in the work of Olteanu. His use of rewriting [20] is to eliminate
reverse axes within an XPath-like language over general trees. Our Theorem 4
is thus a variant of his result, and in Theorem 3 we show that this phenomena
extends to the much richer language Xuntil, provided that we restrict to un-
nested trees. Our Theorem 5 shows that this elimination cannot be done within
full Navigational XPath, even over un-nested trees. Although this appears to
contradict Corollary 5.2 of [20], the term “XPath” in that corollary is used to
refer to a language LGQ, which is closer in expressiveness to Positive XPath
rather than XPath. Our use of transducer networks extends Olteanu’s work
in [21], which works over general XML documents, and hence the networks are
DPDAs rather than DFAs. The networks are used for the forward fragment of
positive XPath. Our results show that the construction extends to the much
more expressive language Xuntil, and that it provides a finite state transducer
network when restricted to un-nested trees.

Our rewriting of Xuntil filters makes use of a separation result very similar
to Theorem 8 of Marx [17]. Marx’s result is over general trees, and does not
separate filters that look “to the left and up” from those that look “to the right
and up” – such a separation is needed for our result on un-nested trees, but
does not hold in general. Unfortunately, an error has been found in the proof of
Theorem 8 in [17] – Lemma 10 of that paper includes a distributivity property
(down(φ, ψ ∧ χ) = down(φ, ψ) ∧ down(φ, χ)) which is only true when

down�
is deterministic. As a result, his induction (in an un-numbered “final step” at
the end of Section 4) fails. Semantic separation has been shown, using Marx’s
expressive completeness result for Conditional XPath [18]. But this proof does
not imply syntactic separation for Xuntil.

Our completeness results for boolean queries can be seen as extensions to the
ordered tree setting of the well-known fact that LTL with only future operators
has the same expressiveness as LTL with both past and future, if one considers
only the initial node of a string. Transducer networks have been utilized several
times in the verification literature (e.g. Pnueli and Zaks [23]), but their use in
conjunction with reverse-direction fragments is, to our knowledge, new.

References

1. Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective dis-
semination of information. In: Proc. 26th International Conference on Very Large
Data Bases (VLDB), pp. 53–64 (2000)

2. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the memory requirements of XPath
evaluation over XML streams. In: Proc. 23rd ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 177–188. ACM Press,
New York (2004)

3. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
In: Proc. 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), ACM Press, New York (2005)

4. Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. The-
oretical Computer Science 336(1), 3–31 (2005)

472 M. Benedikt and A. Jeffrey

5. Benedikt, M., Jeffrey, A.S.A.: Efficient and expressive tree filters. Full version avail-
able from the authors web pages (2007)

6. Besterel, J., Perrin, D.: Algorithms on words. In: Lothaire, M. (ed.) Applied Com-
binatorics on Words, ch. 1, Cambridge University Press, Cambridge (2005)

7. Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient filtering of XML
documents with XPath expressions. In: Proc. 18th IEEE International Conference
on Data Engineering (ICDE), IEEE Computer Society Press, Los Alamitos (2002)

8. Choi, B.: What are real DTDs like. In: Proc. Fifth International Workshop on the
Web and Databases (WebDB) (2002)

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

10. Gabbay, D.: Expressive functional completeness in tense logic. In: Mönnich, U.
(ed.) Aspects of Philosophical Logic, pp. 67–89 (1981)

11. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of web informa-
tion extraction languages. Journal of the ACM 51(1), 74–113 (2004)

12. Green, T.J., Miklau, G., Onizuka, M., Suciu, D.: Processing XML streams with
deterministic automata. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT
2003. LNCS, vol. 2572, Springer, Heidelberg (2002)

13. Grohe, M., Koch, C., Schweikardt, N.: Tight lower bounds for query processing on
streaming and external memory data. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidel-
berg (2005)

14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32, 137–161 (1985)

15. Kumar, V., Madhusadan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: WWW (2007)

16. Martens, W., Neven, F., Schwentick, T.: Which XML schemas admit 1-pass pre-
order traversal. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363,
Springer, Heidelberg (2004)

17. Marx, M.: Conditional XPath, the first order complete XPath dialect. In: Proc.
23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pp. 13–22. ACM Press, New York (2004)

18. Marx, M.: Conditional XPath. ACM Transactions on Database Systems, 929–959
(2005)

19. Marx, M.: First order paths in ordered trees. In: Eiter, T., Libkin, L. (eds.) ICDT
2005. LNCS, vol. 3363, Springer, Heidelberg (2004)

20. Olteanu, D.: Forward node-selecting queries over trees. ACM TODS (2007)
21. Olteanu, D.: Streamed and progressive evaluation of XPath. IEEE Transactions on

Knowledge and Data Engineering 19(7) (July 2007)
22. Peng, F., Chawathe, S.: XPath queries on streaming data. In: Proc. 2003 ACM

SIGMOD International Conference on Management of Data (SIGMOD), ACM
Press, New York (2003)

23. Pnueli, A., Zaks, A.: PSL model checking and runtime verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, Springer,
Heidelberg (2006)

24. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proc. 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS), ACM Press, New York (2002)

25. World Wide Web Consortium. XML path language (XPath) 2.0: W3C recommen-
dation, http://www.w3.org/TR/xpath20/2007

http://www.w3.org/TR/xpath20/2007

Markov Decision Processes with

Multiple Long-Run Average Objectives�

Krishnendu Chatterjee

UC Berkeley
c krish@eecs.berkeley.edu

Abstract. We consider Markov decision processes (MDPs) with mul-
tiple long-run average objectives. Such MDPs occur in design problems
where one wishes to simultaneously optimize several criteria, for exam-
ple, latency and power. The possible trade-offs between the different
objectives are characterized by the Pareto curve. We show that every
Pareto optimal point can be ε-approximated by a memoryless strategy,
for all ε > 0. In contrast to the single-objective case, the memoryless
strategy may require randomization. We show that the Pareto curve can
be approximated (a) in polynomial time in the size of the MDP for irre-
ducible MDPs; and (b) in polynomial space in the size of the MDP for
all MDPs. Additionally, we study the problem if a given value vector is
realizable by any strategy, and show that it can be decided in polyno-
mial time for irreducible MDPs and in NP for all MDPs. These results
provide algorithms for design exploration in MDP models with multiple
long-run average objectives.

1 Introduction

Markov decision processes (MDPs) are standard models for dynamic systems
that exhibit both probabilistic and nondeterministic behaviors [11,5]. An MDP
models a dynamic system that evolves through stages. In each stage, a controller
chooses one of several actions (the nondeterministic choices), and the system
stochastically evolves to a new state based on the current state and the chosen
action. In addition, one associates a cost or reward with each transition, and the
central question is to find a strategy of choosing the actions that optimizes the
rewards obtained over the run of the system. The two classical ways of combing
the rewards over the run of the system are as follows: (a) the discounted sum
of the rewards and (b) the long-run average of the rewards. In many modeling
domains, however, there is no unique objective to be optimized, but multiple,
potentially dependent and conflicting objectives. For example, in designing a
computer system, one is interested not only in maximizing performance but also
in minimizing power. Similarly, in an inventory management system, one wishes
to optimize several potentially dependent costs for maintaining each kind of
product, and in AI planning, one wishes to find a plan that optimizes several
distinct goals. These motivate the study of MDPs with multiple objectives.
� This research was supported by the NSF grants CCR-0225610 and CCR-0234690.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 473–484, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

474 K. Chatterjee

We study MDPs with multiple long-run average objectives, an extension of the
MDP model where there are several reward functions [7,13]. In MDPs with multi-
ple objectives, we are interested not in a single solution that is simultaneously op-
timal in all objectives (which may not exist), but in a notion of “trade-offs” called
the Pareto curve. Informally, the Pareto curve consists of the set of realizable value
profiles (or dually, the strategies that realize them) that are not dominated (in
every dimension) by any other value profile. Pareto optimality has been studied
in co-operative game theory [9] and in multi-criterion optimization and decision
making in both economics and engineering [8,14,12]. Finding some Pareto optimal
point can be reduced to optimizing a single objective: optimize a convex combi-
nation of objectives using a set of positive weights; the optimal strategy must be
Pareto optimal as well (the “weighted factor method”) [7]. In design space explo-
ration, however, we want to find not one, but all Pareto optimal points in order
to better understand the trade-offs in the design. Unfortunately, even with just
two rewards, the Pareto curve may have infinitely many points, and also contain
irrational payoffs. Many previous works has focused on constructing a sampling
of the Pareto curve, either by choosing a variety of weights in the weighted factor
method, or by imposing a lexicographic ordering on the objectives and sequen-
tially optimizing each objective according to the order [4,5]. Unfortunately, this
does not provide any guarantee about the quality of the solutions obtained.

The study of the approximate version of the problem, the ε-approximate
Pareto curve [10] for MDPs with multiple objectives is recent: the problem was
studied for discounted sum objectives in [2] and for qualitative ω-regular objec-
tives in [3]. Informally, the ε-approximate Pareto curve for ε > 0 contains a set
of strategies (or dually, their payoff values) such that there is no other strategy
whose value dominates the values in the Pareto curve by a factor of 1 + ε.

Our Results. In this work we study the complexity of approximating the
Pareto curve for MDPs with multiple long-run average objectives. For a long-
run average objective, given an infinite sequence 〈v0, v1, v2, . . .〉 of finite reward
values the payoff is lim infT→∞ 1

T

∑T−1
t=0 vt. We summarize our results below.

1. We show that for all ε > 0, the value vector of a Pareto-optimal strategy can
be ε-approximated by a memoryless strategy. In the case of single objective
the definition of long-run average objective can be also alternatively defined
as lim sup instead of lim inf, and the optimal values coincide. In contrast,
in the case of multiple objectives we show that if the long-run average ob-
jectives are defined as lim sup, then the Pareto-optimal strategies cannot be
ε-approximated by memoryless strategies.

2. We show that an approximate Pareto curve can be computed in polyno-
mial time for irreducible MDPs [5]; and in polynomial space for general
MDPs. The algorithms are obtained by reduction to multi-objective linear-
programming and applying the results of [10].

3. We also study the related realizability decision problem: given a profile of
values, is there a Pareto-optimal strategy that dominates it? We show that
the realizability problem can be decided in polynomial time for irreducible
MDPs and in NP for general MDPs.

Markov Decision Processes with Multiple Long-Run Average Objectives 475

Our work is closely related to the works of [2,3]. In [2] MDPs with multiple dis-
counted reward objectives was studied. It was shown that memoryless strategies
suffices for Pareto optimal strategies, and polynomial time algorithm was given to
approximate the Pareto curve by reduction to multi-objective linear-programming
and using the results of [10]. In [3] MDPs with multiple qualitative ω-regular ob-
jectives was studied. It was shown that the Pareto curve can be approximated in
polynomial time: the algorithm first reduces the problem to MDPs with multiple
reachability objectives, and then MDPs with multiple reachability objectives can
be solved by multi-objective linear-programming. In our case we have the undis-
counted setting as well as quantitative objectives and there are new obstacles in
the proofs. For example, the notion of “discounted frequencies” used in [2] need not
be well defined in the undiscounted setting. Our proof technique uses the results
of [2] and a celebrated result Hardy-Littlewood to obtain the result on sufficiency
ofmemoryless strategies for Pareto optimal strategies.Also our reduction to multi-
objective linear-programming is more involved: we require several multi-objective
linear-programs in the general case, it uses techniques of [3] for transient states and
approaches similar to [2] for recurrent states.

2 MDPs with Multiple Long-Run Average Objectives

We denote the set of probability distributions on a set U by D(U).

Markov Decision Processes (MDPs). A Markov decision process (MDP)
G = (S,A, p) consists of a finite, non-empty set S of states and a finite, non-
empty set A of actions; and a probabilistic transition function p : S×A → D(S),
that given a state s ∈ S and an action a ∈ A gives the probability p(s, a)(t) of
the next state t. We denote by Dest(s, a) = Supp(p(s, a)) the set of possible
successors of s when the action a is chosen. Given an MDP G we define the set
of edges E = { (s, t) | ∃a ∈ A. t ∈ Dest(s, a) } and use E(s) = { t | (s, t) ∈ E }
for the set of possible successors of s in G.

Plays and Strategies. A play of G is an infinite sequence 〈s0, s1, . . .〉 of states
such that for all i ≥ 0, (si, si+1) ∈ E. A strategy σ is a recipe that specifies
how to extend a play. Formally, a strategy σ is a function σ : S+ → D(A)
that, given a finite and non-empty sequence of states representing the history of
the play so far, chooses a probability distribution over the set A of actions. In
general, a strategy depends on the history and uses randomization. A strategy
that depends only on the current state is a memoryless or stationary strategy,
and can be represented as a function σ : S → D(A). A strategy that does not
use randomization is a pure strategy, i.e., for all histories 〈s0, s1, . . . , sk〉 there
exists a ∈ A such that σ(〈s0, s1, . . . , sk〉)(a) = 1. A pure memoryless strategy
is both pure and memoryless and can be represented as a function σ : S → A.
We denote by Σ, ΣM , ΣP and ΣPM the set of all strategies, all memoryless
strategies, all pure strategies and all pure memoryless strategies, respectively.

Outcomes. Given a strategy σ and an initial state s, we denote by
Outcome(s, σ) the set of possible plays that start from s, given strategy σ, i.e.,

476 K. Chatterjee

Outcome(s, σ) = { 〈s0, s1, . . . , sk, . . .〉 | ∀k ≥ 0.∃ak ∈ A.σ(〈s0, s1, . . . , sk〉)(ak) >
0; and sk+1 ∈ Dest(sk, ak) }. Once the initial state and a strategy is chosen,
the MDP is reduced to a stochastic process. We denote by Xi and θi random
variables for the i-th state and the i-th chosen action in this stochastic process.
An event is a measurable subset of Outcome(s, σ), and the probabilities of the
events are uniquely defined. Given a strategy σ, an initial state s, and an event
A, we denote by Prσ

s (A) the probability that a path belongs to A, when the
MDP starts in state s and the strategy σ is used. For a measurable function f
that maps paths to reals, we write E

σ
s [f] for the expected value of f when the

MDP starts in state s and the strategy σ is used.

Rewards and Objectives. Let r : S × A → R be a reward function that asso-
ciates with every state and action a real-valued reward. For a reward function r
the inf-long-run average value is defined as follows: for a strategy σ and an ini-
tial state s we have Valσinf (r, s) = lim infT→∞ 1

T

∑T−1
t=0 E

σ
s [r(Xt, θt)]. We will also

consider the sup-long-run average value that is defined as follows: for a strategy σ
and an initial state s we have Valσsup(r, s) = lim supT→∞

1
T

∑T−1
t=0 E

σ
s [r(Xt, θt)].

We consider MDPs with k-different reward functions r1, r2, . . . , rk. Given an
initial state s, a strategy σ, the inf-long-run average value vector at s for σ, for
r = 〈r1, r2, . . . , rk〉 is defined as Valσinf (r, s) = 〈Valσinf (r1, s),Valσinf (r2, s), . . . ,
Valσinf (rk, s)〉. The notation for sup-long-run average objectives is similar.

Comparison operators on vectors are interpreted in a point-wise fashion, i.e.,
given two real-valued vectors v1 = 〈v1

1 , v2
1 , . . . , v

k
1 〉 and v2 = 〈v1

2 , v2
2 , . . . , v

k
2 〉, and

��∈ {<, ≤, = } we write v1 �� v2 if and only if for all 1 ≤ i ≤ k we have vi
1 �� vi

2.
We write v1
= v2 to denote that vector v1 is not equal to v2, i.e., it is not the
case that v1 = v2.

Pareto-Optimal Strategies. Given an MDP G and reward functions
r1, r2, . . . , rk, a strategy σ is a Pareto-optimal strategy [9] for inf-long-run av-
erage objective from a state s, if there is no σ′ ∈ Σ such that Valσinf (r, s) ≤
Valσ

′

inf (r, s), and Valσinf (r, s)
= Valσ
′

inf (r, s), i.e., there is no strategy σ′ such
that for all 1 ≤ j ≤ k, we have Valσinf (rj , s) ≤ Valσ

′

inf (rj , s) and exists 1 ≤ j ≤ k,
with Valσinf (rj , s) < Valσ

′

inf (rj , s). The definition for sup-long-run average objec-
tives is similar. In case k = 1, the class of Pareto-optimal strategies are called
optimal strategies.

Sufficiency of Strategies. Given reward functions r1, r2, . . . , rk, a family ΣC

of strategies suffices for ε-Pareto optimality for inf-long-run average objectives
if for all ε > 0, for every Pareto-optimal strategy σ ∈ Σ, there is a strategy
σc ∈ ΣC such that for all j = 1, 2, . . . , k and all s ∈ S we have Valσinf (rj , s) ≤
Valσc

inf (rj , s)+ε. The notion of sufficiency for Pareto optimality is obtained if the
above inequality is satisfied for ε = 0. The definition is similar for sup-long-run
average objectives.

Theorem 1 (Strategies for optimality [5]). In MDPs with one reward func-
tion r1, the family ΣPM of pure memoryless strategies suffices for optimality
for inf-long-run average and sup-long-run average objectives, i.e., there exists

Markov Decision Processes with Multiple Long-Run Average Objectives 477

a pure memoryless strategy σ∗ ∈ ΣPM , such that for all strategies σ ∈ Σ, the
following conditions hold: (a) Valσinf (r1, s) ≤ Valσ

∗

inf (r1, s); (b) Valσsup(r1, s) ≤
Valσ

∗

sup(r1, s); and (c) Valσ
∗

inf (r1, s) = Valσ
∗

sup(r1, s).

3 Memoryless Strategies Suffice for Pareto Optimality

In this section we study the properties of the family of strategies that suffices for
Pareto optimality. It can be shown that ε-Pareto optimal strategies, for ε > 0,
require randomization for both sup-long-run average and inf-long-run average
objectives; and for sup-long-run average objectives the family of memoryless
strategies does not suffice for ε-Pareto optimality (see [1] for details). We present
the main result of this section that shows the family of memoryless strategies
suffices for ε-Pareto optimality for inf-long-run average objectives.

Markov Chains. A Markov chain G = (S, p) consists of a finite set S of states,
and a stochastic transition matrix p, i.e., p(s, t) ≥ 0 denotes the transition
probability from s to t, and for all s ∈ S we have

∑
t∈S p(s, t) = 1. Given

an MDP G = (S, A, p) and a memoryless strategy σ ∈ ΣM we obtain a Markov
chain Gσ = (S, pσ) obtained as follows: pσ(s, t) =

∑
a∈A p(s, a)(t) ·σ(s)(a). From

Theorem 1 it follows that the values for inf-long-run average and sup-long-run
average objectives coincide for Markov chains.

Corollary 1. For all MDPs G, for all reward functions r1, for all memoryless
strategies σ ∈ ΣM , and for all s ∈ S, we have Valσinf (r1, s) = Valσsup(r1, s).

We now state a result of Hardy-Littlewood (see Appendix H of [5] for proof).

Lemma 1 (Hardy-Littlewood result). Let {dt }∞t=0 be an arbitrary sequence
of bounded real-numbers. Then the following assertions hold:

lim inf
T→∞

1
T

T−1∑

t=0

dt ≤ lim inf
β→1−

(1 − β) ·
∞∑

t=0

βt · dt

≤ lim sup
β→1−

(1 − β) ·
∞∑

t=0

βt · dt ≤ lim sup
T→∞

1
T

T−1∑

t=0

dt.

Lemma 2. Let G = (S, A, p) be an MDP with k reward functions r1, r2, . . . , rk.
For all ε > 0, for all s ∈ S, for all σ ∈ Σ, there exists a memoryless strategy
σ ∈ ΣM such that for all i = 1, 2, . . . , k, we have Valσinf (ri, s) ≤ Valσinf (ri, s)+ε.

Proof. Given a strategy σ and an initial state s, for j = 1, 2, . . . , k define a
sequence { dj

t }∞t=0 as follows: dj
t = E

σ
s [rj(Xt, θt)]; i.e., dj

t is the expected reward
of the t-th stage for the reward function rj . The sequence { dj

t }∞t=0 is bounded
as follows: mins∈S,a∈A rj(s, a) ≤ dj

t ≤ maxs∈S,a∈A rj(s, a), for all t ≥ 0 and
for all j = 1, 2, . . . , k. By Lemma 1 we obtain that for all ε > 0, there exists
0 < β < 1 such that for all j = 1, 2, . . . , k we have lim infT→∞ 1

T

∑T−1
t=0 dj

t ≤
(1 − β) ·

∑∞
t=0 βt · dj

t + ε; i.e., in other words, for all j = 1, 2, . . . , k we have

478 K. Chatterjee

Valσinf (rj , s) ≤ E
σ
s [

∑∞
t=0(1−β) ·βt ·rj(Xt, θt)]+ε. By Theorem 2 of [2] for every

strategy σ, there is a memoryless strategy σ ∈ ΣM such that for all j = 1, 2, . . . , k
we have E

σ
s [

∑∞
t=0(1−β)·βt ·rj(Xt, θt)] = E

σ
s [

∑∞
t=0(1−β)·βt ·rj(Xt, θt)]. Consider

a memoryless strategy σ that satisfies the above equalities for j = 1, 2, . . . , k.
For j = 1, 2, . . . , k define a sequence { d

j

t }∞t=0 as follows: d
j

t = E
σ
s [rj(Xt, θt)].

Again the sequence { d
j

t }∞t=0 is bounded as follows: mins∈S,a∈A rj(s, a) ≤ d
j

t ≤
maxs∈S,a∈A rj(s, a), for all t ≥ 0 and for all j = 1, 2, . . . , k. By Lemma 1 for all
j = 1, 2, . . . , k we obtain that (1−β)·

∑∞
t=0 βt ·dj

t ≤ lim supT→∞
1
T

∑T−1
t=0 d

j

t ; i.e.,
for all j = 1, 2, . . . , k we have E

σ
s [

∑∞
t=0(1−β)·βt·rj(Xt, θt)] ≤ Valσsup(rj , s). Since

σ is a memoryless strategy, by Corollary 1 we obtain that for all j = 1, 2, . . . , k
we have Valσsup(rj , s) = Valσinf (rj , s). Hence it follows that for all j = 1, 2, . . . , k

we have Valσinf (rj , s) ≤ Valσinf (rj , s) + ε. The desired result follows.

Theorem 2. The family of ΣM of memoryless strategies suffices for ε-Pareto
optimality for inf-long-run average objectives.

4 Approximating the Pareto Curve

Pareto Curve. Let G be an MDP with reward functions r = 〈r1, . . . , rk〉. The
Pareto curveP inf(G, s, r) of theMDPG at state swith respect to inf-long-run aver-
age objectives is the set of all k-vector of values such that for eachv ∈ P inf(G, s, r),
there is a Pareto-optimal strategy σ such that Valσinf (r, s) = v. We are interested
not only in the values, but also the Pareto-optimal strategies. We often blur the
distinction and refer to the Pareto curve P inf(G, s, r) as a set of strategies which
achieve the Pareto-optimal values (if there is more than one strategy that achieves
the same value vector, P inf(G, s, r) contains at least one of them). For an MDP G,
and ε > 0, an ε-approximate Pareto curve, denoted P inf

ε (G, s, r), is a set of strate-
gies σ such that there is no other strategy σ′ such that for all σ ∈ P inf

ε (G, s, r),
we have Valσ

′

inf (ri, s) ≥ (1 + ε)Valσinf (ri, s), for all rewards ri. That is, the ε-
approximate Pareto curve contains strategies such that any Pareto-optimal strat-
egy is “almost” dominated by some strategy in P inf

ε (G, s, r).

Multi-objective Linear Programming and Pareto Curve. A multi-
objective linear program L consists of a set k of objective functions o1, o2, . . . , ok,
where oi(x) = cT

i · x, for a vector ci and a vector x of variables; and a set
of linear constraints specified as A · x ≥ b, for a matrix A and a vector
b. A valuation of x is feasible if it satisfies the set of linear constraints. A
feasible solution x is a Pareto-optimal point if there is no other feasible so-
lution x′ such that (o1(x), o2(x), . . . , ok(x)) ≤ (o1(x′), o2(x′), . . . , ok(x′)) and
(o1(x), o2(x), . . . , ok(x))
= (o1(x′), o2(x′), . . . , ok(x′)). Given a multi-objective
linear program L, the Pareto curve for L consists of the k-vector of values
such that for each v ∈ P (L) there is a Pareto-optimal point x such that
v = (o1(x), o2(x), . . . , ok(x)). The definition of ε-approximate Pareto curve
Pε(L) for L is similar to the definitions of the curves as defined above. The
following theorem is a direct consequence of the corresponding theorems in [10].

Markov Decision Processes with Multiple Long-Run Average Objectives 479

Theorem 3 ([10]). Given a multi-objective linear program L with k-objective
functions, the following assertions hold:

1. For all ε > 0, there exists an approximate Pareto curve Pε(L) consisting of
a number of feasible solution that is polynomial in |L| and 1

ε , but exponential
in the number of objective functions.

2. For all ε > 0, there is an algorithm to construct Pε(L) in time polynomial
in |L| and 1

ε and exponential in the number of objective functions.

4.1 Irreducible MDPs

In this subsection we consider a special class of MDPs, namely, irreducible
MDPs1 and present algorithm to approximate the Pareto curve by reduction
to multi-objective linear-programming.

Irreducible MDPs. An MDP G is irreducible if for every pure memoryless
strategy σ ∈ ΣPM the Markov chain Gσ is completely ergodic (or irreducible),
i.e., the graph of Gσ is a strongly connected component. Observe that if G is an
irreducible MDP, then for all memoryless strategy σ ∈ ΣM , the Markov chain
Gσ is completely ergodic.

Long-Run Frequency. Let G = (S, A, p) be an irreducible MDP, and σ ∈ ΣM

be a memoryless strategy. Let q(s, σ)(u) = limT→∞ 1
T ·

∑T−1
t=0 E

σ
s [1Xt=u], where

1Xt=u is the indicator function denoting if the t-th state is u, denote the “long-
run average frequency” of state u, and let xua = q(s, σ)(u) · σ(u)(a) be the
“long-run average frequency” of the state action pair (u, a). It follows from the
results of [5] (see section 2.4) that q(s, σ)(u) exists and is positive for all states
u ∈ S, and xua satisfies the following set of linear-constraints: let δ(u, u′) be the
Kronecker delta, and we have the following constraints

(i)
∑

u∈S

∑

a∈A

(
δ(u, u′) − p(u, a)(u′)

)
· xua = 0; u′ ∈ S;

(ii)
∑

u∈S

∑

a∈A

xua = 1; (iii) xua ≥ 0; a ∈ A, u ∈ S.

We denote the above set of constraints by Cirr(G).

Multi-objective Linear-Program. Let G be an irreducible MDP with k re-
ward functions r1, r2, . . . , rk. We consider the following multi-objective linear-
program over the variables xua for u ∈ S and a ∈ A. The k-objectives are
as follows: max

∑
u∈S

∑
a∈A rj(u, a) · xua; for j = 1, 2, . . . , k; and the set of

linear-constraints are specified as Cirr(G). We denote the above multi-objective
linear-program as Lirr(G, r).

Lemma 3. Let G be an irreducible MDP, with k reward functions r1, r2, . . . , rk.
Let v ∈ R

k be a vector of real-values. The following statements are equivalent.
1 See section 2.4 of [5] for irreducible MDPs with a single reward function.

480 K. Chatterjee

1. There is a memoryless strategy σ ∈ ΣM such that ∧k
j=1

(
Valσinf (rj , s) ≥ vj

)
.

2. There is a feasible solution xua for multi-objective linear-program Lirr(G, r)
such that ∧k

j=1

(∑
u∈S

∑
a∈A rj(u, a) · xua ≥ vj

)
.

Proof

1. [(1). ⇒ (2).] Given a memoryless strategy σ, let xua = σ(u)(a) · limT→∞ 1
T ·

∑T−1
t=0 E

σ
s [1Xt=u]. Then xua is a feasible solution to Lirr(G, r). Moreover,

the value for the inf-long-run average objective can be expressed as follows:
Valσinf (rj , s) =

∑
u∈S

∑
a∈A σ(u)(a) · rj(u, a) · limT→∞ 1

T ·
∑T−1

t=0 E
σ
s [1Xt=u].

The desired result follows.
2. [(2). ⇒ (1).] Let xua be a feasible solution to Lirr(G, r). Consider the memo-

ryless strategy σ defined as follows: σ(u)(a) = xua∑
a′∈A xua′

. Given the memo-
ryless strategy σ, it follows from Lemma 2.4.2 and Theorem 2.4.3 of [5] that
xua = σ(u)(a) · limT→∞ 1

T ·
∑T−1

t=0 E
σ
s [1Xt=u]. The desired result follows.

It follows from Lemma3 that the Pareto curveP (Lirr(G, r)) characterizes the set of
memoryless Pareto-optimal points for the MDP with k inf-long-run average objec-
tives. Since memoryless strategies suffices of ε-Pareto optimality for inf-long-run
average objectives (Theorem 2), the following result follows from Theorem 3.

Theorem 4. Given an irreducible MDP G with k reward functions r, for all
ε > 0, there is an algorithm to construct a P inf

ε (G, s, r) in time polynomial in
|G| and 1

ε and exponential in the number of reward functions.

4.2 General MDPs

In the case of general MDPs, if we fix a memoryless strategy σ ∈ ΣM , then in the
resulting Markov chain Gσ, in general, we have both recurrent states and transient
states. For recurrent states the “long-run-average frequency” is positive and for
transient states the “long-run-average frequency” is zero. For the transient states
the strategy determines the probabilities to reach the various closed connected
set of recurrent states. We will obtain several multi-objective linear-programs to
approximate the Pareto curve: the set of constraints for recurrent states will be
obtained similar to the one of Cirr(G), and the set of constraints for the transient
states will be obtained from the results of [3] on multi-objective reachability ob-
jectives. We first define a partition of the set ΣM of memoryless strategies.

Partition of Strategies. Given an MDP G=(S, A, p), consider the following set
of functions: F ={ f : S → 2A \ ∅ }. The set F is finite, since |F| ≤ 2|A|·|S|. Given
f ∈ F we denote by ΣM � f = { σ ∈ ΣM | f(s) = Supp(σ(s)), ∀s ∈ S } the set of
memoryless strategies σ such that support of σ(s) is f(s) for all states s ∈ S.

Multi-objective Linear Program for f ∈ F . Let G be an MDP with reward
functions r1, r2, . . . , rk. Let f ∈ F , and we will present a multi-objective linear-
program for memoryless strategies in ΣM � f . We first observe that for all σ1, σ2 ∈
ΣM � f , the underlying graph structures of the Markov chains Gσ1 and Gσ2 are

Markov Decision Processes with Multiple Long-Run Average Objectives 481

the same, i.e., the recurrent set of states and transient set of states in Gσ1 and
Gσ2 are the same. Hence the computation of the recurrent states and transient
states for all strategies in ΣM � f can be achieved by computing it for an arbitrary
strategy in ΣM � f . Given G, the reward functions, an initial state s, and f ∈ F ,
the multi-objective linear program is obtained by applying the following steps.

1. Consider the memoryless strategy σ ∈ ΣM � f that plays at u all actions
in f(u) uniformly at random, for all u ∈ S. Let U be the reachable subset
of states in Gσ from s, and let R = { R1, R2, . . . , Rl } be the set of closed
connected recurrent set of states in Gσ, i.e., Ri is a bottom strongly con-
nected component in the graph of Gσ. The set U and R can be computed in
linear-time. Let R =

⋃l
i=1 Ri, and the set U \ R consists of transient states.

2. If s ∈ R, then consider Ri such that s ∈ Ri. In the present case, consider
the multi-objective linear-program of subsection 4.1 with the additional con-
straint that xua > 0, for all u ∈ Ri and a ∈ f(u), and xua = 0 for all u ∈ Ri

and a
∈ f(u). The Pareto curve of the above multi-objective linear-program
coincides with the Pareto curve for memoryless strategies in ΣM � f . The
proof essentially mimics the proof of Lemma 3 restricted to the set Ri.

3. We now consider the case when s ∈ U \ R. In this case we will have three
kinds of variables: (a) variables xua for u ∈ R and a ∈ A; (b) variables yua

for u ∈ U \ R and a ∈ A (c) variables yu for u ∈ R. Intuitively, the variables
xua will denote the “long-run average frequency” of the state action pair
xua, and the variables yua and yu will play the same role as the variables
of the multi-objective linear-program of [3] for reachability objectives (see
Fig 3 of [3]). We now specify the multi-objective linear-program

Objectives (j = 1, 2, . . . , k) : max
∑

u∈S

∑

a∈A

rj(u, a) · xua;

Subject to
(i)

∑

u∈Ri

∑

a∈A

(
δ(u, u′) − p(u, a)(u′)

)
· xua = 0; u′ ∈ Ri;

(ii)
∑

u∈R

∑

a∈A

xua = 1; (iii) xua ≥ 0; a ∈ A, u ∈ R;

(iv) xua > 0; a ∈ f(u), u ∈ R; (v) xua = 0; a
∈ f(u), u ∈ R;
(vi)

∑

a∈A

yua −
∑

u′∈U

∑

a′∈A

p(u′, a′)(u) · yu′a′ = α(u); u ∈ U \ R;

(vii) yu −
∑

u′∈U\R

∑

a′∈A

p(u′, a′)(u) · yu′a′ = 0; u ∈ R;

(viii) yua ≥ 0; u ∈ U \ R, a ∈ A; (ix) yu ≥ 0; u ∈ R;
(x) yua > 0; u∈U \ R, a∈f(u); (xi) yua = 0; u ∈ U \ R, a
∈ f(u);
(xii)

∑

u∈Ri

∑

a∈A

xua =
∑

u∈Ri

yu; i = 1, 2, . . . , l;

where α(u) = 1 if u = s and 0 otherwise. We refer the above set of con-
straints as Cgen(G, r, f) and the above multi-objective linear-program as
Lgen(G, r, f). We now explain the role of each constraint: the constraints
(i) − (iii) coincides with constraints Cirr(G) for the subset Ri, and the

482 K. Chatterjee

additional constraints (iv) − (v) are required to ensure that we have witness
strategies such that they belong to ΣM � f . The constraints (vi) − (ix) are
essentially the constraints of the multi-objective linear-program for reacha-
bility objectives defined in Fig 3 of [3]. The additional constraints (x) − (xi)
are again required to ensure that witness strategies satisfy that they belong
to ΣM � f . Intuitively, for u ∈ Ri, the variables yu stands for the probability
to hit u before hitting any other state in Ri. The last constraint specify that
the sum total of “long-run average frequency” in a closed connected recur-
rent set Ri coincides with the probability to reach Ri. We remark that the
above constraints can be simplified; e.g., the (iv) and (v) implies (iii), but
we present the set constraints in a way such that it can be understood that
what new constraints are introduced.

Lemma 4. Let G = (S, A, p) be an MDP, with k reward functions r1, r2, . . . , rk.
Let v ∈ R

k be a vector of real-values. The following statements are equivalent.

1. There is a memoryless strategy σ∈ΣM � f such that ∧k
j=1

(
Valσinf (rj , s)≥vj

)
.

2. There is a feasible solution for the multi-objective linear-program
Lgen(G, r, f) such that ∧k

j=1

(∑
u∈S

∑
a∈A rj(u, a) · xua ≥ vj

)
.

Proof. The case when the starting s is a member of the set R of recurrent states,
the result follows from Lemma 3. We consider the case when s ∈ U \R. We prove
both the directions as follows.

1. [(1). ⇒ (2).] Let σ ∈ ΣM � f be a memoryless strategy. We now construct a
feasible solution for Lgen(G, r, f). For u ∈ R, let x′ua = σ(u)(a) · limT→∞ 1

T ·
∑T−1

t=0 E
σ
s [1Xt=u]. Consider a square matrix P σ of size |U \ R| × |U \ R|,

defined as follows: P σ
u,u′ =

∑
a∈A σ(u)(a) ·p(u, a)(u′), i.e., P σ is the one-step

transition matrix under p and σ. For all u ∈ U \ R, let y′ua = σ(u)(a) ·∑∞
n=0(P

σ)n
s,u. In other words, y′ua denotes “the expected number of times

of visiting u and upon doing so choosing action a, given the strategy σ and
starting state s”. Since states in U \R are transient states, the values y′ua are
finite (see Lemma 1 of [3]). For u ∈ R, let y′u =

∑
u′∈U\R

∑
a′∈A p(u′, a′)(u) ·

y′u′a′ , i.e., y′u is the “expected number of times that we will transition into
state u for the first time”. It follows from arguments similar to Lemma 3
and the results in [3] that above solution is feasible solution to the linear-
program Lgen(G, r, f). Moreover,

∑
u∈Ri

y′u = Prσ
s (�Ri), for all Ri, where

�Ri denotes the event of reaching Ri. It follows that for all j = 1, 2, . . . , k
we have Valσinf (rj , s) =

∑
u∈R

∑
a∈A rj(u, a) ·x′ua. The desired result follows.

2. [(2). ⇒ (1).] Given a feasible solution to Lgen(G, r, f) we construct a mem-
oryless strategy σ ∈ ΣM � f as follows:

σ(u)(a) =

{
xua∑

a′∈A xua′
u ∈ R;

yua∑
a′∈A yua′

u ∈ U \ R;

Observe the constraints (iv) − (v) and (x) − (xi) ensure that the strategy
σ ∈ ΣM � f . The strategy constructed satisfies the following equalities: for
all Ri we have Prσ

s (�Ri) =
∑

u∈Ri
yu (this follows from Lemma 2 of [3]);

Markov Decision Processes with Multiple Long-Run Average Objectives 483

and for all u ∈ Ri we have xua = σ(u)(a) · limT→∞ 1
T ·

∑T−1
t=0 E

σ
s [1Xt=u].

The above equality follows from arguments similar to Lemma 3. The desired
result follows.

Theorem 5. Given an MDP G with k reward functions r, for all ε > 0, there
is an algorithm to construct a P inf

ε (G, s, r) in (a) time polynomial in 1
ε , and ex-

ponential in |G| and the number of reward functions; (b) using space polynomial
in 1

ε and |G|, and exponential in the number of reward functions.

Proof. It follows from Lemma 4 that the Pareto curve P (Lgen(G, r, f)) character-
izes the set of memoryless Pareto-optimal points for the MDP with k inf-long-run
average objectives for all memoryless strategies in ΣM � f . We can generate all
f ∈ F in space polynomial in |G| and time exponential in |G|. Since memory-
less strategies suffices of ε-Pareto optimality for inf-long-run average objectives
(Theorem 2), the desired result follows from Theorem 3.

4.3 Realizability

In this section we study the realizability problem for multi-objective MDPs: the
realizability problem asks, given a multi-objective MDP G with rewards r1, . . .,
rk (collectively, r) and a state s of G, and a value profile w = (w1, . . . wk) of
k rational values, whether there exists a strategy σ such that Valσinf (r, s) ≥ w.
Observe that such a strategy exists if and only if there is a Pareto-optimal strat-
egy σ′ such that Valσ

′

inf (r, s) ≥ w. Also observe that it follows from Theorem 2
that if a value profile w is realizable, then it is realizable within ε by a memory-
less strategy, for all ε > 0. Hence we study the memoryless realizability problem
that asks, given a multi-objective MDP G with rewards r1, . . ., rk (collectively,
r) and a state s of G, and a value profile w = (w1, . . . wk) of k rational values,
whether there exists a memoryless strategy σ such that Valσinf (r, s) ≥ w. The
realizability problem arises when certain target behaviors are required, and one
wishes to check if they can be attained on the model.

Theorem 6. The memoryless realizability problem for multi-objective MDPs
with inf-long-run average objectives can be (a) decided in polynomial time for
irreducible MDPs; (b) decided in NP for MDPs.

Proof. The result is obtained as follows.

1. For an irreducible MDP G with k reward functions r1, r2, . . . , rk, the answer to
the memoryless realizability problem is “Yes” iff the following set of linear con-
straints has a solution. The set of constraints consists of the constraints Cirr(G)
along with the constraints ∧k

j=1

(∑
s∈S

∑
a∈A rj(s, a) · xua ≥ wj

)
. Hence we

obtain a polynomial time algorithm for the memoryless realizability problem.
2. For an MDP G with k reward functions r1, r2, . . . , rk, the answer to the

memoryless realizability problem is “Yes” iff there exists f ∈ F such
that the following set of linear constraints has a solution. The set of con-
straints consists of the constraints Cgen(G, r, f) along with the constraints

484 K. Chatterjee

∧k
j=1

(∑
s∈S

∑
a∈A rj(s, a) · xua ≥ wj

)
. Hence given the guess f , we have a

polynomial time algorithm for verification. Hence the result follows.

Concluding Remarks. In this work we studied MDPs with multiple long-run
average objectives: we proved ε-Pareto optimality of memoryless strategies for
inf-long-run average objectives, and presented algorithms to approximate the
Pareto-curve and decide realizability for MDPs with multiple inf-long-run av-
erage objectives. The problem of approximating the Pareto curve and deciding
the realizability problem for sup-long-run average objectives remain open. The
other interesting open problems are as follows: (a) whether memoryless strategies
suffices for Pareto optimality, rather than ε-Pareto optimality, for inf-long-run
average objectives; (b) whether the problem of approximating the Pareto curve
and deciding the realizability problem for general MDPs with inf-long-run aver-
age objectives can be solved in polynomial time.

References

1. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. Technical Report, UC Berkeley, UCB/EECS-2007-105 (2007)

2. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

3. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, Springer, Heidelberg (2007)

4. Etzioni, O., Hanks, S., Jiang, T., Karp, R.M., Madari, O., Waarts, O.: Efficient in-
formation gathering on the internet. In: FOCS 1996, pp. 234–243. IEEE Computer
Society Press, Los Alamitos (1996)

5. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New
York (1979)

7. Hartley, R.: Finite discounted, vector Markov decision processes. Technical report,
Department of Decision Theory, Manchester University (1979)

8. Koski, J.: Multicriteria truss optimization. In: Multicriteria Optimization in Engi-
neering and in the Sciences (1988)

9. Owen, G.: Game Theory. Academic Press, London (1995)
10. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and

optimal access of web sources. In: FOCS 2000, pp. 86–92. IEEE Computer Society
Press, Los Alamitos (2000)

11. Puterman, M.L.: Markov Decision Processes. John Wiley and Sons, Chichester
(1994)

12. Szymanek, R., Catthoor, F., Kuchcinski, K.: Time-energy design space exploration
for multi-layer memory architectures. In: DATE 04, IEEE Computer Society Press,
Los Alamitos (2004)

13. White, D.J.: Multi-objective infinite-horizon discounted Markov decision processes.
Journal of Mathematical Analysis and Applications 89(2), 639–647 (1982)

14. Yang, P., Catthoor, F.: Pareto-optimization based run time task scheduling for em-
bedded systems. In: CODES-ISSS 2003, pp. 120–125. ACM Press, New York (2003)

A Formal Investigation of Diff3

Sanjeev Khanna1, Keshav Kunal2, and Benjamin C. Pierce1

1 University of Pennsylvania
2 Yahoo

Abstract. The diff3 algorithm is widely considered the gold standard
formerginguncoordinated changes to list-structured data such as text files.
Surprisingly, its fundamental properties have never been studied in depth.

We offer a simple, abstract presentation of the diff3 algorithm and
investigate its behavior. Despite abundant anecdotal evidence that peo-
ple find diff3’s behavior intuitive and predictable in practice, charac-
terizing its good properties turns out to be rather delicate: a number of
seemingly natural intuitions are incorrect in general. Our main result is
a careful analysis of the intuition that edits to “well-separated” regions
of the same document are guaranteed never to conflict.

1 Introduction

Users often want to edit a local copy of a replicated data structure, postponing
the moment when their changes become visible to others until sometime later—
when a set of changes has been finished and tested, when an offline laptop
is reconnected to the network, etc. In general, when multiple users can edit
at the same time, this reconciliation process requires a tool—a synchronizer—
that can propagate non-conflicting changes between different copies of the data,
while recognizing and flagging conflicts. Source code management systems, long-
distance collaborative editing environments, and file synchronizers are examples.

Operation-based synchronizers work by keeping track of the complete se-
quences of operations that have been applied to each replica and, during reconcil-
iation, attempting to synthesize a single unified view of the data structure’s edit
history. By contrast, a state-based synchronizer sees only the current versions of
the replicas to be reconciled, together with an archive of the last state they had
in common (perhaps saved away at the end of the last synchronization).

A crucial problem faced by a state-based synchronizer is how to align the infor-
mation in the current replicas and the archive, so that it can tell where changes have
been made. This can be accomplished in a variety of ways, depending on the na-
ture of the data being synchronized. Where the data is rigidly structured or where
keys are available (e.g., in personal information management applications such as
address books), the proper alignment is generally clear. For more flexibly struc-
tured data, such as semistructured databases, file systems, and text documents, it
is less clear how to reliably choose alignments that users consider natural. The is-
sue is particularly vexing for pure textual (or, more generally, list-structured) data,
which offers no predeterminedpoints of reference for alignment—the structures are
presented to the synchronizer as flat sequences of uninterpreted atoms (characters,

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 485–496, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

486 S. Khanna, K. Kunal, and B.C. Pierce

words, or lines of text)—and for which common edits include arbitrary insertions,
deletions, and rearrangements of existing material.

The best known tool for synchronization of textual data is diff3. Developed
by Randy Smith in 1988 [1] and popularized in revision control systems such as
CVS and Subversion, diff3 and its relatives are relied on by millions of users
for a huge range of collaborative tasks. The basic ideas of diff3 also appear
in numerous hybrid tools for synchronizing semi-structured data in formats like
XML, such as Lindholm’s 3DM [2], the work of Chawathe et al. [3], and FCDP [4].

Given its popularity, it is surprising that the fundamental properties of the
diff3 algorithm have never been explored. The published descriptions of its
behavior (the GNU difftools manual [5] and comments in the source code)
are helpful but rather low-level and operational, and we have been unable to
find in the literature any rigorous analysis of the properties that users might
want or expect from diff3 and the circumstances under which they hold.

Our first contribution is to put the diff3 algorithm itself on a more rigor-
ous footing by offering a concise description of its behavior (§2-§3). Our model
here is diff [6,7,8]—the two-way comparison algorithm used as a subroutine by
diff3—which has not one but two elegant specifications: it can be viewed as
computing either a longest common subsequence of its two inputs or a minimum-
length edit script for turning one into the other by single-element insertions and
deletions. Our specification of diff3 is not quite this concise, but nearly. We
give a compact reference implementation in half a page of pseudo-code.

Our second and main contribution is an analysis of diff3’s properties (§4).
Most importantly, we examine the common intuition that, if the changes to
the replicas are local to distinct and “well separated” regions, then diff3 will
always be able to merge them without conflicts. We show that the most obvious
formulations of this intuition are, in fact, wrong, but identify a common and
easily checked separation condition under which the property does hold. We also
formalize intuitive notions of idempotence (the results of synchronization are
“fully synchronized” except where edits conflict), stability (similar inputs lead
to similar outputs), and the guarantee of near-complete success when the inputs
have been changed in similar ways (even if these changes are large compared to
the archive version), and show that none of these properties hold in general.

We cite only closely related work. Broader surveys of the literature on synchro-
nization algorithms for other kinds of data and algorithms founded on different
assumptions (such as operation-based techniques) can be found in [9,10].

2 Warmup

Let us begin with a small example illustrating the basic operation of diff3.
Figure 1(a) shows the initial configuration: O is the archive—the last common
version—and A and B are the current versions that have diverged from O.
(Whoever edited A has swapped 4, 5 and 2, 3, while 3 has gotten moved after 5
in B.) The first thing diff3 does is to call the two-way comparison tool diff to
find maximum matchings (or longest common subsequences) between O and A

A Formal Investigation of Diff3 487

A = [1, 4, 5, 2, 3, 6]
O = [1, 2, 3, 4, 5, 6]
B = [1, 2, 4, 5, 3, 6]

(a) inputs

A 1 4 5 2 3 6

O 1 2 3 4 5 6

O 1 2 3 4 5 6

B 1 2 4 5 3 6

(b) maximum matches

A 1 4,5 2 3 6

O 1 2 3,4,5 6

B 1 2 4,5,3 6

(c) diff3 parse

A′ 1 4,5 2 3 6

O′ 1 4,5 2 3,4,5 6

B′ 1 4,5 2 4,5,3 6

(d) calculated output

1
4
5
2
<<<<<<< A
3
||||||| O
3
4
5
=======
4
5
3
>>>>>>> B
6

(e) printed output

Fig. 1. Warmup Example

and between O and B, as shown in Figure 1(b). It then takes the regions where
O differs from either A or B and coalesces the ones that overlap, leading to
the alternating sequence of stable (all replicas equal) and unstable (one or both
replicas changed) chunks shown in Figure 1(c).1 Finally, it examines what has
changed in each chunk and decides what changes can be propagated, as shown
in Figure 1(d)—here, the second chunk is changed only in A (by inserting 4, 5),
so this change can be propagated to B, but the fourth chunk has changes in
both A and B, so nothing can be propagated.

At this point, the actual diff3 tool is finished: it simply walks over the
chunks and, depending on what flags are provided on the command line, outputs
something appropriate for each chunk. For example, Figure 1(e) shows the output
from invoking diff3 -m A O B, where the -m flag requests a merged version of
the files. For non-conflicting chunks, a single version is printed; for conflicts, the
whole chunk.

Our analysis is a tiny bit more refined: We consider diff3 as having three
outputs—the new versions of A, O, and B with all non-conflicting changes in A
reflected in B′ and O′ and all non-conflicting changes in B reflected in A′ and O′.
At the same time, we calculate a new archive O′ that reflects all the changes that
were successfully propagated, keeping the state from O in conflicting regions.
(This extra refinement is just for purposes of analysis. In principle, it could also
be useful in practice: after a partially successful synchronization, the current
replicas are left in a partially updated but usable state, in contrast with tools
like CVS based on the actual diff3, where conflicts cause the current replicas to

1 The diff3 manual [11] uses the term hunks for what we are calling unstable chunks;
stable chunks are not named explicitly.

488 S. Khanna, K. Kunal, and B.C. Pierce

be polluted with information about conflicting chunks. However, we will see in
§4.2 that re-running diff3 after a partially conflicting run can have unexpected
consequences.)

3 The Diff3 Algorithm

We assume given some set of atoms A. (In practice, these might be lines of text,
as in GNU diff3, or they could be words, characters, etc.) We write A∗ for the
set of lists with elements drawn from A and use variables J , K, L, O, A, B,
and C to stand for elements of A∗. If L is a list and k ∈ {1, . . . , |L|}, then L[k]
denotes the kth element of L. A span in a list L is a pair of indices [i..j] with
1 ≤ i, j ≤ |L|. We write L[i..j] for the list of elements of L in locations i through
j; if j < i, this is the empty list. The length of a span [i..j] is j − i + 1 if i ≤ j
and 0 if i > j.

A configuration is a triple (A, O, B) ∈ A∗ × A∗ × A∗. We usually write
configurations in the more suggestive notation (A ← O → B) to emphasize that
O is the archive from which A and B have been derived.

A synchronizer is a function that takes as input a configuration (A ← O → B)
and yields another configuration (A′ ← O′ → B′). We say that (A ← O → B) ⇒
(A′ ← O′ → B′) is a run of the synchronizer. A run (A ← O → B) ⇒ (C ←
C → C), where the three components of the output configuration are identical,
is said to be conflict free. We write (A ← O → B) ⇒ C in this case.

The first step of diff3 is to call a two-way comparison subroutine on (O, A)
and (O, B) to compute a non-crossing matching MA between the indices of O
and A—that is, a boolean function on pairs of indices from O and A such that if
MA[i, j] = true then (a) O[i] = A[j], (b) MA[i′, j] = false and MA[i, j′] = false
whenever i′ �= i and j′ �= j, and (c) MA[i′, j′] = false whenever either i′ < i
and j′ > j or i′ > i and j′ < j—and a non-crossing matching MB between the
indices of O and B. We treat this algorithm as a black box, simply assuming (a)
that it is deterministic, and (b) that it always yields maximum matchings. For
the counterexamples in the next section, we have verified that the matchings we
use correspond to the ones actually chosen by GNU diff3.

A chunk (from A, O, and B) is a triple H = ([ai..aj], [oi..oj], [bi..bj]) of a
span in A, a span in O, and a span in B such that at least one of the three is
non-empty. The size of a chunk is the sum of the lengths of all three spans. Write
A[H] for A[ai..aj] ∈ A∗, and similarly O[H] = O[oi..oj] and B[H] = B[bi..bj].

A stable chunk is a chunk in which all three spans have the same length and
corresponding indices are matched in all three—i.e., a chunk ([a..a+k−1], [o..o+
k−1], [b..b+k−1]) for some k > 0, with MA[o+ i, a+ i] = MB[o+ i, b+ i] = true
for each 0 ≤ i < k. That is, a stable chunk corresponds to a span in O that is
matched in both MA and MB. An unstable chunk is one that is not stable. An
unstable chunk H is classified as follows:

H is changed in A if O[H] = B[H] �= A[H]
H is changed in B if O[H] = A[H] �= B[H]
H is falsely conflicting if O[H] �= A[H] = B[H]
H is (truly) conflicting if O[H] �= A[H] �= B[H] �= O[H]

A Formal Investigation of Diff3 489

1. Initialize �O = �A = �B = 0.
2. Find the least positive integer i such that either MA[�O + i, �A + i] = false

or MB [�O + i, �B + i] = false. If i does not exist, then skip to step 3 to
output a final stable chunk.

(a) If i = 1, then find the least integer o > �O such that there exist
indices a, b with MA[o, a] = MB [o, b] = true . If o does not exist, then
skip to step 3 to output a final unstable chunk. Otherwise, output the
(unstable) chunk

C = ([�A + 1 .. a − 1], [�O + 1 .. o − 1], [�B + 1 .. b − 1]).

Set �O = o − 1, �A = a − 1, and �B = b − 1, and repeat step 2.
(b) If i > 1, output the (stable) chunk

C = ([�A + 1 .. �A + i − 1], [�O + 1 .. �O + i − 1], [�B + 1 .. �B + i − 1]).

Set �O = �O + i − 1, �A = �A + i − 1, and �B = �B + i − 1, and repeat
step 2.

3. If (�O < |O| or �A < |A| or �B < |B|), output a final chunk

C = ([�A + 1 .. |A|], [�O + 1 .. |O|], [�B + 1 .. |B|]).

Fig. 2. The Diff3 Algorithm

A chunk is called conflicting if it is either falsely or truly conflicting; a non-
conflicting chunk is thus either stable or else changed only in A or B. Given a
chunk H , we define the output of H to be the following triple of lists:

out(H) =

⎧
⎨

⎩

(A[H], O[H], B[H]) if H is stable or conflicting
(A[H], A[H], A[H]) if H is changed in A
(B[H], B[H], B[H]) if H is changed in B

A diff3 parse of A, O, and B with respect to the matchings MA and MB

is a sequence of stable and unstable chunks such that, (I) whenever MA[o, a] =
MB[o, b] = true, the indices a, o, and b appear together in some stable chunk,
and (II) each stable chunk is as large as possible. Observe that, under these
conditions, the given matchings MA and MB uniquely determine the division of
the inputs into an alternating sequence of stable and unstable chunks. Figure 2
gives a concrete algorithm for computing these chunks from the matchings.

Lemma 3.1. For any matchings MA between A and O and and MB between
B and O, the algorithm in Figure 2 outputs a diff3 parse.

Proof. For (I), observe that the beginning of each unstable chunk, identified in
step 2(a), is an index �O+1 in O such that MA[�O+1, �A+1] = false or MB[�O+1,
�B + 1] = false. The chunk then spans the elements O[�O + 1], ..., O[o − 1] in O,
where o > �O is the least index such that (i) there exist a, b with MA[o, a] =
MB[o, b] = true, or (ii) O[o−1] is the last element in O. Thus an unstable chunk
can not contain an element in O that is matched in both MA and MB.

490 S. Khanna, K. Kunal, and B.C. Pierce

Now suppose property (II) is violated in some parse output by the algorithm.
Consider the first stable chunk C that violates the maximality condition. The
chunk (if any) that precedes C must be an unstable chunk or else C is not the
first stable chunk to violate the maximality property. By (I), we know that no
elements in the unstable chunk preceding C (if any) could have been included in
C. Also, if C is output in step 2(b), it terminates at A[�A+i−1], O[�O+i−1], and
B[�B + i−1] where i satisfies the condition that either MA[�O + i, �A + i] = false
or MB[�O + i, �B + i] = false . Clearly, no more elements could be included in
C. Similarly, if C is output in step 3, then none of A, O, or B can contain any
elements that follow C. Thus C must be maximal—a contradiction. �	

Finally, if P = [H1, . . . , Hn] is a parse—a sequence of chunks—then the output
of P is obtained by concatenating the outputs for each chunk,

out(P) = (concat([A1..An]), concat([O1..On]), concat([B1..Bn])),

where out(Hi) = (Ai, Oi, Bi) for each 1 ≤ i ≤ n.

4 Properties of Diff3

We now explore a number of intuitive properties that one might expect a syn-
chronization algorithm such as diff3 to possess... and encounter some surprises.

4.1 Locality

Users of version control systems such as CVS can often be heard saying things
like “I’ll change this section of the file and you change that one and we’ll sync
up when we’re done,” in perfect confidence that this synchronization will be
unproblematic. Indeed, perhaps the most important property that users of diff3
expect in practice is that, if A and B have been changed only in “non-overlapping
ways,” then synchronization will produce a unique, conflict-free result.

To investigate this intuition, let us focus on the case where A makes changes
only at one end of the file while B makes changes only at the other end of the file.
Define a tiling τ for a list O to be a partition of O into three lists O1, O2, and O3

such that O = O1O2O3. A configuration (A ← O → B) is τ-respecting if O1 and
O3 are each modified in at most one of A and B and O2 is modified in neither.
If only one of O1 or O3 gets modified at all or if both O1 and O3 are modified
in the same list, the result will obviously be conflict free. The interesting case is
when both A and B make changes.

Next, we need to formalize the intuitive condition of the edited regions being
“well separated.” Two possible ways of doing this come immediately to mind:

– require that the edited regions be separated by a large untouched region—
i.e., that O2 be longer than any of A1, O1, O3, or B3; or

– require that the separating region be different from anything appearing any-
where else—i.e., that the string O2 not occur in O1, A1, O3, or B3.

A Formal Investigation of Diff3 491

A 1, 2, (1, 2)n−1 1, 2, 1, 2

O (1, 2)n 1, 2

B (1, 2)n 3

stable conflict

Fig. 3. Counter-example for locality

Most users of diff3 would probably guess (as we did) that either of these con-
ditions is enough to guarantee a conflict-free synchronization. As the following
example shows, this guess is wrong on both counts.

Let O1 = ∅, O2 = (1, 2)n, and O3 = 1, 2, for some positive integer n. In
replica A, the O1 component is modified to A1 = 1, 2 while in the replica B,
the O3 component is modified to B3 = 3. Consider the maximum matching MA

for pair (O, A) where the 1, 2 term in A1 is matched to the first 1, 2 term in
O2 component of O. Then the (1, 2)n−1 prefix in the O2 component in A is
matched to the (1, 2)n−1 suffix in the O2 component of O. Finally, the last (1, 2)
term in the O2 component of A is matched to the O3 component of O. For the
pair (O, B), the only maximum matching is one where their O2 components are
matched. As shown in Fig. 3, we have a (“true”) conflict in this run. Note that
the conflict is independent of the value of the parameter n and that it occurs
even when the stable region O2 is arbitrarily large.

At this point, one might begin to wonder whether, despite all the anecdotal
evidence to the contrary, diff3 might not be safe to use under any set of con-
ditions that can be concisely characterized. Fortunately, this is too pessimistic.
We can get the property we want by strengthening the second intuition.

Call a τ -respecting configuration (A ← O → B) safe if the O2 component
contains an element x that occurs exactly once in each of O, A, and B. Notice
that there are no constraints on the length of O2: it may contain just x.

Theorem 4.1.1. Every safe τ -respecting configuration (A ← O → B) leads to
a unique conflict-free synchronization.

Such configurations are common in practice: for example, if the structures being
synchronized are replicas of a source code file, it is reasonable to expect that
O2 will contain some completely unique line, such as a procedure header or a
distinctive comment. The theorem can thus be viewed as justifying the common
belief in diff3’s locality. Its proof rests on a technical property.

Lemma 4.1.2. Suppose we are given a configuration (A ← O → B), a matching
MA between O and A, and a matching MB between O and B. If there exists
an element z that occurs uniquely in each of A, O, B and if both MA and MB

match the element z, then z must be contained in a stable chunk in the diff3
parse that results from MA and MB.

Proof. Let αO, αA, and αB respectively denote the locations of the element z
in O, A, and B. We prove the property by iteratively considering the chunks

492 S. Khanna, K. Kunal, and B.C. Pierce

that are output by the diff3 algorithm until the point that element z appears
in some output chunk for the first time. Let �O, �A, and �B (see Figure 2) be
the indices denoting the locations of the last elements in O, A, and B that were
processed by the algorithm. By assumption, �O < αO, �A < αA, and �B < αB.

If the next chunk being output is an unstable chunk as in step 2(a), then the
chunk ends just before the least offset in O at which there exists an element
matched in both MA and MB. Clearly, the updated indices �O, �A, and �B must
again satisfy the property �O < αO, �A < αA, and �B < αB since MA[αO, αA] =
MB[αo, αB] = true. On the other hand, if the next chunk being output is a
stable chunk as in step 2(b), then the chunk ends just before the least offset at
which there exists an element in O that is not matched in at least one of MA or
MB. If the updated indices still satisfy �O < αO, �A < αA, and �B < αB , then
we continue with the iterative process, maintaining the invariant. Otherwise, the
element z must appear in this stable chunk, establishing the desired property.

Proof of 4.1.1. Assume wlog that O1 is modified to A1 in A (i.e., A=A1O2O3)
and that O3 is modified to B3 in B (i.e., B = O1O2B3). Consider any maximum
matching MA between O and A. We claim that the element x must be matched
in MA. Suppose not. Let � denote the number of elements that are matched by
MA between the A1 component of A and O1 component of O. Since the element x
is not matched in MA, the total number of elements matched by MA is bounded
by � + (|O2| + |O3| − 1). Now consider the matching M ′

A that agrees with MA

in the matching of elements between A1 and O1 and also completely matches
the O2 and O3 components of A and O. Then the total number of elements
matched by M ′

A is � + (|O2| + |O3|), contradicting the assumption that MA is a
maximum matching. Thus x must be matched in MA. Moreover, since A and O
are identical after x, MA must match all elements in A after x to all elements in
O after x, in order to be a maximum matching. Similarly, MB must match all
the elements up to x in B to all the elements up to x in O.

By Lemma 4.1.2, x must be contained in a stable chunk in diff3’s output.
To complete the proof, consider any unstable chunk H output by the algorithm.
Since the unique element x is contained in a stable chunk, either all elements in
the A, O, and B components of chunk H precede x or they all follow x. In the
former case, H must only be “changed in A,” since MB matches all elements up
to x in B to all elements up to x in O. Similarly, in the latter case, H must be
“changed in B.” Thus, every unstable chunk is conflict free.

Finally, to see that the resulting output is unique, note that, in every parse,
all the chunks above x are either stable or changed in A and those below x are
stable or changed in B. Thus, in the output, the elements up to x will be taken
from A while the elements following x will come from B. �

This well-separation condition is quite delicate, and we have found it difficult to
generalize. For example, one might guess that it can be extended to situations
where each user has made edits in multiple regions of the list, provided that
these regions are separated by unique elements and no region is edited in both A
and B. More precisely, let us say that a generalized tiling τ is a partition of O in

A Formal Investigation of Diff3 493

A 1 2 4 6 8

O 1 2,3 4 5,5,5 6 7 8

B 1 4 5,5,5 6 2,3,4 8

stable conflict stable changed in A stable conflict stable

A 1 2 4 6 8

O 1 2 3 4 6, 7 8

B 1 4,6 2 3 4 8

stable changed in B stable changed in A stable conflict stable

Fig. 4. Counter-example to idempotence

to 2k+1 non-empty pieces for some positive integer k ≥ 1, say, O1, O2, ..., O2k+1.
We now say a configuration (A ← O → B) is τ-respecting if each piece O2i+1

for 0 ≤ i ≤ k is modified in at most one of A and B, while each piece O2i for
0 ≤ i ≤ k is modified in neither. A τ -respecting configuration (A ← O → B)
is said to be safe if each O2i component contains an element x2i that occurs
exactly once in each of O, A, and B.

But this generalization no longer ensures a conflict-free synchronization. For
example, consider the extension even to k = 2; so O = O1O2O3O4O5. Further-
more, assume that for any 1 ≤ i < j ≤ 5, Oi and Oj are disjoint, that is, they
do not share any elements. Let A = A1O2O3O4A5, and let B = O1O2B3O4O5.
Also, let A1 = O5, and A5 = B3 = ∅. Now if |O5| > |O|/2, then the unique
maximum matching MA between A and O matches the A1 component in A to
O5 in O. On the other hand, consider the maximum matching MB between B
and O that matches them in all components except B3 to O3. It is easy to see
that the first diff3 chunk will be a conflict.

4.2 Idempotence

In the rest of this section, we consider some other intuitive properties that users
might expect of diff3 and show that, in fact, it possesses none of them.

To begin, let us take the intuition that every run of a synchronizer should “do
as much as possible” and reach a stable state: synchronizing again immediately
should propagate no further changes. This can be stated formally as follows:

Property 4.2.1. A synchronization algorithm is idempotent if (A ← O →
B) ⇒ (A′ ← O′ → B′) implies (A′ ← O′ → B′) ⇒ (A′ ← O′ → B′).

Fact 4.2.2. Diff3 is not idempotent.

Counterexample. Consider the run in the top part of Figure 4, where

([1, 2, 4, 6, 8] ← [1, 2, 3, 4, 5, 5, 5, 6, 7, 8] → [1, 4, 5, 5, 5, 6, 2, 3, 4, 8])
⇒ ([1, 2, 4, 6, 8] ← [1, 2, 3, 4, 6, 7, 8] → [1, 4, 6, 2, 3, 4, 8]).

494 S. Khanna, K. Kunal, and B.C. Pierce

The output configuration can take another step, shown in the bottom part of
Figure 4, leading to

([1, 2, 4, 6, 8] ← [1, 2, 3, 4, 6, 7, 8] → [1, 4, 6, 2, 3, 4, 8])
⇒ ([1, 4, 6, 2, 4, 6, 8] ← [1, 4, 6, 2, 4, 6, 7, 8] → [1, 4, 6, 2, 4, 8]).

Note that diff3 has no choice in either case: each of the input configurations
has just one pair of maximum matchings. (Ensuring this is the role of the blocks
of repeated 5s in the first configuration.) �

4.3 Near Success on Similar Replicas

The diff3 algorithm begins by comparing O, separately, with A and with B;
it never compares A and B directly. Nevertheless, it seems reasonable to expect
that, even if A and B are very different from O, we should still be able to syn-
chronize successfully, as long as A and B themselves are similar. Unfortunately,
this intuition is misleading.

For any pair of replicas A, B, let m(A, B) denote the length of a largest
common subsequence for A and B. Let ε be some function mapping natural
numbers to reals between 0 and 1. A pair of replicas A, B is said to be ε-close
if m(A, B) ≥ (1 − ε(n))n, where n = max{|A|, |B|}. We can now formally define
stability properties involving the notion of “similarity.”

Property 4.3.1. A synchronization algorithm guarantees near success on sim-
ilar replicas if there exists a universal constant c > 0 such that, for any ε-close
pair (A, B), if (A ← O → B) ⇒ (A′ ← O′ → B′), then A′ and B′ are (cε)-close.

Fact 4.3.2. Diff3 does not guarantee near success on similar replicas.

Counterexample. Consider the input configuration

(A ← O → B) =

⎛

⎜
⎜
⎜
⎜
⎝

[1, n
2 + 1, . . . , n − 1, 2, . . . , n

2 , n]
↑
[1, . . . , n]
↓
[1, 2, n

2 + 1, . . . , n − 1, 3, . . . , n
2 , n]

⎞

⎟
⎟
⎟
⎟
⎠

(generalizing the one we saw in Section 2). Note that the pair (A, B) is 1
n -close,

as their largest common subsequence is of length n − 1. The unique maximum
common subsequence of O and A is [1, 2, . . . , n/2, n]; between O and B it is
[1, 2, n/2 + 1, . . . , n − 1, n]. This leads to three stable diff3 chunks and two
unstable chunks, as shown in Figure 5. Though the second of these is conflicting,
the first is updated only in A; the output of this chunk thus propagates [n/2 +
1, . . . , n − 1] to O and B , yielding the complete output

(A′ ← O′ → B′) =

⎛

⎜
⎜
⎜
⎜
⎝

[1, n
2 + 1, . . . , n − 1, 2, . . . , n

2 , n]
↑
[1, n

2 + 1, . . . , n − 1, 2, . . . , n]
↓
[1, n

2 + 1, . . . , n − 1, 2, n
2 + 1, . . . , n − 1, 3, . . . , n

2 , n]

⎞

⎟
⎟
⎟
⎟
⎠

.

A Formal Investigation of Diff3 495

A 1 n
2 + 1, . . . , n − 1 2 3, . . . , n

2 n

O 1 2 3, . . . , n − 1 n

B 1 2 n
2 + 1, . . . , n − 1 , 3, . . . , n

2 n

stable changed in A stable conflict stable

Fig. 5. Counter-example to several properties

In the final reconciled state, A′ and B′ are only about 1
3 -close (m(A′, B′) = n,

while max{|A′|, |B′|} is about 3n
2), and so no constant c exists such that they

are c
n -close for every positive n. �

4.4 Stability

Another intuitively reasonable property is that any two runs whose inputs are
similar should have similar outputs.

Property 4.4.1. A synchronization algorithm is stable if there exists a universal
constant c > 0 such that, for any three pairs (O1, O2), (A1, A2), and (B1, B2),
such that each pair is ε-close, if (A1 ← O1 → B1) ⇒ (A′1 ← O′1 → B′1) and
(A2 ← O2 → B2) ⇒ (A′2 ← O′2 → B′2), then each pair of replicas (O′1, O

′
2),

(A′1, A
′
2), and (B′1, B

′
2) is cε-close.

Fact 4.4.2. Diff3 is not stable, even for non-conflicting runs.

Counterexample. Consider the runs

([X, Y, X] ← [X, Y, 0, Y, X] → [Y, X, 0, Y]) ⇒ [Y, X, 0]
([X, Y, X] ← [X, Y, 0, Y, X] → [0, Y, X, Y]) ⇒ [0, X, Y],

where X = [1, . . . , n
2] and Y = [n

2 + 1, . . . , n]. It is easy to see that the corre-
sponding pairs in the two input configurations are all 2

3n -close while the output
is only about 1

2 -close. �

5 Future Work

Our formalization suggests a number of interesting variations on diff3. For
example, instead of asking for separate matchings of (O, A) and (O, B) could
we try to compute a maximum joint matching of (A, O, B)? (Note that having
maximum matchings for (O, A) and (O, B) does not imply having a maximum
matching of (A, O, B). For instance, if O = [1, 2, 3, 4, 5, 6], B = [4, 5, 1, 2, 3],
and A = [4, 5, 6, 1, 2], the unique maximum matchings for the pairs leads to an
empty match for the triple though clearly one can choose either [1, 2] or [4, 5]
as the matching elements.) Alternatively, the choice of two-way matchings could
be biased by their effect on the output, especially when deciding between two
similar choices, since there are instances when a choosing a different maximum
match or even a slightly sub-optimal matching can lead to better results.

496 S. Khanna, K. Kunal, and B.C. Pierce

Acknowledgments

We gratefully acknowledge stimulating discussions about list synchronization
with James Leifer and Catuscia Palamidessi. Nate Foster helped us understand
some of the intricacies of diff3’s behavior. This research has been supported by
the National Science Foundation under grants 0113226, Principles and Practice
of Synchronization, and 0429836, Harmony: The Art of Reconciliation.

References

1. Smith, R.: GNU diff3, Version 2.8.1, April 2002; distributed with GNU diffutils
package (1988)

2. Lindholm, T.: A three-way merge for xml documents. In: DocEng 2004: Proceedings
of the 2004 ACM symposium on Document engineering, pp. 1–10. ACM Press, New
York (2004)

3. Chawathe, S.S., Rajamaran, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. ACM SIGMOD Record 25(2), 493–504
(1996)

4. Lanham, M., Kang, A., Hammer, J., Helal, A., Wilson, J.: Format-independent
change detection and propagation in support of mobile computing. In: Brazilian
Symposium on Databases (SBBD), Gramado, Brazil, pp. 27–41 (October 2002)

5. MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files with GNU
diff and patch. Network Theory Ltd. Printed version of GNU manual (2003)

6. Miller, W., Myers, E.W.: A file comparison program. Softw., Pract. Exper. 15(11),
1025–1040 (1985)

7. Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

8. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64(1-3), 100–118 (1985)

9. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Ex-
ploiting schemas in data synchronization. Journal of Computer and System Sci-
ences (2007) To appear. Extended abstract in Database Programming Languages
(DBPL) (2005)

10. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449–462 (2002)

11. Stallman, R., et al.: Comparing and merging files, Manual for GNU diffutils (2002),
available at www.gnu.org

www.gnu.org

Probabilistic Analysis of the Degree Bounded

Minimum Spanning Tree Problem

Anand Srivastav and Sören Werth

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Platz 4, 24098 Kiel, Germany
{asr,swe}@informatik.uni-kiel.de

Abstract. In the b-degree constrained Euclidean minimum spanning
tree problem (bMST) we are given n points in [0, 1]d and a degree con-
straint b ≥ 2. The aim is to find a minimum weight spanning tree in which
each vertex has degree at most b. In this paper we analyze the proba-
bilistic version of the problem and prove in affirmative the conjecture of
Yukich stated in 1998 on the asymptotics of the problem for uniformly
(and also some non-uniformly) distributed points in [0, 1]d: the optimal
length LbMST (X1, . . . , Xn) of a b-degree constrained minimal spanning
tree on X1, . . . , Xn given by iid random variables with values in [0, 1]d

satisfies

lim
n→∞

LbMST (X1, . . . , Xn)

n(d−1)/d
= α(LbMST , d)

∫

[0,1]d
f(x)(d−1)/ddx c.c.,

where α(LbMST , d) is a positive constant, f is the density of the abso-
lutely continuous part of the law of X1 and c.c. stands for complete con-
vergence. In the case b = 2, the b-degree constrained MST has the same
asymptotic behavior as the TSP, and we have α(LbMST , d) = α(LTSP , d).
We also show concentration of LbMST around its mean and around
α(LbMST , d)n(d−1)/d. The result of this paper may spur further inves-
tigation of probabilistic spanning tree problems with degree constraints.

1 Introduction

The bMST-Problem: Complexity and Approximation. In the b-degree
constrained Euclidean minimum spanning tree problem (bMST) we are given a
set P of n points in [0, 1]d, and a degree bound b ≥ 2. The aim is to find a
minimum spanning tree in which the degree of each vertex is at most b (the
length or weight of an edge is given by its Euclidean length). The total length
of such a bMST is denoted by LbMST (P).

This is a generalization of the path version of the Euclidean TSP. Further-
more it is the most basic problem of a family of well-studied problems about
finding degree constrained structures. A nice survey on this topic is given by
Raghavachari [12]. Concerning complexity, since the case b = 2 is equivalent to
the path version of the traveling salesman problem, it is NP-hard. For b = 3 Pa-
padimitriou and Vazirani [11] showed that the problem remains NP-hard even

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 497–507, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

498 A. Srivastav and S. Werth

in the Euclidean plane. They conjectured that the problem is NP-hard also for
b = 4, but this question is still open. For b = 5 the problem in the Euclidean
plane is solvable in polynomial time [9].

Considering approximation algorithms, Arora and Chang [2] developed a
quasi-polynomial time approximation scheme for the problem using Arora’s
divide-and-conquer technique for the Euclidean TSP [1]. The best polynomial
approximation algorithms are due to Chan [5], who proved a 1.40 approximation
for b = 3 resp. a 1.14 approximation for b = 4 in R

2 and a 1.63 approximation
for b = 3 in R

d.

Probabilistic Analysis. The probabilistic analysis of Euclidean combinatorial
optimizations problems has its roots in the celebrated theorem of Bearwood,
Halton and Hammersley [4]. In 1959 they proved that for n independently and
identically distributed random variables X1, . . . , Xn in [0, 1]d, d ≥ 2, the optimal
TSP tour length LTSP (X1, . . . , Xn) is asymptotically n(d−1)/d, more precisely
there is a constant α(LTSP , d) > 0 such that

lim
n→∞LTSP (X1, . . . , Xn)/n(d−1)/d = α(LTSP , d)

∫

[0,1]d
f(x)(d−1)/ddx

almost surely, where f is the density of the absolutely continuous part of the
law of X1.

Note that for a uniform distribution we have f = 1, thus also the integral over
f is 1. In the general case those non-uniform distributions of X1 (thus of any Xi

as we have iid random variables) are addressed where f is the density function of
the absolutely continuous probability measure appearing in the decomposition of
the distribution into an absolutely continuous and a singular probability measure
(for exact definitions and the decomposition theorem we refer to [15, 17]).

This is the description of the above used phrase from the literature, that “f
is the absolutely continuous part of the law of X1”. We will use this notion
henceforth.

Papadimitriou [10] in 1978 modified the proof and showed a similar result for
the minimum matching problem in two dimensions. This was the first general
approach where some conditions for Euclidean optimization problems were de-
fined so that all problems satisfying these conditions have the same asymptotic
behavior. In 1981 Steele [15] also presented a general approach and showed that
a large class of problems has the same n(d−1)/d asymptotics as the TSP. Twelve
years later, in 1993, Rhee [14] brought isoperimetric inequalities into play and
showed that Steele’s results hold in the sense of complete convergence, which
is stronger than almost sure convergence. In 1994 Redmond and Yukich [13]
extended Steele’s and Rhee’s results to an even broader class of problems.

The work of Beardwood, Halton and Hammersley [4] motivated a large body
of research on the probabilistic analysis of Euclidean optimization problems as
minimum spanning tree, minimum perfect matching, etc. Today, there is a good
understanding of the general structure that underlies the asymptotic behavior
of these problems. An overview on the history and main developments in this
area is given in the books of Yukich [19] and Steele [16]. Recent applications

Probabilistic Analysis of the bMST Problem 499

to Euclidean multidepot vehicle routing problems were given by the authors in
FSTTCS 2005 and will appear in [3].

However, it was not possible to determine the asymptotics of the probabilistic
bMST-Problem. Yukich [19] in 1998 conjectured that the asymptotics of the
bMST-problem for n uniformly (and also non-uniformly) distributed points in
[0, 1]d is governed by n(d−1)/d. We settle this conjecture by showing that the
asymptotic behavior of the length functional of the b-degree constrained MST
problem can be analyzed with the help of its boundary modification:

Theorem 1. Let P = {X1, . . . , Xn} be a set of points in [0, 1]d given by iid
random variables and let f be the density of the absolutely continuous part in
the law of X1. The optimal length LbMST (P) of a b-degree constrained minimum
spanning tree on P satisfies

lim
n→∞

LbMST (P)
n(d−1)/d

= α(LbMST , d)
∫

[0,1]d
f(x)(d−1)/ddx c.c.,

where α(LbMST , d) is a positive constant. In the case b = 2, the b-degree con-
strained MST has the same asymptotics as the Euclidean TSP, and α(LbMST , d)
= α(LTSP , d).

The main idea and work in the proof is the invention of an approximation of the
length functional of the bMST-problem and its combinatorial analysis so that a
limit theorem of Redmond and Yukich [13] resp. a concentration inequality of
Rhee [14] can be invoked.

2 Facts on Subadditive Euclidean Functionals

We recall the notion of complete convergence of random variables. First of all, one
can show that complete convergence implies almost surely convergence. Consid-
ering a Euclidean functional F on points given by random variables X1, . . . , Xn,
the main benefit of complete convergence is that it yields convergence results
for two different random problem models that differ in the transition from
F (X1, . . . , Xn) to F (X1, . . . , Xn, Xn+1). In the incrementing problem model an
additional sample point is given by Xn+1 in order to get F (X1, . . . , Xn, Xn+1),
while in the independent problem model a completely new sample of n+1 points
is used. The important point is that almost sure convergence results for the inde-
pendent model imply almost sure convergence for the incrementing model, but
the converse is generally true only for complete convergence. Weide [18] was the
first to distinguish the models in the probabilistic analysis of algorithms.

We give a short overview of the theory of subadditive and superadditive Eu-
clidean functionals. First, we list some general properties of a length function
F that is defined for a Euclidean optimization problem in R

d. Let F : S → R
+

be a function, where S is the set of finite subsets of R
d. Let R be the set of

d-dimensional rectangles. F has the translation invariance property if for all
y ∈ R

d and all finite subsets P ⊂ R
d,

F (P) = F (P + y) ,

500 A. Srivastav and S. Werth

the homogeneity property, if for all α > 0 and all finite subsets P ⊂ R
d,

F (αP) = αF (P) ,

and the normalization property, if F (∅) = 0. F is called a Euclidean functional
if it has the above three properties.

F is called subadditive if for all rectangles R ⊂ R
d, all finite subsets P ⊂ R

and all partitions of R into subrectangles R1 and R2,

F (P) ≤ F (P ∩ R1) + F (P ∩ R2) + Cd · diam(R) ,

where the constant Cd may depend on d and diam(R) denotes the diameter of R.
Rhee [14] showed the following growth bound for a subadditive Euclidean

functional.

Lemma 1 (see [14]). Let F be a subadditive Euclidean functional. There exists
a constant C > 0 such that for all rectangles R ⊆ [0, 1]d and all finite point sets
P ⊂ R, we have

F (P) ≤ C|P|(d−1)/d .

Normally, the subadditivity is used to express the global graph length as a sum
of local components. This can also be done via superadditivity. A functional F
is called superadditive, if for all rectangles R ⊂ R

d, all finite subsets P ⊂ R and
all partitions of R into subrectangles R1 and R2

F (P) ≥ F (P ∩ R1) + F (P ∩ R2) .

Another strong property of Euclidean functionals is smoothness. A Euclidean
functional F is smooth if there is a constant C > 0 (which may depend on d)
such that for all finite sets P1, P2 ⊂ R

d

|F (P1 ∪ P2) − F (P1)| ≤ C(|P2|)(d−1)/d .

So the smoothness describes the variation of F when points are added and
deleted.

Often the functional under consideration does not have properties required
in the probabilistic analysis, for example smoothness or additivity. This fact
motivated Redmond and Yukich to introduce the so called boundary functional.
Properly defined it has properties required in the probabilistic analysis. This
approach of course only works if the boundary functional is a good approximation
of the given functional. In the next section we will give the definition of the
boundary functional for the bMST problem.

Two Euclidean functionals F and F ∗ are called pointwise close if for all finite
P ⊂ [0, 1]d

|F (P) − F ∗(P)| = o(|P|(d−1)/d) .

Redmond and Yukich call a smooth subadditive functional that is pointwise
close to its superadditive boundary functional quasiadditive. We state the limit
theorem by Redmond and Yukich, which will be used later.

Probabilistic Analysis of the bMST Problem 501

Theorem 2 (see [13]). Let X1, . . . , Xn be independent identically distributed
random variables with values in [0, 1]d, d ≥ 2, and let F (X1, . . . , Xn) be a quasi-
additive smooth Euclidean functional, then

lim
n→∞F (X1, . . . , Xn)/n(d−1)/d = α(F)

∫

f(x)(d−1)/ddx c.c.,

where f is the absolutely continuous part of the law of X1.

Rhee proved a strong concentration inequality which can be used to derive com-
plete convergence. It shows that, except for a small set with polynomially small
probability, smooth Euclidean functionals are close to their means. By the in-
equality it is sufficient to determine the asymptotics of the mean in order to
show complete convergence of the functional. This simplified the probabilistic
analysis of many problems.

Theorem 3 (see [14]). Let U1, . . . , Un be independent uniformly distributed
random variables with values in [0, 1]d, d ≥ 2, and let F (U1, . . . , Un) be a smooth
Euclidean functional. Then there are positive constants C, C′, C′′ such that for
all t > 0:

P [|F (U1, . . . , Un) − E [F (U1, . . . , Un)] | > t]

≤ C exp

(

− 1
C′′n

(
t

C′

)2d/(d−1)
)

.

3 The Boundary bMST Functional

In this section we analyze the properties of the b-degree constrained MST, partic-
ularly with regard to the conditions in Theorem 2, where the functional LbMST

will take the role of F . After that we will introduce the boundary modification
of LbMST , which will help to prove the main result (Theorem 1).

Lemma 2. LbMST is a subadditive and smooth Euclidean functional.

Proof. It is obvious that LbMST has the translation invariance, homogeneity and
normalization properties, and it is also easy to see that the functional is subaddi-
tive: consider a finite set P , a d-dimensional rectangle R with diameter diam(R),
a partition of R into two rectangles R = R1 ∪ R2 and let bMST1 and bMST2

be optimal b-degree constrained minimal spanning trees in R1 respectively R2.
Each tree contains two leaves, vertices with degree 1, and the trees are merged
into a single tree by connecting two leaves. The length of the used edge is at
most diam(R). So we have

LbMST (P ∩ R) ≤ LbMST (P ∩ R1) + LbMST (P ∩ R2) + diam(R) .

In the second part of the proof we show that the functional is smooth:

|LbMST (P1 ∪ P2) − LbMST (P1)| ≤ C|P2|(d−1)/d ,

502 A. Srivastav and S. Werth

for some positive constant C. We begin with a bMST on P1 and add a bMST on
P2. Each of the graphs contains at least two leaves, we connect the graphs by a
single edge between two leaves of length at most

√
d. The resulting graph is a

feasible b-degree constrained MST on P1∪P2. By Lemma 1 the total edge length
of the added bMST on P2 is at most C|P2|(d−1)/d for some constant C > 0, since
the bMST is a subadditive Euclidean functional. Thus,

LbMST (P1 ∪ P2) ≤ LbMST (P1) + C|P2|(d−1)/d .

Now we start with a bMST on P1 ∪ P2 and construct a bMST on P1. All points
of P2 and edges incident with these points are deleted. The deletion generates at
most b|P2| connected components, and each component is a tree. We choose a
leaf of each tree and add a TSP tour through these leaves to the graph. An edge
of the TSP tour has to be deleted to construct a feasible bMST on P1 ∪P2. The
total length of the added TSP tour is bounded by C|P2|(d−1)/d by Lemma 1. We
have

LbMST (P1) ≤ LbMST (P1 ∪ P2) + C|P2|(d−1)/d ,

hence, the functional is smooth. �

We proceed to the definition of the boundary graph resp. functional. In a bound-
ary bMST graph we have either bMSTs that are all connected to the boundary
or a single bMST without a connection to the boundary, see Figure 1 and 2. Here
is the formal definition of the boundary functional of the b-degree constrained
MST: For all rectangles R ⊂ R

d, finite point sets P ⊂ R and points a on the
boundary of R let L′bMST (P , a) denote the length of the minimal b-degree con-
strained spanning tree on P ∪ {a}. The boundary bMST functional LB

bMST is
defined by

LB
bMST (P) := min

{

LbMST (P), inf

{
∑

i

L′bMST (Pi, ai)

}}

,

where the infimum ranges over all sequences (ai)i≥1 of points on the boundary
of R and all partitions (Pi)i≥1 of P .

We show that the boundary bMST functional is a good approximation of the
bMST functional:

Lemma 3. The b-degree constrained MST functional and its boundary func-
tional are pointwise close:

|LbMST (P) − LB
bMST (P)| ≤ C|P|(d−2)/(d−1) ,

where C is a positive constant.

Proof. Since LB
bMST (P) ≤ LbMST (P), we only have to show that

LbMST (P) ≤ LB
bMST (P) + C|P|(d−2)/(d−1) ,

for some constant C > 0. We start with a graph associated to LB
bMST (P) and

modify it into a feasible b-degree constrained MST by adding edges of total

Probabilistic Analysis of the bMST Problem 503

Fig. 1. A 3-degree constrained MST Fig. 2. A boundary 3-degree constrained
MST

length at most C|P|
d−2
d−1 : let B denote the set of points where the graph meets

the boundary of [0, 1]d. Note that the vertices in B have degree 1. We add to
the graph a TSP tour through B with edges lying on the boundary of [0, 1]d and
delete an arbitrary edge in order to construct a b-degree constrained MST (note
b ≥ 3). Since the boundary of [0, 1]d has dimension d−1 and the TSP functional
is a subadditive Euclidean functional, the total length of the added MST is at
most C|B|(d−2)/(d−1) by Lemma 1 and C being the constant appearing there.
Due to the fact that |B| ≤ |P|, we have

LbMST (P) ≤ LB
bMST (P) + C|P|(d−2)/(d−1)

and the claim follows. �

The next lemma shows that the boundary bMST functional has the properties
required by Theorem 2.

Lemma 4. The boundary functional LB
bMST of the b-degree constrained MST is

a superadditive and smooth Euclidean functional.

Proof. It is easy to verify that LB
bMST has the translation invariance, homogene-

ity and normalization properties. Furthermore the functional is superadditive:
consider a finite set P , a d-dimensional rectangle R with a partition into two
rectangles R = R1 ∪ R2 and let bMST B be an optimal boundary b-degree con-
strained minimal spanning tree in R. The restrictions of bMST B to R1 and R2

define boundary b-degree constrained minimal spanning trees in R1 respectively
R2, in case that the restrictions contain paths that start and end at the bound-
ary one has to remove an arbitrary edge in the path. The restrictions are at least
as large as LB

bMST (P ∩ R1) respectively LB
bMST (P ∩ R2). Thus,

LB
bMST (P ∩ R) ≥ LB

bMST (P ∩ R1) + LB
bMST (P ∩ R2) .

504 A. Srivastav and S. Werth

It remains to show that the functional is smooth:

|LB
bMST (P1 ∪ P2) − LB

bMST (P1)| ≤ C|P2|(d−1)/d ,

where C > 0 is a constant. We start with a graph associated to LB
bMST (P1 ∪P2)

and delete all points of P2 and all edges incident with these points. The resulting
graph consists of at most b|P2| connected components that are not connected
to the boundary. These components are trees, so each of them contains vertices
with degree 1. Choose a vertex with degree 1 in every component and add a TSP
tour through these vertices (note that we are considering b ≥ 3). Then we delete
an arbitrary edge in the tour and choose a vertex with degree 1 in the component
and connect it to the boundary in order to construct a feasible boundary bMST
on P1. The total length of all added edges is at most C|P2|(d−1)/d, since the TSP
functional is a subadditive Euclidean functional, by Lemma 1 and the constant
C appearing there. Thus,

LB
bMST (P1) ≤ LB

bMST (P1 ∪ P2) + C|P2|(d−1)/d .

To show LB
bMST (P1 ∪ P2) ≤ LB

bMST (P1) + C|P2|(d−1)/d, we begin with a graph
associated to LB

bMST (P1) and add a bMST on P2 to the graph. A leaf of the
bMST on P2 and a leaf of the boundary bMST on P1 are connected by an
edge of length at most

√
d in order to construct a feasible boundary bMST on

P1 ∪ P2. Since the bMST functional is a subadditive Euclidean functional, we
have by Lemma 1 that LbMST (P2) ≤ C|P2|(d−1)/d. Thus,

LB
bMST (P1 ∪ P2) ≤ LB

bMST (P1) + C|P2|(d−1)/d ,

and all in all the assumption follows:

|LB
bMST (P1 ∪ P2) − LB

bMST (P1)| ≤ C|P2|(d−1)/d . �

4 Proof of Theorem 1 and Concentration

Proof of Theorem 1: By the Lemmata 2, 3 and 4 the bMST functional is a
smooth and subadditive Euclidean functional which is close to its smooth and
superadditive Euclidean boundary functional. We can thus apply Theorem 2 and
this yields Theorem 1. �

In the following we consider points that are given by iid random variables with
uniform distribution. Remond and Yukich [13] have shown that boundary func-
tionals are an ideal tool to provide rates of convergence of Euclidean functionals.
The subadditive structure of a functional is not enough to prove rates of conver-
gence, one gets only one-sided estimates. With the help of the boundary func-
tional, the functional can be made superadditive and one can extract rates of
convergence. The idea of modifying functionals to get a superadditive structure
was known before the work of Redmond and Yukich, see e.g. Hammersley [7], but
they provide a general and simple approach. The formulation of the following
lemma is from McGivney and Yukich [8]:

Probabilistic Analysis of the bMST Problem 505

Lemma 5 (see [8]). Let U1, . . . , Un be iid uniform random variables on [0, 1]d,
d ≥ 3. Suppose that L is a smooth, subadditive Euclidean functional, LB is a
smooth, superadditive Euclidean functional and

| E L[(U1, . . . , Un)] − E[LB(U1, . . . , Un)]| ≤ β(n) ,

where β(n) denotes a function of n. Then there is a positive constant C such
that

| E L[(U1, . . . , Un)] − α(L, d)n(d−1)/d)| ≤ max{β(n), Cn(d−1)/2d} .

With the help of this lemma we can show:

Lemma 6. Let P = {U1, . . . , Un} be a set of points in [0, 1]d given by indepen-
dent uniformly distributed random variables. The mean of the bMST functional
satisfies

| E[LbMST (U1, . . . , Un)] − α(LbMST , d)n(d−1)/d)| ≤ Cn(d−2)/(d−1) .

where C is a positive constant.

Proof. By Lemma 3 we have

|LbMST (P) − LB
bMST (P)| ≤ Cn(d−2)/(d−1) ,

and with Jensen’s inequality

| E[LbMST (P)] − E[LB
bMST (P)]| ≤ Cn(d−2)/(d−1) .

So by Lemma 5 we obtain

| E[LbMST (U1, . . . , Un)]−α(LbMST , d)n(d−1)/d)| ≤ Cn(d−2)/(d−1) . �
We are now able to prove concentration.

Theorem 4. Let P = {U1, . . . , Un} be a set of points in [0, 1]d given by inde-
pendent uniformly distributed random variables.

(i) There are constants positive C, C′, C′′ such that for all t > 0:

P [|LbMST (U1, . . . , Un) − E [LbMST (U1, . . . , Un)] | > t]

≤ Ce−
(t/C′)2d/(d−1)

C′′n .

(ii) Let δ = d2−2d−1
d2−2d+1 . Let C be the constant in Lemma 6. There are positive

constants c1 and c = c(d) such that

P

[
|LbMST (U1, . . . , Un) − α(LbMST)n(d−1)/d| > (1 + C)n(d−2)/(d−1)

]

≤ c1e
−c(d)nδ

.

Proof

(i) By Lemma 2, LbMST satisfies the assumption of Theorem 3 and we are
done.

(ii) The assertion follows using the triangle inequality, Lemma 6 and part (i).
�

506 A. Srivastav and S. Werth

5 Conclusion

We have proved the conjectured asymptotics for the probabilistic version of the
d-dimensional Euclidean degree bounded minimum spanning tree problem along
with a concentration result. In future work this work might be useful to fix the
asymptotics for other degree constrained spanning tree problems, like orthogonal
networks, which were recently studied (STACS 2007, [6]). Such special problems
are interesting in the context of network analysis, but perhaps may show a
different asymptotic behavior than n(d−1)/d due to their special structure.

References

[1] Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. Journal of the ACM 45(5), 754–782 (1998)

[2] Arora, S., Chang, K.: Approximation schemes for degree-restricted MST and red-
blue separation problems. Algorithmica 40(3), 189–210 (2004)

[3] Baltz, A., Dubhashi, D., Srivastav, A., Tansini, L., Werth, S.: Probabilistic anal-
ysis of a multidepot vehicle routing problem. In: Ramanujam, R., Sen, S. (eds.)
FSTTCS 2005. LNCS, vol. 3821, Springer, Heidelberg (2005), and in Random
Structures and Algorithms, 30(1-2), 206–225 (2007)

[4] Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many
points. Proceedings of the Cambridge Philosophical Society 55, 299–327 (1959)

[5] Chan, T.M.: Euclidean bounded-degree spanning tree ratios. In: Proceedings of
the 19th ACM Symposium on Computational Geometry, pp. 11–19. ACM Press,
New York (2003)

[6] Dumitrescu, A., Tóth, C.D.: Light orthogonal networks with constant geometric
dilation. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 175–
187. Springer, Heidelberg (2007)

[7] Hammersley, J.M.: Postulates for subadditive processes. Annals of Probability 2,
652–680 (1974)

[8] McGivney, K., Yukich, J.E.: Asymptotics for geometric location problems over
random samples. Advances in Applied Probability 31, 632–642 (1999)

[9] Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete
& Computational Geometry 8(3), 265–293 (1992)

[10] Papadimitriou, C.H.: The probabilistic analysis of matching heuristics. In: Pro-
ceedings of the 15th Allerton Conference on Communication, Control and Com-
puting, pp. 368–378 (1978)

[11] Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
travelling salesman problem. Journal of Algorithms 5(2), 231–246 (1984)

[12] Raghavachari, B.: Algorithms for finding low degree structures. In: Hochbaum, D.
(ed.) Approximation algorithms, pp. 266–295. PWS Publishers Inc. (1996)

[13] Redmond, C., Yukich, J.E.: Limit theorems and rates of convergence for Euclidean
functionals. Annals of Applied Probability 4(4), 1057–1073 (1994)

[14] Rhee, W.T.: A matching problem and subadditive Euclidean functionals. Annals
of Applied Probability 3(3), 794–801 (1993)

[15] Steele, J.M.: Subadditive Euclidean functionals and non-linear growth in geometric
probability. Annals of Probability 9, 365–376 (1981)

Probabilistic Analysis of the bMST Problem 507

[16] Steele, J.M.: Probability theory and combinatorial optimization. In: CBMS-NSF
Regional Conference Series in Applied Mathematics, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, vol. 69 (1997)

[17] Strassen, V.: The existence of probability measures with given marginals. Annals
of Mathematical Statistics 36, 423–439 (1965)

[18] Weide, B.: Statistical methods in algorithm design and analysis, Ph.D. thesis,
Computer Science Department, Carnegie Mellon University (1978)

[19] Yukich, J.E.: Probability theory of classical Euclidean optimization problems. Lec-
ture Notes in Mathematics, vol. 1675. Springer, Heidelberg (1998)

Undirected Graphs of Entanglement 2

Walid Belkhir and Luigi Santocanale

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence

Abstract. Entanglement is a complexity measure of directed graphs
that origins in fixed point theory. This measure has shown its use in
designing efficient algorithms to verify logical properties of transition
systems. We are interested in the problem of deciding whether a graph
has entanglement at most k. As this measure is defined by means of
games, game theoretic ideas naturally lead to design polynomial algo-
rithms that, for fixed k, decide the problem. Known characterizations of
directed graphs of entanglement at most 1 lead, for k = 1, to design even
faster algorithms. In this paper we give two distinct characterizations of
undirected graphs of entanglement at most 2. With these characteriza-
tions at hand, we present a linear time algorithm to decide whether an
undirected graph has this property.

1 Introduction

Entanglement is a complexity measure of finite directed graphs introduced in
[1,2] as a tool to analyze the descriptive complexity of the Propositional Modal
μ-calculus. Roughly speaking, its purpose is to quantify to what extent cycles
are intertwined in a directed graph. Its game theoretic definition – by means of
robbers and cops – makes it reasonable to consider entanglement a generalization
of the tree-width of undirected graphs [3] to another kind of graphs, a role shared
with other complexity measures appeared in the literature [4,5,6,7].

A peculiar aspect of entanglement, and also our motivation for studying it
among the other measures, is its direct filiation from fixed point theory. Its first
occurrence takes place within the investigation of the variable hierarchy [8,9] of
the Propositional Modal μ-Calculus [10]. The latter, hereby noted Lμ, is nowa-
days a well known and appreciated logic, capable to express many computational
properties of transition systems while allowing their verification in some feasible
way. As a μ-calculus [11] Lμ increases the expressive power of Hennessy-Milner
logic, i.e. multimodal logic K, by adding to it least and greatest fixed point op-
erators that bind monadic variables. Showing that there are μ-formulas φn that
are semantically equivalent to no formula with less than n bound variables is the
variable hierarchy problem for a μ-calculus. Such a hierarchy is also meaningful
in the simpler setting of iteration theories [12].

The relationship between entanglement and the number of bound variables
in a μ-term might be too technical to be elucidated here. Let us say, however,
that entanglement roughly is a syntactic analogous of the variable hierarchy, the

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 508–519, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Undirected Graphs of Entanglement 2 509

latter being defined only w.r.t. a given semantics. To argue in this direction, the
relevant fact is Proposition 14 of [1], stating that the entanglement of a directed
graph is the minimal feedback of its finite unravellings.

A second important topic in fixed point theory is the model checking problem
for Lμ. The main achievement of [1] states that parity games whose underlying
graphs have bounded entanglement can be solved in polynomial time. This is a
relevant result for the matter of verification, since model checking Lμ is reducible
in linear time to the problem of deciding the winner of a parity game. Berwanger’s
result calls for the problem of deciding whether a graph has entanglement at most
k, a problem which we address in this paper. When settled, we can try to exploit
the main result of [1], for example by designing algorithms to model check Lμ

that may perform well in practice. We shall argue that, for fixed k, deciding
whether a graph has entanglement at most k is a problem in the class P. The
algorithms solving these problems can be combined to show that deciding the
entanglement of a graph is in the class EXPTIME. We have no reasons to believe
that the problem is in NP. Let us mention on the way that a problem that we
indirectly address is that of solving parity games on undirected graphs. These
games can be solved in linear time if Eva’s and Adam’s moves alternate. Yet,
the complexity of the problem is not known if consecutive moves of the same
player are allowed.

In this paper we show that deciding whether an undirected graph G belongs
to U2, the class of undirected graphs of entanglement at most 2, can be solved
in time O(|VG|). We shall present an algorithm that crucially depends on two
characterizations of the class U2. One of them proceeds by forbidden subgraphs:
an undirected graph belongs to U2 if and only if it does not contain (i) a simple
cycle of length strictly greater than 4, (ii) a length 3 simple cycle whose vertices
have all degree 3, (iii) a length 4 simple cycle with two adjacent vertices of degree
3. A second characterization constructs the class U2 from a class of atomic graphs,
called the molecules, and an operation, the legal collapse, that glues together two
graphs along a prescribed pair of vertices.

The two characterizations may be appreciated on their own, independently of
the algorithm they give rise. Entanglement is an intrinsically dynamic concept,
due to its game theoretic definition. As such it is not an easy object of study,
while the two characterizations prepare it for future investigations with stan-
dard mathematical tools. They also suggest that entanglement is a quite robust
notion, henceforth worth being studied independently of its fix-point theoretic
background. As a matter of fact, some of the properties we shall encounter have
already been under focus: the combinatorial characterization exhibits surprising
analogies with the class of House-Hole-Domino free graphs, see [13,14], a sort of
generalization of graphs admitting a perfect elimination ordering. These graphs
arise as the result of looking for wider notions of ordering for graphs that still
ensure nice computational properties. On the other hand, the algebraic charac-
terization recalls the well known fact that graphs of fixed arbitrary tree-width
may be constructed by means of an algebra of pushouts and relabelings [15]. The
algebra of legal collapses suggests that, for entanglement, it might be possible

510 W. Belkhir and L. Santocanale

to develop an analogous generic algebraic framework. It also points to standard
graph theoretic ideas, such as n-connectiveness, as the proper tools by which to
analyze entanglement.

Clearly, a work that still need to be carried out is to look for some use-
ful characterization of directed graphs of entanglement at most k. At present,
characterizations are known only for k ≤ 1 [1, Proposition 3]. We believe that
the results presented here suggest useful directions to achieve this goal. In par-
ticular, a suggestive path is to generalize the algebra of molecules and legal
collapses to an undirected setting. This path might be a feasible one considering
that many scientists have recently developed ideas and methods to lift some al-
gebraic framework from an undirected to a directed setting. W.r.t. the algebra
of entanglement, a source of ideas might be the recent development of directed
homotopy theory from concurrency [16].

2 Entanglement Games

The entanglement of a finite digraph G, denoted E(G), was defined in [1] by
means of some games E(G, k), k = 0, . . . , |VG|. The game E(G, k) is played on
the graph G by Thief against Cops, a team of k cops. The rules are as follows.
Initially all the cops are placed outside the graph, Thief selects and occupies an
initial vertex of G. After Thief’s move, Cops may do nothing, may place a cop
from outside the graph onto the vertex currently occupied by Thief, may move
a cop already on the graph to the current vertex. In turn Thief must choose an
edge outgoing from the current vertex whose target is not already occupied by
some cop and move there. If no such edge exists, then Thief is caught and Cops
win. Thief wins if he is never caught. The entanglement of G is the least k ∈ N
such that k cops have a strategy to catch the thief on G. It will be useful to
formalize these notions.

Definition 1. The entanglement game E(G, k) of a digraph G is defined by:

– Its positions are of the form (v, C, P), where v ∈ VG, C ⊆ VG and |C| ≤ k,
P ∈ {Cops, Thief}.

– Initially Thief chooses v0 ∈ V and moves to (v0, ∅, Cops).
– Cops can move from (v, C, Cops) to (v, C′, Thief) where C′ can be

1. C : Cops skip,
2. C ∪ { v } : Cops add a new Cop on the current position,
3. (C \ { x }) ∪ { v } : Cops move a placed Cop to the current position.

– Thief can move from (v, C, Thief) to (v′, C, Cops) if (v, v′) ∈ EG and v′ /∈ C.

Every finite play is a win for Cops, and every infinite play is a win for Thief.
We let

E(G) = min{ k |Cops have a winning strategy in E(G, k) } .

It is not difficult to argue that there exist polynomial time algorithms that, for
fixed k ≥ 0 decide on input G whether E(G) ≤ k. Such an algorithm constructs

Undirected Graphs of Entanglement 2 511

the game E(G, k) whose size is polynomial in |VG| and |EG|, since k is fixed.
Since the game E(G, k) is clopen, i.e. it is a parity game of depth 1, it is well
known [17] that such game can be solved in linear time w.r.t. the size of the
graph underlying E(G, k).

In [1] the authors proved that E(G) = 0 if and only if it is G is acyclic, and
that E(G) ≤ 1 if and only if each strongly connected component of G has a
vertex whose removal makes the component acyclic. Using these results it was
argued that deciding whether a graph has entanglement at most 1 is a problem
in NLOGSPACE.

While wondering for a characterization of graphs of entanglement at most 2,
we observed that such a question has a clear answer for undirected graphs.To
deal with this kind of graphs, we recall that an undirected edge {u, v} is just a
pair (u, v), (v, u) of directed edges. We can use the results of [1] to give char-
acterizations of undirected graphs of entanglement at most 1. To this goal, for
n ≥ 0 define the n-star of center x0, noted ςn

x0
, to be the undirected graph (V, E)

where V = { x0, a1, ..., an } and E = { {x0, a1}, ..., {x0, an} }. More generally, say
that a graph is a star if it is isomorphic to some ςn

x0
. Then we can easily deduce:

Proposition 2. If G is an undirected graph, then E(G) = 0 if and only if EG =
∅, and E(G) ≤ 1 if and only if G is a disjoint union of stars.

To end this section we state a Lemma that later will be used often. We remark
that its scope does not restrict to undirected graphs.

Lemma 3. If H is a subgraph of G then E(H) ≤ E(G).

As a matter of fact, Thief can choose an initial vertex from H and then he can
restrict his moves to edges of H . In this way he can simulate a winning strategy
from E(H, k) to a winning strategy in E(G, k).

3 Molecules, Collapses, and the Class ζ2

In this section we introduce a class of graphs and prove that the graphs in this
class have entanglement at most 2. It will be the goal of the next sections to
prove that these are all the graphs of entanglement at most 2.

Definition 4. A molecule θε,n
a,b , where ε ∈ { 0, 1 } and n ≥ 0, is the undirected

graph (V, E) with V = { a, b, c1, ..., cn } and

E =

{
{ {a, c1}, ..., {a, cn}, {b, c1}, ..., {b, cn} } , ε = 0,

{ {a, b}, {a, c1}, ..., {a, cn}, {b, c1}, ..., {b, cn} } , ε = 1.

The glue points of a molecule θε,n
a,b are a, b. Its dead points are c1, . . . , cn.

It is not difficult to prove that molecules have entanglement at most 2.

Definition 5. Let G1 and G2 be two undirected graphs with VG1 ∩ VG2 = ∅,
let a1 ∈ VG1 and a2 ∈ VG2 . The collapse of G1 and G2 on vertices a1 and a2,
denoted G1

⊕z
a1,a2

G2, is the graph G defined as follows:

512 W. Belkhir and L. Santocanale

VG = (VG1 \ { a1 }) ∪ (VG2 \ { a2 }) ∪ { z }, where z 	∈ VG1 ∪ VG2 ,

EG = { {x1, y1} ∈ EG1 | a1 	∈ { x1, y1 } } ∪ { {x2, y2} ∈ EG2 | a2 	∈ { x2, y2 } }
∪ { {x, z} | {x, a1} ∈ EG1 or {x, a2} ∈ EG2 } .

We remark that
⊕

is a coproduct in the category of pointed undirected graphs
and, for this reason, this operation is commutative and associative up to isomor-
phism. The graph η, whose set of vertices is a singleton, is a neutral element. As
we have observed, a molecule is an undirected graph coming with a distinguished
set of vertices, its glue points. Let us call a pair (G, Gl) with Gl ⊆ VG a glue
graph. For glue graphs we can define what it means that a collapse is legal.

Definition 6. If G1, G2 are glue graphs, then we say that G1

⊕z
a,bG2 is a legal

collapse if a ∈ GlG1 and b ∈ GlG2 . We shall then use the notation G1

⊕z

a,bG2

and define

Gl
G1

⊕z

a,b
G2

= (GlG1 \ { a }) ∪ (GlG2 \ { b }) ∪ { z } ,

so that G1

⊕z

a,bG2 is a glue graph.

Observe that the graph η can be made into a unit for the legal collapse by letting
Glη = Vη. Even if the operation

⊕
is well defined only after the choice of the

two glue points that are going to be collapsed, it should be clear what it means
that a family of glue graphs is closed under legal collapses.

Definition 7. We let ζ2 be the least class of glue graphs containing the mole-
cules, the unit η, and closed under legal collapses and graph isomorphisms.

We need to make precise some notation and terminology. Firstly we shall abuse
of notation and write

G = H
⊕

vK

to mean that there exist subgraphs H, K of G such that v ∈ GlG∩VH ∩VK and G
is isomorphic to the legal collapse H

⊕z

v,vK. Notice that if H and K are distinct
from η, then v is an articulation point of G. Second, we shall say that a graph
G belongs to ζ2 to mean that there exists a subset Gl ⊆ VG such that the glue
graph (G, Gl) belongs to ζ2. We can now state the main result of this section.

Proposition 8. If G belongs to the class ζ2, then E(G) ≤ 2.

Proof. Observe that, given a molecule θε,n
a,b occurring in an algebraic expression

for G, we can rearrange the summands of the algebraic expression to write

G = L
⊕

aθε,n
a,b

⊕
bR (1)

where L, R ∈ ζ2. A Cops winning strategy in the game E(G, 2) is summarized as
follows. If Thief occupies some vertex of the molecule θε,n

a,b , Cops will place its two
cops on a and b, in some order. By doing that, Cops will force Thief to move (i) on

Undirected Graphs of Entanglement 2 513

the left component L, in which case Cops can reuse the cop on b on L, (ii) on the
molecule θε,n

a,b , in which case Thief will be caught in a dead point of the molecule,
(iii) on the right component R, in which case Cops can reuse the cop on a on R.

Cops can recursively use the same strategy in E(L, 2) and E(R, 2). The recur-
sion terminates as soon as in the expression (1) for G we have L = R = η.
�

The reader will have noticed similarities between the strategy proposed here and
the strategy needed in [1] to argue that undirected trees have entanglement at
most 2. As a matter of fact, graphs in ζ2 have an underlying tree structure. For
a glue graph G, define the derived graph ∂G as follows: its vertices are the glue
points of G, and {a, b} ∈ E∂G if either {a, b} ∈ EG or there exists x ∈ VG \ GlG
such that {a, x}, {x, b} ∈ EG. The following Proposition is not difficult to prove.

Proposition 9. A glue graph G is in ζ2 if and only if ∂G is a forest, and each
x ∈ VG \ GlG has exactly two neighbors, which moreover are glue points.

4 Combinatorial Properties

The goal of this section is to setup the tools for the characterization Theorem 16.
We deduce some combinatorial properties of undirected graphs of entanglement
at most 2. To this goal, let us say that a simple cycle is long it its length is
strictly greater than 4, and say otherwise that it is short. Also, let us call a
simple cycle of length 3 (resp. 4) a triangle (resp. square).

Proposition 10. An undirected graph G such that E(G) ≤ 2 satisfies the fol-
lowing conditions:

− a simple Cycle of G is Short, (CS)
− a triangle of G has at least one vertex of degree 2, (No-3C)
− a square of G cannot have two adjacent vertices

of degree strictly greater than 2. (No-AC)

Condition (No-3C) forbids as subgraphs of G the graphs arising from the scheme
on the left of figure 1. These are made up of a triangle and 3 distinct Collapses,
with vertices x, y, z that might not be distinct. Condition (No-AC) forbids the
scheme on the right of figure 1, made up of a square and two Adjacent Collapses,
with vertices x, y that might not be distinct. Let us remark that graphs satisfying
(CS), (No-3C), and (No-AC) are House-Hole-Domino free, in the sense of [14].
With respect to HDD-free graphs, the requirement is here stronger since for
example long cycles are forbidden as subgraphs, not just as induced subgraphs.

We shall see with Theorem 16 that these properties completely characterize
the class of undirected graphs of entanglement at most 2. Proposition 10 is an
immediate consequence of Lemma 3 and of the following Lemmas 11, 12, 13.

Let P0 be the empty graph and, for n ≥ 1, let Pn be the path with n vertices
and n−1 edges: VPn = { 0, ..., n−1 } and {i, j} ∈ EPn iff |i−j| = 1. For n ≥ 3, let
Cn be the cycle with n vertices and edges: VCn = { 0, ..., n−1 } and {i, j} ∈ ECn

iff |i − j| ≡ 1 mod n.

514 W. Belkhir and L. Santocanale

a

b

��
��

��
�

c
��

��
��

�

x

y
��

��
�

z
��

��
�

a b

cd

x �����

y
�����

Fig. 1. The graphs 3C and AC

Lemma 11. If n ≥ 5 then E(Cn) ≥ 3.

Proof. To describe a winning strategy for Thief in the game E(Cn, 2) consider
that the removal of one or two vertices from Cn transforms such graph into a
disjoint union Pi + Pj with i + j ≥ n − 2 ≥ 3: notice in particular that i ≥ 2
or j ≥ 2. In a position of the form (v, C, Thief) with v ∈ C, Thief moves to a
component Pi with i ≥ 2. From a position of the form (v, C, Thief) with v 	∈ C,
v in some component Pi, and i ≥ 2, Thief moves to some other vertex in the
same component. This strategy can be iterated infinitely often, showing that
Thief will never be caught.
�

Lemma 12. Let 3C be a graph on the left of figure 1. We have E(3C) ≥ 3.

Proof. A winning strategy for Thief in the game E(3C, 2) is as follows. By moving
on a, b, c, Thief can force Cops to put two cops there, say for example on a and b.
Thief can then escape to c and iterate moves on the edge {c, z} to force Cops to
move one cop on one end of this edge. From a position of the form (c, C, Thief)
with c ∈ C, Thief moves to a free vertex among a, b. From a position of the
form (z, C, Thief) with c 	∈ C Thief moves to c and forces again Cops to occupy
two vertices among a, b, c. Up to a renaming of vertices, such a strategy can be
iterated infinitely often, showing that Thief will never be caught.

Observe that the proof does not depend on x, y, z being distinct.
�

Lemma 13. Let AC be a graph on the right of figure 1. We have E(AC) ≥ 3.

Proof. By moving on a, b, c, d, Thief can force Cops to put two cops either on
a, c or on b, d: let us say a, c. Thief can then escape to b and iterate moves on
the edge {b, y} to force Cops to move one cop on one end of this edge. From
a position of the form (b, C, Thief) with b ∈ C, Thief moves to a free vertex
among a, c. From a position of the form (y, C, Thief) with b 	∈ C Thief moves
to b and forces again Cops to occupy either a, c or b, d. Up to a renaming of
vertices, such a strategy can be iterated infinitely often, showing that Thief will
never be caught. Again, we observe that the strategy does not depend on x, y
being distinct.
�

We end this section by pointing out that E(Cn) = E(3C) = E(AC) = 3 (n ≥ 5).

Undirected Graphs of Entanglement 2 515

5 Characterization of Entanglement at Most 2

In this section we accomplish the characterization of the class of undirected
graphs of entanglement at most 2: we prove that this class coincides with ζ2.

The following Lemma is the key observation by which the induction works in
the proof of Proposition 15. It is worth, before stating it, to recall the difference
between

⊕
, the collapse of two ordinary undirected graphs, and

⊕
, the legal

collapse of two glue graphs.

Lemma 14. Let G be an undirected graph satisfying (No-3C) and (No-AC). If
G = θε,n

v,b

⊕
bH and H ∈ ζ2, then there is a subset Gl′ ⊆ VG such that (H, Gl′)

is a glue graph in ζ2, b ∈ Gl′, and moreover G is the result of the legal collapse
G = θε,n

v,b

⊕
b(H, Gl′). Consequently, G ∈ ζ2, with v a glue point of G.

The proof of the Lemma doesn’t present difficulties and therefore it is omitted.

Proposition 15. If G is an undirected graph satisfying (CS), (No-3C), and
(No-AC), then G ∈ ζ2.

Proof. The proof is by induction on |VG|. Clearly the Proposition holds if |VG| =
1, in which case G = η ∈ ζ2. Let us suppose the Proposition holds for all graphs
H such that |VH | < |VG|.

If all the vertices in G have degree less than or equal to 2, then G is a disjoint
union of paths and cycles of length at most 4. Clearly such a graph belongs to ζ2.
Otherwise, let v0 be a vertex such that degG(v0) ≥ 3 and consider the connected
components G�, 	 = 1, . . . , h, of the graph G \ { v0 }. Let Gv0

� be the subgraph
of G induced by VG�

∪ { v0 }. We shall show that this graph is of the form

Gv0
� = θε,m

v0,v1

⊕
v1

H , (2)

for some ε ∈ { 0, 1 }, m ≥ 0, and a graph H ∈ ζ2.
Clearly, if G� is already a connected component of G, then G� ∈ ζ2 by the

inductive hypothesis. We can pick any v1 ∈ VG�
and argue that formula (2) holds

with m = ε = 0, H = G�.
Otherwise, let N� = { a1, ..., an }, n ≥ 1, be the set of vertices of Gv0

� at
distance 1 from v0. We claim that either the subgraph of G� induced by N�,
noted NG�

, is a star or there exists a unique v1 ∈ G� at distance 1 from N�, and
moreover the subgraph of G� induced by N� ∪ { v1 } is a star. In both cases, a
vertex of such a star which is not the center has degree 2 in G.

(i) If ENG�
	= ∅, then NG�

is a star. Let us suppose that {a1, a2} ∈ EG�
. Since

G� is connected, if ak ∈ N� \ { a1, a2 } then there exists a path from ak to both
a1 and a2. Condition (CS) implies that either {a1, ak} ∈ EG�

, or {ak, a2} ∈ EG�
.

If x0 ∈ VG�
\ { a2 } then there cannot be a simple path ak . . . x0 . . . a1 otherwise

v0ak . . . x0 . . . a1a2v0 is a long cycle. Therefore, a simple path from ak to a1

is of the form aka1 or aka2a1. By condition (No-3C) it is not the case that
{ak, a1}, {ak, a2} ∈ EG�

, otherwise { v0, a1, a2, ak } is a clique of cardinality 4.
Finally, if {ak, a1} ∈ EG�

and al ∈ N� \{ a1, a2, ak }, then {al, a1} ∈ EG�
as well,

by condition (CS), otherwise v0aka1a2alv0 is a long cycle. Therefore, if |N�| > 2,

516 W. Belkhir and L. Santocanale

then NG�
is a star with a prescribed center, which we can assume to be a1. Since

degG(v0) ≥ 3, by condition (No-3C) only a1 among vertices in N� may have
degree greater than 2. Otherwise |N�| = 2 and again at most one among ai,
i = 1, 2, has degG(ai) > 2. Again, we can assume that degG(a2) = 2. We deduce
that the subgraph of Gv0

� induced by { v0 } ∪ N� is of the form θ1,n−1
v0,a1

.
(ii) If ENG�

= ∅, then we distinguish two cases. If |N�| = 1, then the subgraph
of Gv0

� induced by { v0 } ∪ N� is θ1,0
v0,a1

. Otherwise, if |N�| ≥ 2, between any two
distinct vertices in N� there must exist a path in G�, since G� is connected.
By condition (CS), if ai . . . xi,j . . . aj is a simple path from ai to aj with xi,j ∈
VG�

\ N�, then {ai, xi,j}, {aj, xi,j} ∈ EG�
. Also (CS) implies that, for fixed i,

xi,k = xi,j if k 	= j, otherwise v0akxi,kaixi,jajv0 is a long cycle. We can also
assume that xi,j = xj,i, and therefore xi,j = xi,k = xl,k whenever i 	= j and
l 	= k. Thus we can write xi,j = v1 for a unique v1 at distance 2 from v0. Since
|N�| ≥ 2 and degG(v0) ≥ 3, condition (No-AC) implies that degG(ai) = 2 for
i = 1, . . . , n. We have shown that in this case the subgraph of Gv0

� induced by
N� ∪ { v0, v1 } is a molecule θ0,n

v0,v1
, with n ≥ 2.

Until now we have shown that (2) holds with H a graph of entanglement at
most 2. Since for such a graph |VH | < |VG|, the induction hypothesis implies
H ∈ ζ2. Lemma 14 in turn implies that Gv0

� ∈ ζ2, with v0 a glue point of Gv0
� .

Finally we can use

G = Gv0
1

⊕
v0

Gv0
2

⊕
v0

...
⊕

v0
Gv0

h ,

to deduce that G ∈ ζ2.
�

We can now state our main achievement.

Theorem 16. For a finite undirected graph G, the following are equivalent:

1. G has entanglement at most 2,
2. G satisfies conditions (CS), (No-3C), (No-AC),
3. G belongs to the class ζ2.

As a matter of fact, we have shown in the previous section that 1 implies 2, in
this section that 2 implies 3, and in section 3 that 3 implies 1.

6 A Linear Time Algorithm

In this section we present a linear time algorithm that decides whether a con-
nected undirected graph G has entanglement at most 2. The generalization to
disconnected graphs does not present difficulties. We would like to thank the
anonymous referee for pointing to us the ideas and tools needed to transform
the algebraic characterization of Section 3 into a linear time algorithm.

Let us recall that, for G = (V, E) and v ∈ V , v is an articulation point of G iff
there exist distinct v0, v1 ∈ V \ { v } such that every path from v0 to v1 visits v.
Equivalently, v is an articulation point iff the subgraph of G induced by V \{ v }
is disconnected. The graph G is biconnected if it does not contain articulation

Undirected Graphs of Entanglement 2 517

points. A subset of vertices V ′ ⊆ V is biconnected iff the subgraph induced by
V ′ is biconnected. A biconnected component of G is biconnected subset C ⊆ V
such that if C ⊆ V ′ and V ′ is biconnected then C = V ′. The superstructure
of G is the graph FG defined as follows. Its set of vertices is the disjoint union
VFG = A(G) C(G), where

A(G) = { a ∈ V | a is an articulation point of G } ,

C(G) = { C ⊆ V | C is a biconnected component of G } ,

and its set of edges is of the form

EFG = { {a, C} | a ∈ A(G), C ∈ C(G), and a ∈ C } .

It is well known that FG is a tree whenever G is connected and that Depth-
First-Search techniques may be used to compute the superstructure FG in time
O(|V | + |E|), see [18, §23-2]. Observe also that this implies that

∑
C∈C(G) |C| =

O(|V |+|E|). This relation that may also be derived considering that biconnecetd
components do not share common edges, so that |VFG | = O(|V | + |E|) and
|EFG | = O(|V | + |E|) since FG is a tree. We have therefore

∑

C∈C(G)

|C| = |V \ A(G)| +
∑

a∈A(G)

|{ C ∈ C(G) | a ∈ C }|

= |V \ A(G)| + |EFG | = O(|V | + |E|) .

The algorithm ENTANGLEMENT-TWO relies on the following considera-
tions. If a graph G belongs to the class ζ2, then it has an algebraic expression
explaining how to construct it using molecules as building blocks and legal col-
lapses as operations. We can assume that in this expression the molecule θ0,1

a,b

does not appear, since each such occurrence may be replaced by the collapse
θ1,0

a,x

⊕
xθ1,0

x,b. W.r.t. this normalized expression, if G is connected then its artic-
ulation points are exactly those glue points v of G that appears in the algebraic
expression as subscripts of some legal collapse

⊕
v; the molecules are the bicon-

nected components of G.
The algorithm computes the articulation points and the biconnected compo-

nents of G – that is, its superstructure – and afterwards it checks that each
biconnected component together with its articulation points is a molecule.

1 ENTANGLEMENT−TWO(G)
2 // Input a connected und i r ec t ed graph G , accept i f G ∈ ζ2

3 i f |E| ≥ 3|V | then reject
4 foreach v ∈ V do deg(v) := |vE|
5 l e t FG = (A(G) � C(G), EFG) be the sup e r s t r u c tu r e o f G
6 foreach C ∈ C(G)
7 i f not IS−MOLECULE(C, { a ∈ A(G) | a ∈ C }) then reject
8 accept

For a biconnected component together with a set of candidate glue points to
be a molecule we need of course these candidates to be at most 2. Also, every
vertex whose degree in G is not 2 is a candidate glue point. Improving on these
observations we arrive at the following characterization.

518 W. Belkhir and L. Santocanale

Lemma 17. Let G = (V, E) be a biconnected graph and D ⊆ V be such that
{ v ∈ V | deg(v) 	= 2 } ⊆ D. Then G is isomorphic to a molecule θε,n

a,b , with D
isomorphically sent to a subset of { a, b }, if and only if either (i) |D| = 2 and
{x, d} ∈ E for each x ∈ V \ D and d ∈ D or (ii) |D| < 2 and |V | ∈ { 3, 4 }.

Therefore the recognition algorithm for a molecule is as follows.

1 IS−MOLECULE(C, A)
2 i f |A| > 2 then return fa l se
3 l e t D = { x ∈ C | deg(x) �= 2 } ∪ A
4 i f |D| > 2 then return fa l se
5 i f |D| < 2 then
6 i f |C| ∈ { 3, 4 } then return true
7 else return fa l se
8 foreach x ∈ C \ D
9 i f D �⊆ xE then return fa l se

10 return true

Let us now argue about time resources of this algorithm.

Fact. Algorithm ENTANGLEMENT-TWO(G) runs in time O(|VG|).

It is clear that the function IS-MOLECULE runs in time O(|C|), so that the
loop (lines 7-8) of ENTANGLEMENT-TWO runs in time O(

∑
C∈C(G) |C|) =

O(|V | + |E|). Therefore the algorithm requires time O(|V | + |E|).
The following Lemma, whose proof depends on considering a tree with back

edges arising from a Depth-First-Search on the graph, elucidates the role of the
3rd line of the algorithm.

Lemma 18. If a graph (V, E) does not contain a simple cycle Cn with n ≥ k,
then it has at most (k − 2)|V | − 1 undirected edges.

Line 3 ensures |EG| = O(|VG|) and that the algorithm runs in time O(|VG|).

Acknowledgement. We thank the anonymous referees for their useful com-
ments, and for suggesting how to obtain the algorithm presented in Section 6
out of the algebraic framework introduced in Section 3.

References

1. Berwanger, D., Grädel, E.: Entanglement—a measure for the complexity of directed
graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.)
LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

2. Berwanger, D.: Games and Logical Expressiveness. PhD thesis, RWTH Aachen
(2005)

3. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-
width. J. Combin. Theory Ser. B 58(1), 22–33 (1993)

4. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions: A survey. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 37–57.
Springer, Heidelberg (2001)

Undirected Graphs of Entanglement 2 519

5. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width.
J. Combin. Theory Ser. B 82(1), 138–154 (2001)

6. Safari, M.A.: d-width: a more natural measure for directed tree width. In:
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756.
Springer, Heidelberg (2005)

7. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

8. Berwanger, D., Grädel, E., Lenzi, G.: On the variable hierarchy of the modal mu-
calculus. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471,
pp. 352–366. Springer, Heidelberg (2002)

9. Berwanger, D., Lenzi, G.: The variable hierarchy of the μ-calculus is strict. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 97–109. Springer,
Heidelberg (2005)

10. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3),
333–354 (1983)

11. Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Foun-
dations of Mathematics, vol. 146. North-Holland Publishing Co, Amsterdam (2001)

12. Bloom, S.L., Ésik, Z.: Iteration theories. Springer, Berlin (1993)
13. Jamison, B., Olariu, S.: On the semi-perfect elimination. Adv. in Appl. Math. 9(3),

364–376 (1988)
14. Chepoi, V., Dragan, F.: Finding a central vertex in an HHD-free graph. Discrete

Appl. Math. 131(1), 93–111 (2003)
15. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of

theoretical computer science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)
16. Goubault, E., Raußen, M.: Dihomotopy as a tool in state space analysis. In:

Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 16–37. Springer, Heidel-
berg (2002)

17. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT
Electrical Engineering and Computer Science Series. MIT Press, Cambridge (1990)

Acceleration in Convex Data-Flow Analysis

Jérôme Leroux and Grégoire Sutre

LaBRI, Université de Bordeaux, CNRS
Domaine Universitaire, 351, cours de la Libération, 33405 Talence, France

{leroux,sutre}@labri.fr

Abstract. In abstract interpretation-based data-flow analysis, widening opera-
tors are usually used in order to speed up the iterative computation of the mini-
mum fix-point solution (MFP). However, the use of widenings may lead to loss
of precision in the analysis. Acceleration is an alternative to widening that has
mainly been developed for symbolic verification of infinite-state systems. In-
tuitively, acceleration consists in computing the exact effect of some control-
flow cycle in order to speed up reachability analysis. This paper investigates
acceleration in convex data-flow analysis of systems with real-valued variables
where guards are convex polyhedra and assignments are translations. In partic-
ular, we present a simple and algorithmically efficient characterization of MFP-
acceleration for cycles with a unique initial location. We also show that the
MFP-solution is a computable algebraic polyhedron for systems with two
variables.

1 Introduction

Formal verification of safety properties on a system is usually based on the automatic
(or manual) generation of invariants of the system. Invariants are over-approximations
of the set of all reachable configurations in the system. This over-approximation must
be precise enough in order to determine which safety properties are satisfied by the
system. Data-flow analysis, and in particular abstract interpretation [CC77], provides a
powerful framework to develop analysis for computing such invariants.

For systems with numerical variables, linear relation analysis aims at comput-
ing invariants expressing linear relationships between variables [Kar76, CH78, Min01,
SSM04, BHRZ05]. The desired invariant corresponds to the minimum fix-point (MFP)
solution of the system’s approximate semantics in some numerical domain, and it may
be computed by Kleene fix-point iteration. However, the computation may diverge and
widening/narrowing operators [CC77, CC92] are often used in order to enforce con-
vergence at the expense of precision. This may lead to invariants that are too coarse to
prove the desired safety properties on the system to be verified.

Acceleration is an alternative to widening that has mainly been developed for sym-
bolic verification of infinite-state systems [BW94, CJ98, FIS03, FL02, BIL06]. Intu-
itively, acceleration consists in computing the exact effect of some control-flow cycle in
order to speed up Kleene fix-point computations in reachability analysis. Accelerated
symbolic model checkers such as LASH, TREX, and FAST successfully implement this
approach. While being more precise than widening, acceleration is also more computa-
tionally expensive.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 520–531, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Acceleration in Convex Data-Flow Analysis 521

Our contribution. We aim at developing methods that speed up the iterative computa-
tion of the MFP-solution, without any loss of precision. We focus on a class of systems
with real-valued variables, the so-called guarded translation systems (GTSs). This class
intuitively represents programs where conditions are closed convex sets and transfor-
mations are restricted to translations. We investigate acceleration of data-flow analysis
for this class in the complete lattice of closed convex subsets of �n. To discuss com-
putability issues, we devote particular attention to the class of rational polyhedral GTSs,
where conditions are rational polyhedra and translation vectors are rational.

Recast in our setting, the (exact) acceleration techniques mentioned above consist in
computing the merge over all path (MOP) solution along some (simple) cycle, which
we call MOP-acceleration. We show that the MOP-acceleration of any cycle is an ef-
fectively computable rational polyhedron for rational polyhedral GTSs. However MOP-
acceleration is not in general sufficient to guarantee termination of the Kleene fix-point
iteration, even for cyclic GTSs. We therefore investigate MFP-acceleration, which basi-
cally amounts to computing the MFP-solution of the system restricted to a given cycle.
In other words, MFP-acceleration directly gives the MFP-solution for cyclic GTSs.

We obtain a surprisingly simple expression of the MFP-acceleration for cycles with
a unique initial location. For rational polyhedral GTSs, this characterization shows that
the MFP-acceleration is an effectively computable rational polyhedron for these cycles.
This result cannot be extended to arbitrary cycles, as we give a 3-dim (i.e. three real-
valued variables) cyclic example where the MFP-solution is not a polyhedron. We then
focus on 2-dim GTSs and we prove that the MFP-solution is an effectively computable
algebraic polyhedron (i.e. with algebraic coefficients) for general rational polyhedral
2-dim GTSs. Even for cyclic GTSs in this class, the polyhedral MFP-solution can be
non-rational.

Related work. Karr introduced in [Kar76] an algorithm for computing the exact MFP-
solution in the lattice of linear equalities. In [CH78], Cousot and Halbwachs framed
linear relation analysis as an abstract interpretation and provided the first widening
operator over the lattice of rational polyhedra. This approach only provides an over-
approximation of the MFP-solution. Many refinements of this original widening opera-
tor have since been studied [BHRZ05] to limit the loss of precision. Recently Gonnord
and Halbwachs [GH06] introduced the notion of abstract-acceleration as a complement
to widening for linear relation analysis. We show that while maintaining the same com-
putational complexity, our MFP-acceleration is “better” than abstract-acceleration in
the sense that MFP-acceleration enforces convergence of the Kleene fix-point iteration
strictly more often than abstract-acceleration. On another hand [GH06] also investigates
acceleration of multiple loops and the combination of translations and resets.

Outline. The rest of the paper is organized as follows. Section 2 recalls some back-
ground material on lattices and convex sets. We introduce guarded translation systems
in section 3, along with MOP-acceleration and MFP-acceleration for these systems.
We present in sections 4 and 5 our results on MOP-acceleration and MFP-acceleration
for guarded translation systems. Section 6 is devoted to the MFP-solution of general
guarded translation systems in dimension not greater than 2. Due to space limitations,
most proofs are only sketched in this paper. A long version of the paper with detailed
proofs can be obtained from the authors.

522 J. Leroux and G. Sutre

2 The Complete Lattice of Closed Convex Sets

2.1 Numbers, Lattices and Languages

The paper follows the ISO 31-11 international standard for mathematical notation. We
respectively denote by �, � and � the usual sets of integers, rationals and real num-
bers. Recall that a (real) algebraic number is any real number that is the root of some
non-zero polynomial with rational coefficients. We write � the set of all (real) algebraic
numbers. It is well-known from Tarski’s theorem that real arithmetic, the first-order
theory 〈�, +, ·〉 of reals with addition and multiplication, admits quantifier elimination
and hence is decidable. It follows that any real number x is algebraic iff {x} is defin-
able in real arithmetic. We denote by �,�+,�+,�+ the restrictions of �,�,�,� to the
non-negatives.

Recall that a complete lattice is any partially ordered set (L, �) such that every subset
X ⊆ L has a least upper bound

⊔
X and a greatest lower bound

�
X . The supremum⊔

L and the infimum
�

L are respectively denoted by � and ⊥. A function f ∈ L → L
is monotonic if f(x) � f(y) for all x � y in L. It is well-known from Knaster-Tarski’s
theorem that any monotonic function f ∈ L → L has a least fix-point given by

�
{x ∈

L | f(x) � x}. For any monotonic function f ∈ L → L, we define the monotonic
function f∗ in L → L by f∗(x) =

�
{y ∈ L | (x
 f(y)) � y}. In other words f∗(x)

is the least post-fix-point of f greater than x. Observe that f∗(x) = x
 f(f∗(x)) for
every x ∈ L.

For any complete lattice (L, �) and any set S, we also denote by � the partial order
on S → L defined as the point-wise extension of �, i.e. f � g iff f(s) � g(s) for all
s ∈ S. The partially ordered set (S → L, �) is also a complete lattice, with lub

⊔
and

glb
�

satisfying (
⊔

F)(s) =
⊔

{f(s) | f ∈ F} and (
�

F)(s) =
�

{f(s) | f ∈ F} for
any subset F ⊆ S → L.

For any set S, we write �(S) for the set of subsets of S. The partially ordered set
(�(S), ⊆) is a complete lattice, with lub

⋃
and glb

⋂
. The identity function over any

set S is written �S , and shortly � when the set S is clear from the context.
Let Σ be a (potentially infinite) a set of letters. We write Σ∗ for the set of all (finite)

sequences l1 · · · lk over Σ, and ε denotes the empty sequence. Given any two sequences
w and w′, we denote by w · w′ (shortly written w w′) their concatenation. A subset of
Σ∗ is called a language.

2.2 Closed Convex Sets and Polyhedra

We assume a fixed positive integer n called the dimension. The components of a vector
x ∈ �n are denoted by x = (x1, . . . , xn). Operations on vectors are extended to subsets
of �n in the obvious way, e.g. S +S′ = {x+x′ | x ∈ S, x′ ∈ S′} for any S, S′ ⊆ �n.
When there is no ambiguity, the singleton {x} is shortly written x to unclutter notation,
e.g. we write x + S instead of {x} + S. Recall that the maximum norm ||·||∞ on �n

is defined by ||x||∞ = max{|x1|, . . . , |xn|}. A subset S of �n is called bounded if
{||x||∞ | x ∈ S} ⊆ [0, b] for some b ∈ �. The (topological) closure, interior and
boundary of a subset S of �n are respectively denoted by clo(S), int(S) and bd (S).

We now recall some notions about convex subsets of �n (see [Sch86] for details).
Recall that this class of subsets of �n is closed under arbitrary intersection. The convex

Acceleration in Convex Data-Flow Analysis 523

hull of any subset S ⊆ �n, written conv (S), is the smallest (w.r.t. inclusion) convex
set that contains S. Note that conv (S) is closed when S is finite, but this is not true
in general. We devote particular attention in the sequel to closed convex subsets of �n.
This class of subsets of �n is also closed under arbitrary intersection. The closed convex
hull of any subset S ⊆ �n, written cloconv (S), is the smallest (w.r.t. inclusion) closed
convex set that contains S. Remark that cloconv (S) = clo(conv (S)). For any vector
d ∈ �n, we define ↑d to be the convex set ↑d = {λd | λ ∈ �+}. The recession cone
0+S of any subset S of �n is the set of all vectors d ∈ �n such that S + ↑d ⊆ S.
Note that 0 ∈ 0+S. If C is a closed convex subset of �n then 0+C is also closed and
convex. If moreover C is non-empty then for any d ∈ �n, we have d ∈ 0+C iff there
exists x ∈ C such that x + ↑d ⊆ C.

Let us fix � ∈ {�,�,�}. A subset S of �n is called an �-half-space if there exists
α ∈ �n \ {0} and c ∈ � such that S = {x ∈ �n | α1 x1 + · · · + αn xn ≤ c}. An
�-polyhedron is any finite intersection of �-half-spaces. In the sequel, �-polyhedrality
(resp. �-polyhedrality,�-polyhedrality) is also called rational polyhedrality (resp. alge-
braic polyhedrality, real polyhedrality). Moreover,�-polyhedra and a �-half-spaces are
shortly called polyhedra and half-spaces. Remark that any subset of �n is �-polyhedral
iff it is both polyhedral and definable in 〈�, +, ·〉.

The class of closed convex subsets of �n is written Cn. We denote by � the inclusion
partial order on Cn. Observe that (Cn, �) is a complete lattice, with lub

⊔
and glb

�

satisfying
⊔

X = cloconv (
⋃

X) and
�

X =
⋂

X for any subset X ⊆ Cn.

3 Convex Acceleration for Guarded Translation Systems

We now define the class of guarded translation systems, for which we investigate the
computability of data-flow solutions in the complete lattice (Cn, �). This class intu-
itively represents programs with real-valued variables, where conditions are closed con-
vex sets and transformations are restricted to translations.

An n-dim action is any pair (G, d) where G ∈ Cn is called the guard and d ∈ �n is
called the displacement. We write An = Cn × �n the set of all n-dim actions. A trace
is any finite sequence a1 · · · ak ∈ A∗n. The data-flow semantics �a� of any n-dim action
a = (G, d) is the monotonic function in Cn → Cn defined by �a�(C) = (G ∩ C) + d.

An n-dim guarded translation system (GTS) is any pair S = (X , T) where X is a
finite set of variables and T ⊆ X × An × X is a finite set of transitions. A transition
t = (X, a, X ′) is also written X

a−→ X ′ or X ′ := a(X), and we say that a (resp. X ,
X ′) is the action (resp. input variable, output variable) of t. A path in S is any finite
sequence t1 · · · tk ∈ T ∗ such that the output variable of ti is equal to the input variable
of ti+1 for every 1 ≤ i < k. We say that a path π is a path from X to X ′ if either (1)
π = ε and X = X ′, or (2) π = t1 · · · tk and X, X ′ respectively are the input variable
of t1 and the output variable of tk. Any path with no repeated variable is called a simple
path. A cycle is any non-empty path from some variable X to X . Any cycle of the form
t · π where t is a transition and π is a simple path is called a simple cycle. A valuation
is any function ρ in X → Cn. An n-dim initialized guarded translation system (IGTS)
is any triple S = (X , T, ρ0) where (X , T) is an n-dim GTS and ρ0 ∈ X → Cn is an
initial valuation.

524 J. Leroux and G. Sutre

Intuitively, a transition X
a−→ X ′ assigns variable X ′ to a(X) and does not change

the other variables. Formally, the data-flow semantics �t� of any transition t = X
a−→ X ′

is the monotonic function in (X → Cn) → (X → Cn) defined by �t�(ρ)(X ′) =
�a�(ρ(X)) and �t�(ρ)(Y) = ρ(Y) for all Y �= X ′. The data-flow semantics �·� is
extended to sequences w in A∗n ∪ T ∗ in the obvious way: �ε� = � and �l · w� =
�w� ◦ �l�. We also extend the data-flow semantics to languages L in �(A∗n) ∪�(T ∗) by
�L� =

⊔
w∈L �w�.

For computability reasons, we extend �-polyhedrality, where � ∈ {�,�,�}, to ac-
tions, valuations and guarded translation systems. An n-dim action (G, d) is called
�-polyhedral if G is �-polyhedral and d ∈ �n. An n-dim GTS (X , T) is called �-
polyhedral if the action of every transition t ∈ T is �-polyhedral. A valuation ρ in
X → Cn is called �-polyhedral if ρ(X) is �-polyhedral for every X ∈ X . An n-dim
IGTS (X , T, ρ0) is called �-polyhedral if (X , T) and ρ0 are �-polyhedral.

Example 3.1. Consider the C-style source code given on the left-hand side below and
assume that the initial values of variables z1 and z2 satisfy z1 = 1 and −1 ≤ z2 ≤ 1.
The corresponding IGTS E is depicted graphically on the right-hand side below.

1 while (z1 ≥ 0 ∧ z2 ≥ 0) {
2 z1 = z1 − 1;
3 z2 = z2 + 1;
4 }

X1 X2

X3X4

a1

a2

a3

a4

Formally, the set of variables of E is {X1, X2, X3, X4}, representing the values of
variables z1 and z2 at program points 1, 2, 3 and 4. Its initial valuation is {X1 �→ {1}×
[−1, 1] , X2 �→ ⊥, X3 �→ ⊥, X4 �→ ⊥}, and its set of transitions is {t1, t2, t3, t4},
with:

t1 = X1
a1−→ X2 , a1 =

(
�2

+,0
)

t2 = X2
a2−→ X3 , a2 =

(
�2, (−1, 0)

)

t4 = X4
a4−→ X1 , a4 =

(
�2,0

)
t3 = X3

a3−→ X4 , a3 =
(
�2, (0, 1)

)
�

Given any n-dim IGTS S = (X , T, ρ0), the merge over all paths solution (MOP-
solution) of S, written ΠS, and the minimum fix-point solution (MFP-solution) of S,
written ΛS, are the valuations defined as follows:

ΠS =
⊔

{�π�(ρ0) | π ∈ T ∗ is a path}

ΛS =
�

{ρ ∈ X → Cn | ρ0 � ρ and �t�(ρ) � ρ for all t ∈ T }

Remark that for any sequence π ∈ T ∗ and variable X ∈ X , there exists a path π′

such that �π�(ρ0)(X) = �π′�(ρ0)(X). Recall also that �T �
∗(ρ) denotes the least post-

fix-point of �T � greater than ρ. Therefore it follows from the above definitions that
ΠS = �T ∗�(ρ0) and ΛS = �T �

∗(ρ0).

Example 3.2. Consider the IGTS E′ = ({X}, {X
a−→ X}, {X �→ C0}) with a =

(�2
+, (−1, 1)) and C0 = {1} × [−1, 1]. Intuitively E′ corresponds to a compact ver-

sion of the IGTS E from Example 3.1, where the cycle is shortened into a single

Acceleration in Convex Data-Flow Analysis 525

“self-loop” transition. The convex sets C0, �a�(C0) and �aa�(C0) are depicted be-
low (respectively in black, blue and red). Since �aaa�(C0) is empty, we get that
�a∗�(C0) = C0
 �a�(C0)
 �aa�(C0). The characterization of �a�

∗(C0) is more com-
plex ; the key point here is to show that the set {0} × [0, 2] is necessarily contained
�a�
∗(C0). The sets �a∗�(C0) and �a�

∗(C0) are also depicted below.

-2 -1 0 1 2
-1

0

1

2

3

-2 -1 0 1 2
-1

0

1

2

3

-2 -1 0 1 2
-1

0

1

2

3

�aa�(C0), �a�(C0), C0 �a∗�(C0) �a�∗(C0)

The MOP-solution ΠE′ and the MFP-solution ΛE′ of the IGTS E′ are the valuations
ΠE′ = {X �→ �a∗�(C0)} and ΛE′ = {X �→ �a�

∗(C0)}. �

Recall that our objective is to speed up, using acceleration-based techniques, the
computation of the MFP-solution for initialized guarded translation systems. Recast
in our setting, exact acceleration [BW94, CJ98, FIS03, FL02, BIL06] intuitively con-
sists in computing the exact effect

⋃
k∈�

�
(a1 · · · ak)k

�
(C0) of some cycle X

a1−→
X1 · · ·Xk−1

ak−→ X , starting with some C0 ∈ Cn in X . Thus we may want define
acceleration as the closed convex hull of this expression. However it would be even
more desirable to compute the larger set �(a1 · · · ak)�∗(C0) since it is contained in the
MFP-solution. We thus come to the following definition. Given any trace σ in A∗n,
the function �σ∗� (resp. �σ�

∗) is called the MOP-acceleration of σ (resp. the MFP-
acceleration of σ).

As will be apparent in section 5, trace-based acceleration is not in general sufficient
to guarantee termination of the Kleene fix-point iteration, even for “cyclic” IGTS. The
reason is that trace-based acceleration distinguishes a variable X (the “input variable”
of the cycle to be accelerated) and abstracts away all other variables in the “current” val-
uation ρ of the fix-point iteration. Hence we also introduce acceleration of cycles, where
we intuitively consider the MOP-solution or MFP-solution of the system restricted to
this cycle. Formally, given any simple cycle π in T ∗, the MOP-acceleration of π (resp.
the MFP-acceleration of π) is the function �U∗� (resp. �U�∗) where U is the set of
transitions that occur in π. Note that these accelerations may be extended to arbitrary
cycles through the notion of unfoldings [LS07].

The rest of the paper is devoted to the characterization and computation of these
accelerations: section 4 focuses on acceleration for traces and section 5 investigates
acceleration for simple cycles.

4 Acceleration for Traces

We focus in this section on MOP-acceleration and MFP-acceleration for traces. Remark
that for any σ = a1 · · · ak ∈ A∗n, with ai = (Gi, di), we have �σ� = �aσ� where

526 J. Leroux and G. Sutre

aσ = (Gσ, dσ) is defined by dσ =
∑k

i=1 di and Gσ =
⋂k

i=1

(
Gi −

∑i−1
j=1 dj

)
. It

follows that �σ∗� = �a∗σ� and �σ�
∗ = �aσ�

∗. Therefore we will w.l.o.g. restrict our
attention to MOP-acceleration and MFP-acceleration for single actions.

Consider an n-dim action a = (G, d) and a closed convex set C0 ∈ Cn. Recall
that �a∗�(C0) =

⊔
k∈�

�
ak

�
(C0). Observe that for every k ∈ � we have

�
ak

�
(C0) =

(Gk ∩ C0) + k d where Gk =
⋂k−1

i=0 (G − i d). By convexity of G we deduce that
Gk = G ∩ (G − (k − 1)d) for every k ≥ 1. Hence we have:

�a∗�(C0) = C0
 (cloconv (G ∩ ((G ∩ C0) + �d)) + d)

The main difficulty here lies in the computation of cloconv (G ∩ ((G ∩ C0) + �d)).
We introduce the class of poly-based semilinear sets and show that this class is closed

under sum, union and intersection. We call poly-based linear any subset of �n of the
form B +

∑
p∈P �p where B is a bounded polyhedron and P is a finite subset of

�n. A poly-based semilinear set is any finite union of poly-based linear sets. Note that
poly-based semilinearity generalizes standard (integer) semilinearity [GS66] in that for
any subset Z of �n, Z is semilinear iff Z is poly-based semilinear.

Lemma 4.1. Every polyhedron is a poly-based linear set. Poly-based semilinear sets
are closed under sum, union and intersection.

We obtain from Lemma 4.1 that �a∗�(C0) = C0
 (cloconv (S) + d) for some poly-

based semilinear set S. Since cloconv
(∑

p∈P �p
)

=
∑

p∈P ↑p for any subset P

of �n, we get that cloconv (S) is a polyhedron and hence we come to the following
proposition.

Proposition 4.2. For any n-dim action a = (G, d) and closed convex set C0 ∈ Cn, if
G and C0 are polyhedra then �a∗�(C0) is a polyhedron.

Remark that the proof of Proposition 4.2 is constructive (since the proof of Lemma 4.1
is constructive). It follows that for each � ∈ {�,�}, the set �a∗�(C0) is an effectively
computable �-polyhedron when a and C0 are �-polyhedral. The following proposition
gives a simple expression of the MOP-acceleration for bounded closed convex sets.

Proposition 4.3. For any n-dim action a = (G, d) and closed convex set C0 ∈ Cn, if
G ∩ C0 is bounded then we have:

– if G ∩ C0 �= ∅ and d ∈ 0+G then �a∗�(C0) = C0 + ↑d, and
– otherwise

�
ak

�
(C0) = ∅ for some k ∈ �, and �a∗�(C0) =

⊔k−1
i=0

�
ai

�
(C0).

Our next result gives a surprisingly simple expression of the MFP-acceleration for ar-
bitrary n-dim actions.

Proposition 4.4. For any n-dim action a = (G, d) and closed convex set C0 ∈ Cn, we
have:

�a�
∗(C0) =

{
C0 if G ∩ C0 = ∅
C0
 ((G ∩ (C0 + ↑d)) + d) otherwise

Acceleration in Convex Data-Flow Analysis 527

It follows from Proposition 4.4 that �a�∗(C0) is a polyhedron when G and C0 are poly-
hedra. If moreover a and C0 are �-polyhedral, with � ∈ {�,�}, then �a�

∗(C0) is an
effectively computable �-polyhedron.

We now compare our MFP-acceleration approach with abstract loop acceleration
introduced in [GH06] as a complement to widening for linear relation analysis. Let us
recast the definition of [GH06] in our setting. The abstract-acceleration �a�

⊗ of any n-
dim action a = (G, d) is the monotonic function in Cn → Cn defined by �a�

⊗(C0) =
C0
 cloconv ({x ∈ �n | ∃x0 ∈ G ∩ C0, x ∈ (x0 + ↑d) ∩ (G + d)}). Observe that
�a�⊗(C0) = C0
 ((G ∩ C0) + ↑d) ∩ (G + d). Hence we obtain the following
relationships between MOP-acceleration, MFP-acceleration and abstract-acceleration:

�a∗�(C0) � �a�
⊗(C0) = C0
 �a�

∗(C0 ∩ G) � �a�
∗(C0)

Note in particular that �a�
⊗(C0) = �a�

∗(C0) when C0 ⊆ G. It turns out that abstract-
acceleration is not sufficient to guarantee termination of the Kleene fix-point itera-
tion even for guarded translation systems consisting in a single “self-loop” transition.

-1 0 1
-1

0

1

2

3

Consider our running example, the IGTS given in Example 3.2,
and recall that C0 = {1} × [−1, 1]. The sequence (Ck)k∈�
defined by Ck+1 = �a�

⊗(Ck) corresponds, for this example,
to the abstract-accelerated Kleene fix-point iteration suggested
in [GH06]. An induction on k shows that for every k ≥ 1, the
set Ck is the convex hull of {(1, −1), (1, 1), (−1, 3), (−1, yk)}
where yk = 1 + 1

2k−1
. The first sets C0, C1, C2 and C3 of

the iteration are depicted on the right (darker sets corresponds
to smaller indices). It follows that the sequence (Ck)k∈� is
(strictly) increasing and hence this accelerated Kleene fix-
point iteration does not terminate. Note that the situation would
not be better with MOP-acceleration. However as already
noted in Example 3.2, MFP-acceleration of a directly pro-
duces the MFP-solution. Hence the MFP-accelerated Kleene
fix-point iteration would reach the fix-point after just one iteration. Notice that MFP-
acceleration and abstract-acceleration have the same computational complexity.

5 Acceleration for Cycles

We investigate the computation of the MOP-acceleration (resp. the MFP-acceleration)
of a simple cycle. Following our definitions, this problem reduces to the computation of
the MOP-solution (resp. the MFP-solution) of an IGTS that contains all its transitions
into a unique (up to permutations) simple cycle π = X1

a1−→ · · · Xk
ak−→ X1, called

cyclic. We only consider the MFP-solution computation in the sequel since the follow-
ing equality shows that the MOP-solution of a cyclic IGTS reduces to the computation
of the MOP-acceleration of the trace σ = a1 . . . ak:

ΠS(X1) =
k⊔

i=1

�σ∗� ◦ �ai+1 . . . ak� (ρ0(Xi))

528 J. Leroux and G. Sutre

We first explain why the previous reduction cannot be extended to the MFP-solution.
Naturally, when the initial valuation ρ0 satisfies ρ0(X) = ⊥ for all but one variable Xi,
the following equality shows that the MFP-solution reduces to the MFP-acceleration of
traces (values of ΛS in X2, . . . , Xk are obtained by circular permutations):

ΛS(X1) = �σ�
∗ ◦ �ai+1 . . . ak� (ρ0(Xi))

However, this case is not sufficient since we want to apply MFP-acceleration at any
point during an iterative computation of MFP-solutions. The 2-dim cyclic rational poly-
hedral IGTS E2 formally defined below shows that the MFP-solution ΛS cannot be re-
duced to MFP-acceleration of traces for a general initial valuation ρ0. In fact, we prove
in the sequel that the MFP-solution of E2 is �-polyhedral but not �-polyhedral. Since
MFP-accelerations of traces only produce �-polyhedral valuations we deduce that the
MFP-solution cannot be obtained using MFP-acceleration of traces.

Example 5.1. Consider the cyclic 2-dim IGTS E2 depicted graphically on the left-hand
side below.

X1 X2

X3X4

a1

a2

a3

a4

�

��

�

hk+1

4

1

hk

1

Formally the initial valuation ρ0 of E2 is {X1 �→ {(−2, 2)}, X2 �→ {(2, 2)}, X3 �→
{(2, −2)}, X4 �→ {(−2, −2)}}, and its actions a1 = (G1,0), a2 = (G2,0), a3 =
(G3,0), a4 = (G4,0) are defined by G1 =]−∞, −1] × [1, +∞[, G2 = [1, +∞[×
[1, +∞[, G3 = [1, +∞[×]−∞, −1] and G4 =]−∞, −1] ×]−∞, −1]. �

The MFP-solution of the IGTS E2 can be obtained by first proving that the Kleene
iteration (�
 �T �)k+2(ρ0) is equal to the valuation ΛE2,hk

(The values of ΛE2,h in
X1, X2, X3, X4 are graphically pictured in red, green, black and blue in the center of
the previous figure) where ΛE2,h is the following valuation parameterized by a real
number h and where (hk)k≥0 is the sequence of rational numbers defined by h0 = 0
and hk+1 = 1

4−hk
(this last equality can be geometrically obtained from the right-hand

side picture of the previous figure).

ΛE2,h(X1) = conv({ (−2, 2) , (−2, −2) , (−1, −2) , (−1, −2 + h) })
ΛE2,h(X2) = conv({ (2, 2) , (−2, 2) , (−2, 1) , (−2 + h, 1) })
ΛE2,h(X3) = conv({ (2, −2) , (2, 2) , (1, 2) , (1, 2 − h) })
ΛE2,h(X4) = conv({ (−2, −2) , (2, −2) , (2, −1) , (2 − h, −1) })

Lemma 5.2. We have (�
 �T �)(ΛE2,h) = ΛE2, 1
4−h

for any 0 ≤ h ≤ 2 −
√

3.

As ΛE2,0 = (�
 �T �)2(ρ0) we deduce that ΛE2,hk
= (�
 �T �)k+2(ρ0) for any k ≥ 0

from the previous lemma 5.2.

Acceleration in Convex Data-Flow Analysis 529

Lemma 5.3. The sequence (hk)k≥0 converges to the algebraic number 2 −
√

3.

Since ΛE2,hk
� ΛE2 , we deduce from lemma 5.3 that ΛE2,2−√3 � ΛE2 . Observe

that lemma 5.2 proves that ΛE2,2−√3 is a post-fix-point. Thus ΛE2,2−√3 is the MFP-
solution. Note that this valuation is �-polyhedral but not �-polyhedral. We will actually
show in the next section that the MFP-solution of any 2-dim �-polyhedral IGTS (not
necessarily cyclic) is �-polyhedral.

Now we provide an example of 3-dim cyclic �-polyhedral IGTS E3 corresponding
to a slightly modified version of E2 that exhibits a non-polyhedral MFP-solution.

Example 5.4. Consider the cyclic 3-dim IGTS E3 formally defined as E2 except for (a)
its initial valuation ρ0 equal to {X1 �→ (−1, 1, 0)+↑e3, X2 �→ (1, 1, 0)+↑e3, X3 �→
(1, −1, 0) + ↑e3, X4 �→ (−1, −1, 0) + ↑e3} where e3 = (0, 0, 1), and (b) its actions
a1, a2, a3, a4 defined as follows (�− is the set of non-positive real numbers −�+):

a1 = (�− × �+ × � , e3) a2 = (�+ × �+ × � , e3)
a4 = (�− × �− × � , e3) a3 = (�+ × �− × � , e3) �

Let us denote by ΛE3,k for any k ∈ {2, . . . , +∞} the following valuation where hi = 1
i

for i ≥ 1, (zi)i≥1 is defined by the initial value z1 = 3
2 and the induction zi+1 =

1 + zi.
i

i+1 , and e3 = (0, 0, 1).

ΛE3,k(X1) = conv({ (−1, 1, 0) , (−1, −1, 1)} ∪ {(0, −hi, zi) | 1 ≤ i < k}) + ↑e3
ΛE3,k(X2) = conv({ (1, 1, 0) , (−1, 1, 1) } ∪ {(−hi, 0, zi) | 1 ≤ i < k}) + ↑e3

ΛE3,k(X3) = conv({ (1, −1, 0) , (1, 1, 1) } ∪ { (0, hi, zi) | 1 ≤ i < k}) + ↑e3

ΛE3,k(X4) = conv({(−1, −1, 0) , (1, −1, 1) } ∪ { (hi, 0, zi) | 1 ≤ i < k}) + ↑e3

Lemma 5.5. Values of ΛE3,+∞ in X1, X2, X3, X4 are closed convex sets but they are
not polyhedral.

Since (�
 �T �)2(ρ0) = ΛE3,2, the following lemma 5.6 proves that (�
 �T �)k(ρ0) =
ΛE3,k for any k ∈ {2, . . . , +∞}.

Lemma 5.6. We have (�
 �T �)(ΛE3,k) = ΛE3,k+1 for any k ∈ {2, . . . , +∞}.

We deduce that ΛE3,+∞ is the MFP-solution of E3.

Theorem 5.7. There exists a 3-dim cyclic rational polyhedral IGTS with a MFP-
solution that is not polyhedral.

6 MFP-Solution in Dimension ≤ 2

We have proved in the previous section that the MFP-solution of a 2-dim cyclic rational
polyhedral IGTS may be not rational. In this section the MFP-solution of any 2-dim
�-polyhedral IGTS (not necessary cyclic) is proved �-polyhedral for any � ∈ {�,�}.

Remark 6.1. In [SW05, LS07] the 1-dim case is fully studied.

530 J. Leroux and G. Sutre

Let us first consider any n-dim action a = (G, d), a set S ⊆ �n and observe that
the inclusion cloconv ((G ∩ S) + d) � (G ∩ cloconv (S)) + d is strict in general.
Nevertheless, the following lemma provides a sufficient condition to obtain the equality.
Recall that bd (G) is the boundary of G.

Lemma 6.2. We have cloconv ((G ∩ S) + d) = (G∩ cloconv (S))+ d for any n-dim
action a = (G, d) and for any set S ⊆ �n such that bd (G) ∩ cloconv (S) ⊆ S.

Let S = (X , T, ρ0) be any n-dim polyhedral IGTS and let ΔS be the following
valuation:

ΔS(X) = ρ0(X)

⊔

{bd (G) ∩ ΛS(X) | X
a=(G,d)−−−−−→ X ′}

Observe that ΔS is an intermediate valuation ρ0 � ΔS � ΛS. Let us denote by LX,X0

(resp. LE
X0,X) the set of traces σ that label some path (resp. simple path) X0

σ−→ X . Let
Λ′S be the valuation defined by Λ′S(X) = cloconv (S(X)) where S(X) is the following
set:

S(X) =
⋃

{�σ� (ΔS(X0)) | X0 ∈ X , σ ∈ LX0,X}

Observe that S(X) satisfies lemma 6.2, we deduce that Λ′S is a post-fix-point, i.e.
�T � (Λ′S) � Λ′S. Moreover, as Λ′S � ΛS we get the equality Λ′S = ΛS.

Lemma 6.3. We have the following equality:

ΛS(X) =
⊔

{�σ� (ΔS(X0)) | X0 ∈ X , σ ∈ LE
X0,X} + 0+ΛS(X)

We now focus on dimension 2 and assume that S is a 2-dim polyhedral IGTS. As
2-dim closed convex cones are polyhedral we deduce that 0+ΛS(X) is polyhedral for
any variable X . Moreover, since a polyhedron is a finite (eventually empty) intersec-
tion of half-spaces, by adding some new extra variables to the IGTS, we may assume
without loss of generality that all guards are either half-spaces or the whole set �2.
Note that the boundary of an half-space {x ∈ �n | α1.x1 + α2.x2 ≤ c} is the line
{x ∈ �n | α1.x1 + α2.x2 = c}, and the boundary of �2 is the empty-set. Thus
bd (G) ∩ ΛS(X) is polyhedral for any guard G and any variable X . We deduce that
ΔS is polyhedral.

Theorem 6.4. The MFP-solution of any 2-dim polyhedral IGTS is polyhedral.

Finally, assume that the 2-dim IGTS S is a �-polyhedral and observe that for any vari-
able X ∈ X and for any transition X

a−→ X ′ with a = (G, d), there exists:

– three vectors d1, d2, d3 ∈ �2 such that 0+ΛS(X) = ↑d1 + ↑d2 + ↑d3.
– two half-spaces H1, H2 such that bd (G) ∩ ΛS(X) = bd (G) ∩ H1 ∩ H2.

Since any vector (resp. any half-space) can be defined with 2 reals (resp. 3 reals), we
may constructively deduce from lemma 6.3 a formula in FO(�, +, ∗, ≤) defining ΛS.

Theorem 6.5. The MFP-solution of any 2-dim �-polyhedral IGTS is effectively �-poly-
hedral.

Acceleration in Convex Data-Flow Analysis 531

References

[BHRZ05] Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Science of Computer Programming 58(1–2), 28–56 (2005)

[BIL06] Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 577–588. Springer, Heidelberg (2006)

[BW94] Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L. (ed.)
CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
ACM Symp. Principles of Programming Languages, pp. 238–252. ACM Press, New
York (1977)

[CC92] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP
1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

[CH78] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proc. 5th ACM Symp. Principles of Programming Languages,
pp. 84–96. ACM Press, New York (1978)

[CJ98] Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Pres-
burger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

[FIS03] Finkel, A., Iyer, S.P., Sutre, G.: Well-abstracted transition systems: Application to
FIFO automata. Information and Computation 181(1), 1–31 (2003)

[FL02] Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

[GH06] Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

[GS66] Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages.
Pacific J. Math. 16(2), 285–296 (1966)

[Kar76] Karr, M.: Affine relationship among variables of a program. Acta Informatica 6,
133–141 (1976)

[LS07] Leroux, J., Sutre, G.: Accelerated data-flow analysis. In: Riis Nielson, H., Filé, G.
(eds.) SAS 2007. LNCS, vol. 4634, pp. 184–199. Springer, Heidelberg (2007)

[Min01] Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

[Sch86] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
[SSM04] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations

analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

[SW05] Su, Z., Wagner, D.: A class of polynomially solvable range constraints for interval
analysis without widenings. Theoretical Computer Science 345(1), 122–138 (2005)

Model Checking Almost All Paths Can Be Less
Expensive Than Checking All Paths

Matthias Schmalz1, Hagen Völzer2, and Daniele Varacca3,�

1 ETH Zürich, Switzerland
Matthias.Schmalz@inf.ethz.ch

2 IBM Zurich Research Laboratory, Switzerland
hvo@zurich.ibm.com

3 PPS - CNRS & Univ. Paris 7, France
varacca@pps.jussieu.fr

Abstract. We compare the complexities of the following two model
checking problems: checking whether a linear-time formula is satisfied by
all paths (which we call universal model checking) and checking whether
a formula is satisfied by almost all paths (which we call fair model check-
ing here). For many interesting classes of linear-time formulas, both prob-
lems have the same complexity: for instance, they are PSPACE-complete
for LTL.

In this paper, we show that fair model checking can have lower com-
plexity than universal model checking, viz., we prove that fair model
checking for L(F∞) can be done in time linear in the size of the for-
mula and of the system, while it is known that universal model checking
for L(F∞) is co-NP-complete. L(F∞) denotes the class of LTL formulas
in which F∞ is the only temporal operator. We also present other new
results on the complexity of fair and universal model checking. In par-
ticular, we prove that fair model checking for RLTL is co-NP-complete.

1 Introduction

A reactive system satisfies a specification expressed by a formula of linear-time
temporal logic if all its executions satisfy the formula. In this case, we say that a
system is universally correct, and the problem of verifying universal correctness
is called universal model checking.

Sometimes a system does not satisfy a specification, but only because of
a “small” set of executions that do not satisfy the formula. From a measure-
theoretic point of view, “small” means having probability 0. From a topological
point of view, it means being a meager set. The topological point of view cor-
responds to the notion of fairness [15], i.e., a set of executions Y of a system
is meager if and only if there exists some fairness assumption F for the system
such that each execution in Y is unfair w. r. t. F .

Varacca and Völzer [12] have shown that, for LTL formulas and finite-state
systems, the two notions of smallness coincide. More importantly, they coincide
� Most of the work was done while the first two authors were affiliated with the

University of Lübeck, Germany.

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 532–543, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking Almost All Paths 533

independently of the probability measure chosen (provided it belongs to a very
general class of measures).

If the set of executions that do not satisfy the specification is small, we say
that the system is almost correct or fairly correct. The problem of verifying fair
correctness is called fair model checking in this paper.1 As indicated above, fair
model checking is — for finite systems and LTL specifications — equivalent to
qualitative probabilistic model checking (i.e., checking a specification for proba-
bility 1) (cf. [12]). Fair model checking is an interesting alternative to universal
model checking even for non-probabilistic systems that are desired to be univer-
sally correct for the following reasons:

– The difference between the two notions of correctness is small; most errors
(i.e. violations of the specification) found by universal checking are also found
by fair checking. In particular, both notions of correctness coincide for safety
properties (cf. [12]).

– In fairmodel checking, there is noneed to specify any fairnessassumptiononthe
system. (Additional fairness assumptions do not change fair correctness [12].)

It is known that universal and fair model checking for LTL have the same
complexity: both are PSPACE-complete and can be solved in time linear in the
system and exponential in the formula [10,6,13,3]. In this paper, we compare the
complexities of universal and fair model checking for subclasses of LTL. Studying
subclasses helps to understand the scope of the PSPACE-completeness results
and also helps to develop optimised algorithms for frequently used formulas.

It is known that also for some sub- and superclasses of LTL, universal and
fair model checking have the same complexity, e.g. LTL+past [10,6,3], Büchi au-
tomata [11,14,13,3] and Street constraints [1,12]. We show that this remains true
for some additional subclasses. In particular, fair and universal model checking
for L(F) (also known as RLTL: the class of LTL formulas built using only the
temporal operator F) are both co-NP-complete.

However, as the main result of the paper, we show that fair (and hence quali-
tative probabilistic) model checking can be easier than universal model checking.
We prove that fair model checking for L(F∞) (LTL restricted to F∞, where F∞

is short for G F) can be done in time linear in the size of the formula (and lin-
ear in the size of the system), whereas universal model checking for L(F∞) is
co-NP-complete.

To this end, we define and characterise an interesting subclass of L(F∞),
called Muller formulas, which already separates the two model checking problems
with respect to their complexity. The satisfaction of a Muller formula in an
execution depends only on the set of states which are visited infinitely often in
that execution. Finally, we clarify the scope of our results by looking at some
simple subclasses of RLTL.

Missing proofs can be found in the technical report [8].
1 Note that in this paper fair model checking is not the problem of checking whether

a system is correct under some fixed fairness assumption. Instead, it is the problem
of checking whether there exists some fairness assumption for a system such that
the system is correct under this fairness assumption.

534 M. Schmalz, H. Völzer, and D. Varacca

2 Preliminaries

2.1 Systems and Temporal Properties

Let Q be a finite set of states. The sets Q∗, Q+ and Qω contain all finite,
non-empty finite, and infinite sequences over Q, respectively. Finite sequences
are called path fragments (over Q) and denoted by α, β, and infinite ones are
called paths (over Q) and denoted by x, y. The i-th element of a path (or path
fragment) x is denoted xi. We have x = x0x1 . . . A set Y ⊆ Qω is called a
(linear-time temporal) property (over Q) or a specification. If Q is clear from the
context, we write Y c for the complement of Y in Qω.

Throughout the entire paper, we fix a nonempty set AP of atomic propositions.
A system Σ = (Q, q0, →, v) consists of a finite set of states Q ⊆ AP , an initial
state q0 ∈ Q, a state relation → ⊆ Q×Q, and a valuation function v : Q → 2AP

such that q ∈ v(q), for each q ∈ Q. The technical assumption Q ⊆ AP allows us
later to use states as part of temporal formulas. We require that for each p ∈ Q
there be a q ∈ Q such that p → q. A path of Σ is a path x over Q such that
x0 = q0 and xi → xi+1 (i ∈ N). Finite prefixes of paths of Σ are called path
fragments of Σ.

A set K ⊆ Q is a strongly connected component of Σ (s. c. c. for short) if it is
a strongly connected component of the directed graph (Q, →). A bottom strongly
connected component of Σ (b. s. c. c.) K is an s. c. c. with no outgoing edges, i.e.,
there is no edge (p, q) ∈ → such that p ∈ K and q /∈ K.

The size of a system Σ = (Q, q0, →, v) is defined as |Σ| := |Q| + | → |.

2.2 Temporal Logic

In this paper, we consider several languages of linear-time temporal logic. The
most expressive one is LTL+past [4], which is defined by the following syntax
rules, where ξ ranges over atomic propositions and Φ over path formulas :

Φ := ξ | ¬Φ | Φ ∨ Φ | X Φ | Φ U Φ | X− Φ | Φ U− Φ

Additional operators such as true, false, ∧, ⇒, F, G, etc. are defined as ab-
breviations as usual [4]. We will also make use of the operator F∞, defined as
abbreviation for G F, and G∞ the abbreviation for F G. Non-boolean operators
are called temporal operators. If Φ does not contain a temporal operator, it is
called a state formula. By L(op1, . . . , opn) we denote the set of LTL+past for-
mulas that contain only the temporal operators op1, . . . , opn. L(X, U) is known
as LTL, L(F) as RLTL. Note that L(F) ⊆ L(X, U) because F can be expressed
by U. Likewise, formulas in L(F) can also contain G, F∞ and G∞.

Satisfaction x � Φ, x, i � Φ is defined as usual [4]. By Sat(Φ) we denote the
set of all paths of the underlying system that satisfy Φ. The size |Φ| of a formula
Φ is given by the number of its temporal and boolean operators.

Model Checking Almost All Paths 535

2.3 Universal and Fair Correctness

A system is universally correct w. r. t. a specification Y iff each path of the system
belongs to Y . It is universally correct w. r. t. a formula Φ iff each path of the sys-
tem satisfies Φ. Fair correctness can be defined equivalently in language-theoretic,
game-theoretic, topological, or probability-theoretic terms [12]. In particular, the
system underlying a finite-state Markov chain is fairly correct w. r. t. a specifica-
tion given by a formula Φ if and only if Sat(Φ) has measure 1. This property is
independent of the precise probabilities in the Markov chain, and fair correctness
can in fact be defined without probability. We give the game-theoretic definition
here because that will be the most useful in the sequel.

Let Σ = (Q, q0, →, v) be a system and Y a property. The Banach-Mazur game
G(Σ, Y) is played by the two players Alter and Ego, and the state of a play is
a path fragment of Σ. Alter moves first by choosing a path fragment α0 of Σ.
The players alternately move, and the player of the i-th move (i ∈ N) extends
the path fragment by a finite, nonempty sequence αi, yielding the path fragment
α0 . . . αi of Σ. The play goes on forever, converging to a path x of Σ. Ego wins
if x ∈ Y , otherwise Alter wins. A strategy is a mapping f : Q∗ → Q+ such that,
for each path fragment α of Σ, αf(α) is a path fragment of Σ. A strategy f is
winning for player P ∈ {Alter, Ego} if, for each strategy g of the other player, P
wins the play that results from P playing f and the other player playing g. It is
well-known that if Y is given by an LTL-formula, then G(Σ, Y) is determinate
(cf. [2]), i.e., either Ego or Alter has a winning strategy.

The system Σ is fairly correct w. r. t. Y iff Ego has a winning strategy in
G(Σ, Y). For convenience, we say that Σ is fairly correct w. r. t. Φ iff Ego
has a winning strategy in G(Σ,Sat(Φ)). Universal model checking, denoted by
UMC(L), is the problem of deciding whether a given system is universally cor-
rect, and fair model checking, denoted by FMC(L), is the problem of deciding
whether a given system is fairly correct w. r. t. a specification. In both cases, the
specification is given by a formula drawn from the language L.

3 Comparing Universal and Fair Model Checking

3.1 Known Results

It is known that both universal and fair model checking of LTL are PSPACE-
complete [10,13,3]. Both problems can be solved in time linear in the system and
exponential in the formula [6,3]. The same holds for the language LTL+past. For
universal model checking, this was shown by Sistla and Clarke [10,9,6], and for
fair model checking, this was claimed by Courcoubetis and Yannakakis [3], but
no proof was published. A formal original proof is given in Schmalz’ thesis [7].

These results can also be transferred to branching-time logics, where the model
checking problems for CTL and a fair version of CTL (as well as for CTL* and
a fair version of CTL*) have the same complexities (cf. [12]). Finally, fair and
universal model checking for specifications given by a Büchi automaton are both
PSPACE-complete [13,3,11,14].

536 M. Schmalz, H. Völzer, and D. Varacca

3.2 RLTL

Sistla and Clarke [10] have shown that universal model checking for RLTL is
co-NP-complete. In this section, we show that this is also the case for the fair
model checking problem for RLTL. Indeed, fair satisfaction of an RLTL formula
can be expressed by another RLTL formula. In this way, fair model checking for
RLTL can be reduced to universal model checking for RLTL. To this end, we
need the notion of a complete property.

Definition 1. Let L be a sublanguage of LTL+past and Σ a system that is
fairly correct w. r. t. a property Y . We say that Y is L-complete w. r. t. Σ iff
Y ⊆ Sat(Φ) for each Φ ∈ L such that Σ is fairly correct w. r. t. Φ.

If Y is L-complete, then we have that Σ is fairly correct w. r. t. Φ iff Y ⊆ Sat(Φ),
provided that Φ ∈ L (cf. [12]). This yields an alternative way of proving and
disproving fair correctness.

We will use the fact that state fairness is complete for RLTL and expressible
in RLTL. Let x be a path and p, q states of a system Σ = (Q, q0, →, v). We say
that q is enabled at p iff p → q; moreover, q is enabled at some position i of x iff
q is enabled at xi. We say that q is taken at position i of x iff xi = q. The path
x is state fair w. r. t. Σ iff each state q of Σ that is enabled at infinitely many
positions of x is also taken at infinitely many positions of x. The set of all state
fair paths of Σ is denoted by SFΣ .

It is easy to show that Σ is fairly correct w. r. t. SFΣ . A winning strategy
for Ego consists in first going to a b. s. c. c., and then, at each subsequent turn,
taking each state of that b. s. c. c. at least once.

Theorem 2. Let Σ be a finite system. Then, SFΣ is L(F)-complete w. r. t. Σ.

The intuitive meaning of Theorem 2 is the following: whenever we want to prove
that Σ is fairly correct w. r. t. a formula Φ ∈ L(F), this can be accomplished
by showing that each state fair path of Σ satisfies Φ. Theorem 2 was observed
already by Zuck et al. [16], who also gave a proof sketch. In [8], we give a detailed
alternative proof.

State fairness can easily be expressed by the following formula of L(F):

Ψ(Σ) :=
∧

q∈Q

(F∞ enabled(q) ⇒ F∞ q),

where, for each q ∈ Q, enabled(q) is an atomic proposition that holds exactly at
these states of Σ at which q is enabled. As F∞ is a shorthand for G F, and G
can be defined in terms of F, Ψ(Σ) ∈ L(F).

We are now ready to prove the main result of this section.

Theorem 3. The problem FMC(L(F)) is co-NP-complete.

Proof. Hardness is a consequence of Theorem 10 stated below or can be shown
similar as in the universal case (cf. [10]).

Model Checking Almost All Paths 537

We prove co-NP membership of FMC(L(F)) by a reduction from FMC(L(F))
to UMC(L(F)). Given a system Σ and a formula Φ ∈ L(F), the reduction maps
(Φ, Σ) to (Φ̂, Σ), where Φ̂ := (Ψ(Σ) ⇒ Φ) ∈ L(F). By Theorem 2, Σ is fairly
correct w. r. t. Φ iff Σ is universally correct w. r. t. Φ̂.

We remark here that also FMC(L(X)) and UMC(L(X)) are co-NP-complete. See
[9] for the universal case. In the fair case, the assertion follows from the fact that
Σ is correct w. r. t. Φ iff Σ is fairly correct w. r. t. Φ, provided that Φ ∈ L(X).

4 Fair Model Checking Can Be Less Expensive Than
Universal Model Checking

In this section, we show that for L(F∞) the complexities of fair and universal
model checking differ. It is known that universal model checking for L(F∞)
formulas is co-NP-complete [5]. We show that fair model checking can be done
in linear time in the size of the formula and the system. For this, we first introduce
a natural subclass of L(F∞) for which the two complexities already differ.

4.1 Muller Formulas

A Muller formula is an LTL formula where F∞ is the only temporal operator
and where every variable is in the scope of some temporal operator:

Definition 4. The language L+(F∞) of Muller formulas is the smallest set of
LTL formulas that satisfies the following two conditions M1 and M2:

M1: If Ψ ∈ L(F∞), then F∞ Ψ ∈ L+(F∞).
M2: If Ψ, Φ ∈ L+(F∞), then Ψ ∨ Φ, ¬Ψ ∈ L+(F∞).

The key property of Muller formulas is that their validity in a path x only
depends on the set inf (x), i.e., the set of states that occur infinitely often in x.

Definition 5. Let Σ = (Q, q0, →, v) be a system. A property Y over Q is a
Muller property iff for all paths x, y over Q with inf (x) = inf (y) we have x ∈ Y
iff y ∈ Y .

Theorem 6. Let Σ be a system. Then, for each Φ ∈ L+(F∞), Sat(Φ) is a
Muller property.

It is easy to see that each Muller property can be expressed by a Muller formula
(cf. [7]).

4.2 Fair Model Checking of Muller Formulas

In this subsection, we show that fair model checking of Muller formulas can be
done in linear time w. r. t. the formula. We are going to present an algorithm for
FMC(L+(F∞)) based on the fact that, for systems Σ that consist of only one

538 M. Schmalz, H. Völzer, and D. Varacca

s. c. c. and formulas Φ ∈ L(F∞), we have that Σ is either fairly correct w. r. t. Φ
or w. r. t. ¬Φ.

We are given a system Σ and a Muller formula Φ. Without loss of generality,
we assume that Σ has no isolated states, i.e., each state of Σ is eventually taken
by some path of Σ. First, the algorithm computes the b. s. c. c.s of Σ. Then, for
each subformula Υ of Φ, the algorithm partitions each b. s. c. c. K of Σ into KΥ

and K¬Υ := K \ KΥ as follows. (The meaning of KΥ is that whenever a state
fair path of Σ takes a state of KΥ , Υ is satisfied at the same position.)

1. If Υ is a state formula, then exactly these states of K that satisfy Υ belong
to KΥ .

2. If Υ = Θ ∨ Ψ , then KΥ := KΘ ∪ KΨ .
3. If Υ = ¬Θ, then KΥ := K¬Θ.
4. If Υ = F∞Θ, then KΥ := K if KΘ 	= ∅; otherwise, KΥ := ∅.

The algorithm accepts its input iff K = KΦ for each b. s. c. c. K of Σ.

Proposition 7. The above algorithm is correct, i.e., the algorithm always ter-
minates, and accepts if and only if Σ is fairly correct w. r. t. Φ.

Proof. The algorithm obviously terminates. It can be shown by induction over
the structure of Υ that the following applies:

1. We have q ∈ KΥ iff SFΣ ⊆ Sat(G(q ⇒ Υ)).
2. We have q ∈ K¬Υ iff SFΣ ⊆ Sat(G(q ⇒ ¬Υ)).

Suppose the algorithm accepts Σ and Φ. As Σ is fairly correct w. r. t. SFΣ, it
suffices to show that SFΣ ⊆ Sat(Φ). Let x ∈ SFΣ . It can be shown that there
is a b. s. c. c. K of Σ and a position i ∈ N such that xi ∈ K. Therefore xi ∈ KΦ.
With claim 1, x � G(xi ⇒ Φ). Hence, x, i � Φ. With Theorem 6, x � Φ.

Now, suppose the algorithm rejects Σ and Φ. Because of Theorem 2, it suffices
to show that SFΣ � Sat(Φ). Let x ∈ SFΣ such that, for some i ∈ N, xi ∈ K¬Φ,
where K is a b. s. c. c. of Σ with K 	= KΦ. With claim 2, x � G(xi ⇒ ¬Φ).
Hence, x, i � ¬Φ. With Theorem 6, x � Φ.

The computation of the b. s. c. c.s of Σ can be done in O(|Σ|) steps. For a given
subformula Υ of Φ, also the partition of the b. s. c. c.s K into KΥ and K¬Υ can
be accomplished in O(|Σ|). As Φ has O(|Φ|) subformulas, the total running time
of the algorithm is in O(|Σ||Φ|). We have thus shown the following:

Theorem 8. The problem FMC(L+(F∞)) can be solved in O(|Σ||Φ|), where Σ
is the input system and Φ the input formula.

4.3 Fair Model Checking of L(F∞)

Theorem 8 can be extended from L+(F∞) to L(F∞).

Theorem 9. The problem FMC(L(F∞)) can be solved in O(|Σ||Φ|), where Σ
is the input system and Φ the input formula.

Model Checking Almost All Paths 539

Proof. The algorithm translates Φ to a formula Φ′ by applying the following
rules as often as possible:

1. Replace each atomic proposition, which is not in the scope of a temporal
operator, by its truth value (true or false) at the initial state of Σ.

2. Replace true ∨ Ψ by true.
3. Replace false ∨ Ψ by Ψ .
4. Replace ¬true by false.
5. Replace ¬false by true.

It is straightforward to show that, for each path x of Σ, x � Φ iff x � Φ′. Recall
that the only difference between L(F∞) and L+(F∞) is that in L+(F∞) each
atomic proposition is in the scope of a temporal operator. Therefore, it is not
too difficult to see that Φ′ is a Muller formula.

After this translation, the algorithm applies Theorem 8. As the translation
can be done in O(|Φ|), the total running time belongs to O(|Σ||Φ|).

5 Canonical Subclasses of RLTL

In this section, we shed more light on the above results by studying the com-
plexity of some simple subclasses of RLTL. The formulas in these subclasses are
‘flat’, i.e., there is no nesting of temporal operators.

5.1 Conjunctive Formulas

We start by observing that top-level conjunctions are easily dealt with: in order
to check Φ ∧ Ψ , it is sufficient to check Φ and Ψ in isolation. This is trivial for
universal model checking, but is also easily verified for fair model checking: a
system is fairly correct w. r. t. Φ ∧ Ψ iff it is fairly correct w. r. t. Φ and w. r. t. Ψ
(cf. for instance [15]).

Thus, if {Ψ1, . . . , Ψn} is a set of formulas whose length is bounded by some
constant k, then Φ =

∧n
i=1 Ψi can be checked in time O(|Σ| ·n ·2k). This implies,

for example, that Street formulas, i.e., formulas of the form
∧n

i=1(F
∞ ψi ∨G∞ ξi)

with ψi, ξi state formulas, can be checked in linear time (i.e. O(|Σ||Φ|)).

5.2 Disjunctive Formulas of RLTL

Disjunctions are more interesting. In particular, we show that co-NP-hardness
of fair and universal model checking of RLTL is implied by the fact that fair and
universal model checking for formulas of the form

∨n
i=1(F ψi ∧ F ξi) is already

co-NP-hard.

Theorem 10

1. Fair and universal model checking a formula Φ =
∨n

i=1(F ψi ∧ F ξi) and a
system Σ are co-NP hard.

540 M. Schmalz, H. Völzer, and D. Varacca

2. Fair and universal model checking a formula Φ =
∨n

i=1(G ψi ∧ G ξi) and a
system Σ can be done in linear time.

3. Fair and universal model checking a formula Φ =
∨n

i=1 F ψi and a system Σ
can be done in linear time.

4. Fair and universal model checking a formula Φ =
∨n

i=1 G ψi and a system Σ
can be done in linear time.

Here ψi and ξi are state formulas (1 ≤ i ≤ n).

Proof. For 1, we define a reduction from the complement of 3−SAT to both fair
and universal model checking of formulas Φ =

∨n
i=1(F ψi∧F ξi). Let φ =

∧m
i=1 ψi

be a 3-CNF formula, where ψi = ξi,1 ∨ξi,2 ∨ξi,3 and ξi,j ∈ {ζ1, . . . , ζn, ζ1, . . . , ζn}
(1 ≤ i ≤ m, 1 ≤ j ≤ 3). Then the reduction maps φ to the formula Φ :=∨n

k=1(F ζk∧F ζk) and the system Σ = (Q, q0, →, v) with the following properties:

– Q = {q0, . . . , qm} ∪ {pi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3},
– → is the smallest relation such that, for 0 ≤ i < m, 1 ≤ j ≤ 3,

• qi → pi+1,j ,
• pi+1,j → qi+1,
• qm → qm.

– v(qi) = {qi} (0 ≤ i ≤ m),
– v(pi,j) = {ξi,j , pi,j} (1 ≤ i ≤ m).

First, we prove that φ is satisfiable iff Σ is not universally correct w. r. t. Φ.
Suppose that φ is satisfiable. Then there are j1, . . . , jm ∈ {1, 2, 3} such that, for
each i ∈ {1, . . . , m}, ξi,ji = ζk implies that, for each i′ ∈ {1, . . . , m}, ξi′,ji′ 	=
ζk. Intuitively, ξi,ji is the satisfying literal of the i-th clause. We define x :=
q0p1,j1q1p2,j2 . . . qm−1pm,jmqmqmqm . . . Then x is a path of Σ violating Φ; thus,
Σ is not universally correct w. r. t. Φ.

The opposite direction can be shown with similar arguments. For the case
of fair model checking, note that Σ is universally correct w. r. t. an arbitrary
specification iff it is fairly correct w. r. t. that specification. So the reduction is
also valid for fair model checking. Clearly, the reduction can be computed in
polynomial time; part 1 of the assertion follows.

For 4, we assume, without loss of generality, that Σ has no isolated states. In
the case of universal model checking, we propose the following algorithm:

1. Compute the s. c. c. graph of Σ and a topological ordering of the s. c. c.s.
2. Travel through the s. c. c.s in topological order, and compute for each s. c. c.

K of Σ:

valid(K) = {i ∈ {1, . . . , n} | ∀q ∈ K : q � ψi} ∩
⋂

K′: K′→K

valid (K ′).

Given s. c. c.s K1, K2 of Σ, K1 → K2 means that there are p ∈ K1, q ∈ K2

such that p → q.
3. The input is accepted iff there is no s. c. c. K of Σ with valid(K) = ∅.

Model Checking Almost All Paths 541

Wn
i=1(F ψi ∧ G ξi)

Wn
i=1 F ψi

Wn
i=1 G ψi

L(F)

Wn
i=1(G ψi ∧ G ξi)

Wn
i=1(F ψi ∧ F ξi)

Fig. 1. Results for subclasses of L(F) showing the complexity of universal model
checking/fair model checking

By induction over the number of s. c. c.s the algorithm has already processed,
it can be shown that i ∈ valid (K) iff each path fragment α of Σ that ends
in a state of K at each position satisfies ψi. From this, the correctness of the
algorithm can be derived:

Let x be a path of Σ with x � Φ. Choose j such that each of the ψi is violated
at at least one position of x0x1 . . . xj . Let K be the s. c. c. of Σ such that xj ∈ K.
Then, for each i ∈ {1, . . . , n}, we have i /∈ valid(K), because x0x1 . . . xj does not
satisfy ψi at each position. Thus, valid (K) = ∅.

On the other hand, suppose that valid (K) = ∅ for some s. c. c. K of Σ. Then
there is a path fragment α of Σ such that, for each i ∈ {1, . . . , n}, ψi is violated
at some position of α. Thus, α can be extended to a path of Σ that violates the
specification Sat(Φ).

In the case of fair model checking, the same algorithm can be applied, because
Σ is universally correct w. r. t. Φ iff Σ is fairly correct w. r. t. Φ.

Part 2 of the assertion can be derived from 4, as we have Sat(G ψi ∧ G ξi) =
Sat(G(ψi ∧ ξi)) for 1 ≤ i ≤ n.

For 3, observe that Sat(
∨n

i=1 F ψi) = Sat(F
∨n

i=1 ψi). So the problems of 3
can be reduced to the related model checking problems for a formula of the form
F ζ, where ζ ∈ AP . The latter can be solved in linear time (cf. [6,3]), as the
formula has bounded size.

Figure 1 summarises the results for the disjunctive formulas of L(F). An ar-
row denotes containment, where we also allow trivial translations, e.g., G ψi

can be written as G ψi ∧ G true and G ψi ∧ G ξi can be written as G(ψi ∧ ξi).
The complexities of fair and universal model checking of formulas of the form∨n

i=1(F ψi ∧ G ξi) remain open.

5.3 Disjunctive Formulas of L(F∞)

The dual of a Streett formula, called a Rabin formula, is a formula of the form∨n
i=1(F

∞ ψi ∧ G∞ ξi). Universal model checking of Rabin formulas can be done

542 M. Schmalz, H. Völzer, and D. Varacca

Wn
i=1 F∞ ψi

Wn
i=1 G∞ ψi

L+(F∞)

Wn
i=1(F

∞ ψi ∧ G∞ ξi)
Wn

i=1(F
∞ ψi ∧ F∞ ξi)

Wn
i=1(G

∞ ψi ∧ G∞ ξi)

Fig. 2. Results for subclasses of L+(F∞) showing the complexity of universal model
checking/fair model checking

in linear time, whereas the proof of co-NP-hardness of L(F∞) uses only formulas
of the form

∨n
i=1(F

∞ ψi ∧ F∞ ξi) (cf. [5]). We thus have:

Theorem 11

1. Universal model checking a formula Φ =
∨n

i=1(F
∞ ψi ∧ F∞ ξi) and a system

Σ is co-NP hard.
2. Fair model checking a formula Φ =

∨n
i=1(F

∞ ψi ∧ G∞ ξi) and a system Σ
can be done in linear time.

In particular universal model checking for formulas of the form
∨n

i=1 F∞ ψi or∨n
i=1 G∞ ψi can be done in linear time.
Figure 2 summarises the results for subclasses of L+(F∞).

6 Conclusion

We have shown that for formulas in L(F∞) fair model checking can be done
more efficiently than universal model checking. We are not aware of any natural
sublanguage of LTL for which universal model checking can be done more effi-
ciently than fair model checking. This adds another argument in favour of fair
model checking as an interesting alternative or complement to universal model
checking, as mentioned in the introduction.

Studying model checking for sublanguages can help to optimise algorithms,
as the more general algorithms may not perform optimally for the sublanguage.
In fact, the algorithm of Courcoubetis and Yannakakis [3] for fair model check-
ing of LTL can perform exponentially worse on L(F∞) than our algorithm (see
[7]). Moreover, our algorithm for Muller formulas can be integrated with the
algorithm of Courcoubetis and Yannakakis [3], which allows us to detect Muller
formulas as subformulas of the input LTL formula (or any intermediate formula

Model Checking Almost All Paths 543

produced by the algorithm), solve the fair model checking problem for these
Muller formulas in linear time and use the result for checking the input formula.
The presentation of this integration is beyond the scope of this paper, but it is
available in Schmalz’ thesis [7]. There it is also shown that, with this optimisa-
tion, the algorithm never performs worse but can perform exponentially better
than the original.

References

1. Alur, R., Henzinger, T.A.: Local liveness for compositional modeling of fair reactive
systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 166–179. Springer,
Heidelberg (1995)

2. Berwanger, D., Grädel, E., Kreutzer, S.: Once upon a time in the west - determi-
nacy, definability, and complexity of path games. In: Vardi, M.Y., Voronkov, A.
(eds.) LPAR 2003. LNCS, vol. 2850, pp. 229–243. Springer, Heidelberg (2003)

3. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

4. Emerson, E.A.: Temporal and modal logic. Handbook of Theoretical Computer
Science B(16), 995–1072 (1990)

5. Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

6. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy
their linear specification. In: POPL, pp. 97–107. ACM Press, New York (1985)

7. Schmalz, M.: Extensions of an algorithm for generalised fair model checking.
Diploma Thesis, Technical Report B 07-01, University of Lübeck, Germany (2007),
www.tcs.uni-luebeck.de/Forschung/B0701.pdf

8. Schmalz, M., Völzer, H., Varacca, D.: Model checking almost all paths can be less
expensive than checking all paths. Technical Report 573, ETH Zürich, Switzerland
(2007), www.inf.ethz.ch/research/disstechreps/techreports

9. Schnoebelen, P.: The complexity of temporal logic model checking. In: AiML, pp.
393–436. King’s College Publications (2002)

10. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

11. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. In: Brauer, W. (ed.) Automata,
Languages and Programming. LNCS, vol. 194, pp. 465–474. Springer, Heidelberg
(1985)

12. Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct
systems. In: LICS, pp. 389–398. IEEE Computer Society Press, Los Alamitos (2006)

13. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

14. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. IEEE Computer Society Press, Los Alamitos
(1986)

15. Völzer, H., Varacca, D., Kindler, E.: Defining fairness. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 458–472. Springer, Heidelberg (2005)

16. Zuck, L.D., Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free
choice. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 208–224. Springer,
Heidelberg (2002)

 www.tcs.uni-luebeck.de/Forschung/B0701.pdf
www.inf.ethz.ch/research/disstechreps/techreports

Closures and Modules Within Linear Logic

Concurrent Constraint Programming

Rémy Haemmerlé, François Fages, and Sylvain Soliman

INRIA Paris-Rocquencourt – France
FirstName.LastName@inria.fr

Abstract. There are two somewhat contradictory ways of looking at
modules in a given programming language. On the one hand, module
systems are largely independent of the particulars of programming lan-
guages. On the other hand, the module constructs may interfere with the
programming constructs, and may be redundant with the other scope
mechanisms of a specific programming language, such as closures for in-
stance. There is therefore a need to unify the programming concepts
that are similar, and retain a minimum number of essential constructs
to avoid arbitrary programming choices. In this paper, we realize this
aim in the framework of linear logic concurrent constraint programming
(LCC) languages. We first show how declarations and closures can be
internalized as agents in a variant of LCC for which we provide precise
operational and logical semantics in linear logic. Then, we show how a
complete module system can be represented within LCC, and prove for
it a general code protection property. Finally we study the instanciation
of this scheme to the implementation of a safe module system for con-
straint logic programs, and conclude on the generality of this approach
to programming languages with logical variables.

1 Introduction

Module systems are an essential feature of programming languages as they facili-
tate the re-use of existing code and the development of general purpose libraries.
There are however two contradictory ways of looking at a module system. On the
one hand, a module system is essentially independent of the particulars of a given
programming language. “Modular” module systems have thus been designed and
indeed adapted to different programming languages, see e.g. [15]. On the other
hand, module constructs often interfere with the programming constructs and
may be redundant with other scope mechanisms supported by a given program-
ming language, such as closures for instance. There is therefore a need to unify
the programming concepts that are similar in order to retain a minimum number
of essential constructs and avoid arbitrary programming choices. In this paper,
we realize this aim in the framework of linear logic concurrent constraint (LCC)
programming languages.

The class of concurrent constraint (CC) programming languages was intro-
duced in [18] as an elegant merge of constraint logic programming (CLP) and

V. Arvind and S. Prasad (Eds.): FSTTCS 2007, LNCS 4855, pp. 544–556, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Closures and Modules Within Linear LCC Programming 545

concurrent logic programming. In the CC paradigm, CLP goals become concur-
rent agents communicating through a common store of constraints, each agent
being able to post constraints to the store, and to synchronize by asking whether
a guard constraint is entailed by the store. Research on the logical semantics of
CC languages [6] led to a simple solution in Girard’s Linear Logic [8]. Through
a straightforward translation of CC agents into intuitionistic LL (ILL) formulas,
CC operational transitions indeed correspond to deductions in ILL, and com-
pleteness theorems hold for the observation of successes as well as accessible
stores [6].

Moreover, the soundness and completeness theorems still hold when consid-
ering constraint systems based on Linear Logic instead of classical logic, that
constitutes the LCC framework. From a programming point of view, ILL con-
straint systems are a refinement of classical constraint systems allowing for the
non-monotonic evolution of the constraint store, as advocated in [2], through
the consumption of Linear Logic tokens by linear implication [6]. In LCC, con-
straint programming and imperative programming features are thus reconciled
in a unified framework, and LCC has been proposed in [9] as a kernel language
for developing constraint programming libraries in a modular fashion.

In this paper, we focus on a closure mechanism and a module system that can
be naturally internalized in LCC. We first show in Sect. 2, that the linear tokens
and the bang operator of LL can be used to internalize CC declarations and
procedure calls as respectively constraint posting and constraint asking in LCC.
A quite general notion of closure can then be encoded as a banged agent with an
environment. The case of an empty environment corresponds to the usual CC
declarations. Then in Sect. 3, we develop a complete module system for LCC
via a simple syntactical convention for encapsulating procedure declarations and
calls. This restriction allows us to prove a general property of code protection by
showing that the implementation hiding follows from the usual scope mechanism
for variables. This module system is then illustrated in Sect. 4, by its instantia-
tion to constraint logic programming (CLP) languages, and by its relationship
to the module system proposed in [10]. Its implementation is discussed there
along the lines of its semantics in LCC, and is illustrated with examples of code
hiding, closure programming and module parameterization in CLP. Finally, we
conclude on the generality of this approach for programming languages with
logical variables.

Related Work
Concerning CC languages, the implementation of modules has not been much
discussed up to now, being considered as an orthogonal issue. For instance, the
MOZART-OZ language [17,4] contains an ad-hoc module system allowing for
separate compilation, but presented as an extra logical feature separated from
the other programming constructs.

Concerning programming languages developed in Linear Logic using the Logic
Programming paradigm, like for instance LO [1], Lolli [13] or Lygon [12], it is

546 R. Haemmerlé, F. Fages, and S. Soliman

worth noticing that persistent asks (which could be represented as implications
under a ! in most of these languages) have not been considered, nor the direct
encoding of dynamic clause assertions. On the other hand, the banged ask ap-
pears in the recent work of [16] on the expressiveness of linearity and persistence
in process calculi for security. In LCC, we shall use the full power provided by
both persistent and non persistent inputs and outputs.

The internalization of declarations as agents proposed in this paper also goes
somehow in the opposite direction to that of definition-based logics, as described
for instance in [11]. Here, we represent definitions are represented by banged
agents as first-class citizens. This makes it possible to represent closures just by
definitions sharing variables with other agents.

2 Declarations as Agents

In this paper, a set of variables is denoted by x, y, z... while a sequence of
variables is denoted by x, y... The set of free variables occurring in a formula A
is denoted by V(A), A[x\t] denotes the formula A in which the free occurrences
of variables x have been replaced by terms t (with the usual renaming of bound
variables, avoiding variable clashes).

In this section, we give a presentation of LCC languages where the usual CC
declarations are replaced by banged ask agents, called persistent asks. This con-
struct actually generalizes usual declarations to closures with the environment
represented by the free variables in the persistent asks. Before that, we recall
the definition of linear logic constraint systems as given in [6].

2.1 Linear Logic Constraint Systems

LCC languages essentially extend CC languages by considering constraint sys-
tems based on Girard’s Linear Logic [8] instead of classical logic [6]. From a
programming point of view, this extension introduces state change and impera-
tive features in constraint languages by allowing a non-monotonic evolution of
the store of constraints [2].

Let T be the set of terms (noted t, s, . . .) formed from a set V of variables
and a set ΣF of function symbols. An atomic constraint is a formula built from
V , ΣF and a set ΣC of relation symbols. The constraint language is the least
set containing all atomic constraints, closed by multiplicative conjunction (⊗)
existential quantification (∃) and exponentiation (!).

Definition 1 (LL Constraint System). A linear constraint system is a pair
(C, �C) where C is a constraint language containing 1 the neutral element of the
multiplicative conjunction and �C is a subset of C ×C which defines the non-
logical axioms of the system. The entailment relation �C is the least subset of
C∗×C containing �C and closed by the rules of ILL for 1, �, !, ∃ and ⊗.

In this setting, classical constraints are written under a bang !, while linear logic
constraints without bang can be consumed by linear implication. In practice, the

Closures and Modules Within Linear LCC Programming 547

non classical constraints will be restricted to linear tokens which have no axiom,
except the general axiom of equality : l(x)⊗!(x=y) � l(y).

The vocabulary of predicate symbols ΣC is thus partitioned into two sets ΣD,
ΣL, where ΣD contains the classical constraints with at least true (1), false (0)
and =, and ΣL contains the linear token predicates. The constraint languages
built from ΣD and ΣL are noted D and L respectively.

Example 1. A typical LL constraint system is that of a combination of classical
constraints, such as Herbrand terms, with linear tokens like value(x, v) that can
be added added to and deleted from the store to encode imperative variables
and assignment. In the following, linear tokens will also be used to represent
procedure calls, by tokens consumed by the procedure definition at the time of
its execution.

As no classical constraint but 0 can entail a linear token, we have:

Proposition 1. Let c ∈ D and l ∈ L. If c � l ⊗ � then c � 0.

The set of free variables occurring in the linear tokens of some constraint c is
denoted by Vl(c). Formally, Vl(l(t)) = V(t) if l ∈ ΣL, and Vl(l(t)) = ∅ if l ∈ ΣD,
and this is extended to non-atomic constraints as usual.

2.2 Syntax and Operational Semantics of LCC Agents

Given an LL constraint system (C, �C), the syntax of LCC(C, �C) agents is de-
fined by the following grammar : A ::= A ||A | ∃x.A | c | ∀x(c → A) | ∀x(c ⇒ A)
where c stands for any constraint in C and x ⊂ Vl(c). As usual || stands for
parallel composition, the ∃ operator hides variables in an agent, and the tell
agent, written as a constraint, adds that constraint to the store. Two forms of
ask agents are considered here : ∀x(c → A) for the usual ask, and ∀x(c ⇒ A)
for the persistent ask that will serve to represent procedure definitions. In both
cases we impose x ⊂ Vl(c). This restriction limits the binding of variables by
pattern matching to the variables occurring in linear tokens, and prevents the
possible enumeration of all variables by ask agents.

The choice operator is defined here as an abbreviation as in the classical
encoding of the non-deterministic choice in CLP with two clauses with the same
head : A + B = ∃x(choice(x) || (choice(x) ⇒ A) || (choice(x) ⇒ B)).

The operational semantics of LCC with persistent ask is defined similarly to
[6] with an equivalence and a transition relation defined over configurations. A
configuration is a tuple 〈X ; c; Γ 〉 where X is a set of variables, Γ a multiset of
agents and c a constraint, called store. ≡ is the least equivalence satisfying the
following rule of parallel composition: 〈X; c; A ||B, Γ 〉 ≡ 〈X; c; A,B, Γ 〉.

The transition relation −→ is the least relation satisfying the following rules
modulo ≡ (its transitive and reflexive closure is denoted by ∗−→):

548 R. Haemmerlé, F. Fages, and S. Soliman

Hiding
z �∈ X ∪ V(c, Γ)

〈X; c; ∃z.A, Γ 〉 −→ 〈X ∪ {z}; c; A, Γ 〉

Tell 〈X; c; d, Γ 〉 −→ 〈X; c ⊗ d; Γ 〉

Ask
c
C ∃Y.(d[z\s] ⊗ e) Y ∩ (X ∪ V(A, Γ)) = ∅

〈X; c; ∀z(d → A), Γ 〉 −→ 〈X ∪ Y ; e; A[z\s], Γ 〉

Persistent ask
c
C ∃Y.(d[z\s] ⊗ e) Y ∩ (X ∪ V(A, Γ)) = ∅

〈X; c; ∀z(d ⇒ A), Γ 〉 −→ 〈X ∪ Y ; e; A[z\s], ∀z(d ⇒ A), Γ 〉

Definition 2 (Observables). Let A be an LCC(C) agent. We say that a con-
straint d ∈ C is an accessible constraint for A if there exists a derivation of
the form 〈∅; 1; A〉 ∗−→ 〈X ; c; Γ 〉 such that ∃X.c �C d ⊗ �. Similarly, d is a
success for A, if in addition Γ is a multiset of persistent asks , ∃X.c �C d, and
〈X ; c; Γ 〉 �−→.

Definition 3 (Operational Semantics)

– Oconst(A) is the set of accessible constraints for the agent A.
– ODconst(A) = Oconst(A) ∩ D is the set of accessible D-constraints for A.
– Osucc(A) is the set of successes for the agent A.
– ODsucc(A) = Osucc(A) ∩ D is the set of D-successes for the agent A.

Example 2. In LCC, the scope mechanism of variables and the persistent ask
make it possible to encode closures. For instance, the agent ∀x(apply(c, x) ⇒
min(x, minint) ⊗ max(x, maxint)) waits for a token of application of a clo-
sure c to a variable x to add new constraints on x. From a functional perspec-
tive, C is equivalent to (λX.min(X, minint)⊗ max(X, maxint)), and the agent
apply(C, X) to C.X . This schema for closures makes it possible to define iterators
on data structures such as forall on lists, passing the closure as an argument
as follows (the frist two lines define the iterator and the last one uses it):

∀C.forall(C, []) ⇒ true ||
∀H,T, C.forall(C, [H |T]) ⇒ apply(C,H) ⊗ forall(C, T) ||
∃C.(∀X(apply(C,X) ⇒ min(X, minint) ⊗ max(X,maxint)) || forall(C, L))

Example 3. Rewriting rules with constraints such as in the CHR [7] can be easily
encoded in LCC. For instance, the three following CHR rules for defining the
ordering constraint =< assuming the built-in equality constraint =:

X=<Y <=> X=Y|true. X=<Y,Y=<X <=> X=Y. X=<Y,Y=<Z ==> X=<Z.

can be represented by the following LCC agent (Note that as in the naive se-
mantics of CHR, the last rule does not terminate):

∀X,Y ((X =< Y ⊗ X =Y) ⇒ 1) ||
∀X,Y ((X =< Y ⊗ Y =<X) ⇒ X = Y) ||
∀X,Y, Z((X =< Y ⊗ Y =<Z) ⇒ (X =< Y ⊗ Y =< Z ⊗ X =< Z))

This example illustrates the mixing in ask guards of linear tokens =< with the
classical (built-in) constraint =.

Closures and Modules Within Linear LCC Programming 549

2.3 Logical Semantics of LCC Agents

In this section, we show how the logical semantics of LCC in ILL [6] extends to
persistent asks. The translation of LCC agents into ILL is straightforward:

c† = c (∃x.c)† = ∃x.c† (A || B)† = A† ⊗ B†

(∀x(c → A))† = ∀x(c � A†) (∀x(c ⇒ A))† =!∀x(c† � A†)

This translation extends to a multiset of agents Γ by {A1, . . . , An}† = A†1 ⊗· · ·⊗
An†, and ∅† = 1. The translation of a configuration 〈X ; c; Γ 〉 is the formula
〈X ; c; Γ 〉† = ∃X.(c ⊗ Γ). As in [6], we get:

Theorem 1 (Soundness). Let 〈X ; c; Γ 〉 and 〈Y ; d; Δ〉 be two configurations.
If 〈X ; c; Γ 〉 ∗−→ 〈Y ; d; Δ〉 then 〈X ; c; Γ 〉† �C 〈Y ; d; Δ〉†.

Theorem 2 (Completeness). For any LCC agent A, Oconst(A) = {c ∈ C |
A† �C c ⊗ �}, ODconst(A) = {d ∈ D | A† �C d ⊗ �}.

Because LCC declarations are represented here with persistent asks using the
bang operator, the logical characterization of successes requires persistent asks
to have a linear token in their guard:

Definition 4 (L-persistent). Let C be a constraint system partitioned into
classical constraints D and linear tokens L. An agent is L-persistent if the guards
in its persistent asks all contain tokens in L.

Theorem 3 (Completeness on D-successes). For any L-persistent LCC(C)
agent A for which 0 is not an accessible constraint we have ODsucc(A) = {d ∈
D | A† �C d}.

3 Modules as Agents

3.1 Syntactical Conventions

The declaration and closure mechanism provided by the persistent ask in LCC
can be used to build a complete module system within LCC. In this approach,
a module is named by a variable and the scope of module declarations thus
depends on the scope of these variables. It is worth noting that for the issue
of separate compilation not considered here, modules should also be named by
constants making them visible by separate modules. That will be used in the
next section.

We use the syntactical convention x{A} to denote the agent A in module
x. Similarly, telling a token constraint l of module x is denoted by x : l, while
classical constraints are not localized. With these conventions, the syntax of
modular LCC (MLCC) agents is the following: A ::= x{A} | x : l | d | A || A |
∃x.A | ∀x(c → A) | ∀x(c ⇒ A) where l stands for a linear token constraint, d
stands for a classical constraint and c stands for an arbitrary constraint.

Now, MLCC agents are translated into LCC agents over a modified constraint
system, noted Ċ, in which an extra argument is added to every linear token. The
resulting LCC agents enjoy some sort of code protection as shown in next section.

550 R. Haemmerlé, F. Fages, and S. Soliman

Definition 5 (Translation in LCC). For any variable x referencing a module,
the translation ()x of MLCC(C) agents to LCC(Ċ) agents is defined recursively
by:

d(t)x = d(t) l(t)x = l̇(x, t) (c ⊗ c′)x = cx ⊗ c′x (∃y.c)x = ∃y.cx

(∃y.A)x = ∃y.Ax (y{A})x = Ay (y : l)x = ly (A || B)x = Ax || Bx

(!c)x =!cx (∀y(c → A))x = ∀y(cx → Ax) (∀y(c ⇒ A))x = ∀y(cx ⇒ Ax)

where y ∩ V(x) = ∅, d ∈ ΣD, l ∈ ΣL, c ∈ C and c′ ∈ C.
An LCC(Ċ) agent A is modular if it is the translation of an MLCC(C) agent

i.e. there exists an MLCC(C) agent B and a variable x such that A = Bx. An
LCC(Ċ) configuration is modular if all its agents are modular.

Example 4. With these conventions, a module for lists can be defined with in-
ternal anonymous modules for hiding the implementation of predicates, such as
the reverse predicate with a ternary implementation using an accumulator:

List{∃I. (∀X, Y.reverse(X, Y) ⇒ I : reverse(X, [], Y) ||
I { ∀X, Y.reverse([], X, Y) ⇒ !(X =Y) ||

∀X, Y, Z, T.reverse([X |Y], Z, T) ⇒ reverse(Y, [X |Z], T).)}}
For the sake of readability, in the following section, constraints of Ċ and agents
of LCC(Ċ) will be denoted respectively by ċ, ḋ, ė . . . and by Ȧ, Ḃ . . . , whereas
constraints of C and agents of MLCC(C) will be denoted respectively by c, d, e . . .
and by A, B Moreover, note that if κ is a modular configuration and κ ∗−→ κ′

then κ′ is modular.

3.2 Code Protection

MLCC programs enjoy a general property of code protection provided that the
constraint system does not allow to make arbitrary variables equal. This is en-
forced by assuming that {x, y} ⊂ V(c) whenever c �C x= y⊗� for any distinct
variables x and y.

Definition 6. Let 〈X ; ċ; Δ, Ḃ, l̇〉 be a modular configuration. The transitions
from Ḃ are independent from the linear tell agent l̇ if for any derivation that
first reduces tell l̇ then B, i.e. of the form:

〈X; ċ; Δ, Ḃ, l̇〉 −→ 〈X; ċ ⊗ l̇; Δ, Ḃ〉 −→ 〈Y ; ḋ′; Δ, Ḃ′〉

there exists a derivation that first reduces B then l of the form:

〈X; ċ; Δ, Ḃ, l̇〉 −→ 〈Y ′; ė; Δ, Ḃ′, l̇〉 −→ 〈Y ; ċ′ ⊗ l̇; Δ, Ḃ′〉 with ċ′ ⊗ l̇��Ċ ḋ′.

Definition 7 (Code Protection). An agent Ȧ is protected in a modular agent
C[Ȧ] if the transitions from Ḃ are independent from l̇ in any configuration
〈X ; ċ; Δ, Ḃ, l̇〉 such that 〈∅; 1; C[Ȧ], Γ 〉 ∗−→ 〈X ; ċ; Δ, Ḃ, l̇〉, Ḃ derives from Ȧ
and l̇ derives from Γ .

Theorem 4. Let A and B be two MLCC(C) agents. If A has no inner module
and y is used in A and B only in modular tells of the form y : l with y �∈ V(l),
then (A)y is protected in (∃y.(y{A} || B))x for any variable x.

Closures and Modules Within Linear LCC Programming 551

The proof of this theorem relies on general properties on the scope of variables,
and on technical properties of constraint decomposability and variable accessibil-
ity. The intuition behind decomposability is that linear tokens can be separated
from the rest of the constraint without making it logically weaker.

Definition 8 (Decomposable constraint). A constraint is in separated form
if it is of the form d⊗ l̇1⊗· · ·⊗ l̇k where d is a classical constraint and the l̇i’s are
atomic linear token constraints. A constraint is in decomposed form if it is of
the form ∃Y.ḋ where ḋ is in separated form. A constraint is decomposable (resp.
separable) if it is equivalent to a decomposed (resp. separated) form.

Lemma 1. Let Γ be a multiset of consistent constraints in decomposed form,
ċ ∈ Ċ a constraint, and Y a set of variables. If Γ �Ċ ∃Y.(ċ ⊗ �) then ċ is
decomposable.

Proposition 2. Let 〈X ; ċ; Γ 〉 ∗−→ 〈Y ; ḋ; Δ〉 be a derivation between two mod-
ular configurations. If ċ is consistent and decomposable then ḋ is decomposable.

Let ċ ∈ Ċ be a separable constraint and X a set of variables. We define the set
of variables accessible by unification in ċ from X as:

Au
ċ (X) = X ∪ {x ∈ V(ċ)| d ∈ D, y ∈ V(d), V(ċ) ∩ V(d) ⊂ X,

ċ ⊗ d
Ċ x=y ⊗ � and Γ, d �
Ċ 0}.

The set of variables accessible by substitution in ċ from X is:

As
ċ(X) = X ∪

{
x ∈ V(t)

∣
∣ l̇ ∈ Σm y ∈ X ċ
Ċ l̇(y, t) ⊗ � ċ �
Ċ 0

}

The set of directly accessible variables in ċ from X is A1
ċ(X)=As

ċ(X) ∪ Au
ċ (X).

Proposition 3. For any consistent separable constraint ċ, A1
ċ is extensive,

monotone and bound.

This proposition allows us to define the set of accessible variables in ċ from
X , noted Aċ(X), as the least fix point of A1

ċ containing X . The set of accessible
variables in a decomposable constraint ḋ is Aċ(X)\Y where Y is a set of variables
and ċ is a separable constraint such that ḋ �Ċ ∃Y.ċ and without loss of generality
Y ∩ X = ∅.

Lemma 2. Let ċ and ḋ be two consistent decomposable constraints of Ċ and X
an arbitrary set of variables. If ċ �Ċ ḋ ⊗ � then Aċ(X) ⊃ A

ḋ
(X).

Proposition 4. Let 〈X ; ċ; Γ, Δ〉 ∗−→ 〈Y ; ḋ; Γ ′, Δ′〉 be a derivation between two
consistent configurations such that Γ ′ be the reduced of Γ , and ċ is decomposable.
If x ∈ V(X, Δ) and x /∈ Aċ(V(Γ)) then x /∈ A

ḋ
(V(Γ ′)).

4 Implementation as a Module System for CLP

The MLCC scheme presented above instantiates into a powerful module sys-
tem for Constraint Logic Programming languages, called mCLP. This module

552 R. Haemmerlé, F. Fages, and S. Soliman

system is an extension including dynamic modules of the module system pro-
posed for CLP in [10]. It is provided here with a logical semantics in linear
logic, and with an implementation with closures in the line of its semantics
in LCC. A prototype implementation of mCLP is available for download at
http://contraintes.inria.fr/~haemmerl/pub/mclp.tgz.

4.1 mCLP Syntactical Conventions

We shall adopt for mCLP a pragmatic syntax close to that of classical CLP
systems. The typewriter font is used for programs, where, as in classical Prolog
programs, the identifiers beginning with a capital letter represent variables. The
syntax defined by the following grammar distinguishes declarations from goals
as usual:

G ::= module(T, E){D} | T : p(S1, . . . , Sn) | p(S1, . . . , Sn) | c(S1, . . . , Sn) | G, G | G; G
D ::= p(S1, . . . , Sn) : −G.D | p(S1, . . . , Sn).D |: −G.D | ε

where T is a term, E a list of variables, S1, . . . , Sn a sequence of terms, c a
constraint of C and p a predicate construct using the alphabet ΣL.

An mCLP declaration is either a clause, a fact or a goal of the form
:- G. executed at the initialization of the module. Besides the usual conjunction,
disjunction and constraint posting goals, the goal module(T, E){D} denotes the
instantiation of a module T with the implementation D and the environment
E. This environment is simply a list of global variables whose scope is the en-
tire module clauses. If T is a free variable, the resulting module is anonymous,
whereas if T is an atom (or a compound term), it is a named module, as proved
useful for separate compilation. The goal T:p(S1, ..., Sn) denotes the exter-
nal call of the predicate p/n defined in the module T, which is distinguished from
the local call, noted p(S1, ..., Sn), of the predicate p/n defined in the current
module.

4.2 Interpretation and Compilation

Classical clauses are interpreted by persistent asks waiting for the linear token
that represents the procedure call. The module environment provides a new fea-
ture allowing for global variables in a module. Formally, the interpretation of
mCLP goals and declaration in MLCC is defined by [[G]]T and [[D]]TE where T is the
current module and E the current environment:

[[G1, G2]]
T = [[G1]]

T || [[G2]]
T [[P]]T = T :P [[S :P]]T= S :P

[[G1; G2]]
T = [[G1]]

T + [[G2]]
T [[C]]T = T : (!C) [[module(S, E){D}]]T = S{[[D]]SE}

[[:- G.D]]TE = ∃Y[[G]]S || [[D]]TE [[p(t).D]]TE = ∀X(p(X) ⇒ ∃Y[[X=t]]S) || [[D]]TE
[[p(t) :- G.D]]TE = ∀X(p(X) ⇒ ∃Y[[X = t, G]]S) || [[D]]TE

where X is a set of fresh variables and Y = V(t, G) \ E.
Let �C◦ be the translation of the constraint system C into linear logic (using

for example the well know Girard’s translation classical logical into LL [8]). The
constraint system (CP, �CP) corresponding to this translation is defined such

Closures and Modules Within Linear LCC Programming 553

that �CP is the smallest set respecting the following conditions (1) if (C �C◦ C)
then (C �CP C) and (2) for any predicate symbol p (p(X), X=Y �CP p(Y)) .

Notice that all the [[A]]TE are L-persistent (see Def. 4), therefore all results of
previous Section can be applied to mCLP programs.

In addition to a first order logical semantics, this translation provides a way
to compile mCLP using classical Prolog compilation techniques. Typically a
module is referenced by a special variable to which module environment and
module procedures are attached as attributes [14]. A mCLP predicate is then
implemented by a Prolog predicate with an extra-argument, inherit from logical
semantics of persistent (c.f. Def. 5) storing the current module variable.

4.3 Global Variables

Module environments introduce global variables, i.e. variables shared among the
different clauses of the module. This construct can be used for instance to avoid
passing an argument to numerous module predicates. However, these variables
are still usual, backtrackable, logic variables.

The following code illustrates the use of a global variable Depth to implement
a Prolog meta-interpreter with a fair search strategy proceeding by iterative
deepening [19]. The predicate clause looks for clause definitions [5]; the predicate
for(I, Begin, End) produces a choice point where I will be assigned any of
the integer values between Begin and End (see for instance [3]).

Example 5. (Iterative Deepening):

:-module(iter deep, [Depth]){
solve(G):- for(Depth,1,1000), iter deep(G,0).

iter deep(,I) :- I >= Depth, !, fail.

iter deep(((A,B)),I) :- !, iter deep(A,I), iter deep(B,I).

iter deep(A,) :- clause((A:-true)), !.

iter deep(A,I) :- clause((A:-B)), J is I+1, iter deep(B,J). }.

4.4 Code Hiding

As above, one can use an environment to make a variable global to a module,
but this time, this variable will be used to keep an anonymous inside module
hidden from the outside. Since the name of the inside module is this variable,
only accessible to the clauses inside the module definition, the corresponding
implementation is protected from the clauses outside the external module.

This is illustrated in the following program that provides the sort predicate
and hides the implementation quicksort predicate.

Example 6. (Quicksort):

:- module(sort, [Impl]){
sort(Lst,SrtdLst):- Impl:quicksort(Lst,SrtdLst).

554 R. Haemmerlé, F. Fages, and S. Soliman

:- module(Impl,[]){
quicksort([],[]).

quicksort([X|Tl],Srtd) :- split(X,Tl,Smll,Bg),

quicksort(Smll,SrtdSmll), quicksort(Bg,SrtdBg),

list:append(SrtdSmll,[X|SrtdBg],Srtd).

split(X,[],[],[]).

split(X,[Y|Tl],[Y|Smll],Bg) :- X<Y,!,split(X,Tail,Small,Big).

split(X,[Y|Tl],Smll,[Y|Bg]) :- split(X,Tl,Smll,Bg). }. }.

The code protection property 3.2 ensures that no call to the quicksort predicate
is possible outside the sort predicate. The execution of the following goal prints
on screen the sorted list [2/7,1/2,2/3,1,4/3,5].
? L=[1, 2/3, 5, 4/3, 1/2, 2/7], sort:sort(L, L1), print(L1), nl.

4.5 Closures

The classical notion of closure can be recovered through the definition of modules
with a predicate apply/1 waiting for the argument to apply the persistant ask
(corresponding to the clauses of apply/1).

This makes it possible to define iterators on data structures such as forall
on lists, passing the closure as an argument as follows:

Example 7. : :- module(iterator, []){
forall([],).

forall([H|T], C) :- C:apply(H), forall(T, C). }.

The usual domain/3 (or fd domain/3) built-in predicate of finite domain con-
straint solvers, can be implemented using the list iterator on its arguments:

fd domain(Vars,Min,Max):-module(Cl,[Min,Max]){apply(X):-Min=<X,X=<Max.},
(list(Vars)->iterator:forall(Vars, Cl) ; var(Vars)->Cl:apply(Vars)).

4.6 Module Parameterization

Parameterized modules greatly enhance the programmer capabilities to re-use
code by making its module implementation depend on other modules. Combin-
ing the idea of using the environment to parameterize a closure, and the code
hiding features demonstrated above, one can obtain a module with a hidden
implementation, parameterized from outside. The following example shows how
to parameterize the previous sort module by creating a generic sort/2 pred-
icate that dynamically creates a sorting module (its first argument) using the
comparison predicate given as second argument.

Example 8. (Parameterized quicksort):

:- module(sort, []){
generic sort(Sort,Order):- module(Sort,[Order, Impl]){

sort(List,SortedList):-Impl:qsort(List,SortedList).

Closures and Modules Within Linear LCC Programming 555

:-module(Impl, [Order]){
qsort([],[]).

qsort([X|T],Srtd):-split(X,T,Smll Bg),qsort(Smll,SrtdSmll),

qsort(Bg,SrtdBg),list:append(SrtdSmll,[X|SrtdBg],Srtd).

split(X,[],[],[]).

split(X,[Y|T],[Y|Smll],Bg):-Order:(X >= Y),!,

split(X,T,Smll, Bg).

split(X,[Y|T],Smll,[Y|Bg]):-split(X,T,Smll,Bg). }. }.}.

Let math be a module defining the ordering predicate >= over numbers, and
term a module defining the ordering predicate @>= over terms. The execution of
the following goal prints the lists [2/7,1/2,2/3,1,4/3,5] and [1,5,1/2,2/3,
2/7,4/3] which shows the parameterized use of the module sort.

?- L=[1, 2/3, 5, 4/3, 1/2, 2/7],

sort:factory(Sort1, math), Sort1:sort(L, L1), print(L1), nl,

module(OrderLex, []) X >= Y:- term:(X @>= Y) ,

sort:factory(Sort2, OrderLex), Sort2:sort(L, L2) print(L2), nl.

5 Conclusion

We have shown that a powerful module system for linear concurrent constraint
programming (LCC) languages can be internalized into LCC, by representing
declarations by persistent asks, referencing modules by variables and thus ben-
efiting from implementation hiding through the usual hiding operator for vari-
ables. We have presented the operational semantics of MLCC programs, showing
a code protection property, and proving the equivalence with the logical seman-
tics in linear logic for the observation of stores and successes.

These results have been illustrated with an instantiation of the MLCC scheme
to constraint logic programs, leading to a simple yet powerful module system
similar to the one proposed in [10], supporting code hiding, closures and module
parameterization, and provided here with a simple logical semantics in linear
logic. Another interesting use is the boostrapping of a complete implementation
of LCC that is currently under development [9].

We believe that this approach to internalizing a module system within a pro-
gramming language is of a quite general scope for programming languages with
logical variables, as well as its implementation with a closure mechanism.

References

1. Andreoli, J.-M., Pareschi, R.: Linear objects: Logical processes with built-in inher-
itance. New Generation Computing 9, 445–473 (1991)

2. Best, E., de Boer, F.S., Palamidessi, C.: Concurrent constraint programming with
information removal. In: Proceedings of Coordination. LNCS, Springer, Heidelberg
(1997)

3. Diaz, D.: GNU Prolog user’s manual (1999–2003)

556 R. Haemmerlé, F. Fages, and S. Soliman

4. Duchier, D., Kornstaedt, L., Schulte, C., Smolka, G.: A higher-order module dis-
cipline with separate compilation, dynamic linking, and pickling. draft (1998)

5. Ed-Dbali, P.D.A., Cervoni, L.: Prolog: The Standard. Springer, Heidelberg (1996)
6. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: oper-

ational and phase semantics. Infor. and Comput. 165(1), 14–41 (2001)
7. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic

Programming 37(1-3), 95–138 (1998)
8. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1) (1987)
9. Haemmerlé, R.: SiLCC is linear concurrent constraint programming (doctoral con-

sortium). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
448–449. Springer, Heidelberg (2005)

10. Haemmerlé, R., Fages, F.: Modules for Prolog revisited. In: Etalle, S., Truszczyński,
M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 41–55. Springer, Heidelberg (2006)

11. Hallnäs, L.: A proof-theoretic approach to logic programming. ii. programs as def-
initions. Journal of Logic and Computation 1(5), 635–660 (1991)

12. Harland, J., Pym, D.J., Winikoff, M.: Programming in lygon: An overview. In:
Proceedings of the Fifth International Conference on Algebraic Methodology and
Software Technology, Munich, pp. 391–405 (July 1996)

13. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear
logic. Information and Computation 110(2), 327–365 (1994)

14. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible
unification. TR-92-23, Österreichisches Forschungsinstitut für AI, Wien (1992)

15. Leroy, X.: A modular module system. J. of Func. Prog. 10(3), 269–303 (2000)
16. Palamidessi, C., Saraswat, V.A., Valencia, F.D., Victor, B.: On the expressiveness

of linearity vs persistence in the asychronous pi-calculus. In: Proc. of the 21th An-
nual IEEE Symposium on Logic In Computer Science, pp. 59–68. IEEE Computer
Society Press, Los Alamitos (2006)

17. Roy, P.V., et al.: Logic programming in the context of multiparadigm programming:
the Oz experience. TPLP 3(6), 715–763 (2003)

18. Saraswat, V.A.: Concurrent constraint programming. ACM Doctoral Dissertation
Awards. MIT Press, Cambridge (1993)

19. Stickel, M.E.: A prolog technology theorem prover: implementation by an extended
prolog compiler. Journal of Automated Reasoning 44, 353–380 (1988)

Author Index

Akshay, S. 290
Alon, Noga 316
Arapinis, Myrto 376

Backes, Michael 108
Baier, Christel 179
Baudru, Nicolas 277
Belkhir, Walid 508
Benedikt, Michael 461
Bertrand, Nathalie 179
Beyersdorff, Olaf 241
Biedl, Therese 400
Bollig, Benedikt 290, 303
Bouyer, Patricia 179
Brévilliers, Mathieu 388
Brihaye, Thomas 179

Chambart, Pierre 265
Chatterjee, Krishnendu 436, 473
Chevalier, Yannick 121
Chevallier, Nicolas 388
Cortier, Véronique 352
Courant, Judicaël 364

Delaitre, Jérémie 352
Delaune, Stéphanie 133, 352
Duflot, Marie 376
Dürmuth, Markus 108

Ene, Cristian 364

Fages, François 544
Fleischner, Herbert 340
Fomin, Fedor V. 316
Fukunaga, Takuro 84

Garg, Naveen 96
Gastin, Paul 290
Glaßer, Christian 146, 253
Größer, Marcus 179
Gutin, Gregory 316

Haemmerlé, Rémy 544
Halldórsson, Magnús M. 84
Harkins, Ryan C. 168

Hasan, Masud 400
Herlihy, Maurice 1
Hirschowitz, André 192
Hirschowitz, Michel 192
Hirschowitz, Tom 192
Hitchcock, John M. 168

Inkulu, R. 412

Jakoby, Andreas 216
Jansson, Jesper 424
Jeffrey, Alan 461

Kapoor, Sanjiv 412
Karp, Richard M. 9
Kavitha, Telikepalli 328
Khanna, Sanjeev 485
Kidd, Nick 23
Kourjieh, Mounira 121
Kremer, Steve 133
Krivelevich, Michael 316
Kumar, Amit 71, 96
Kumar, Ravi 228
Kunal, Keshav 485
Kuske, Dietrich 303
Küsters, Ralf 108

Lakhnech, Yassine 364
Lal, Akash 23
Leroux, Jérôme 520
López-Ortiz, Alejandro 400

Meinecke, Ingmar 303
Morin, Rémi 277
Mujuni, Egbert 340

Nagamochi, Hiroshi 84

Pandit, Vinayaka 96
Paulusma, Daniel 340
Pavan, A. 168
Pierce, Benjamin C. 21, 485

Reitwießner, Christian 253
Reps, Thomas 23
Ryan, Mark 133

558 Author Index

Sabharwal, Yogish 71

Sadakane, Kunihiko 424

Saha, Diptikalyan 204

Santocanale, Luigi 508

Saurabh, Saket 316

Schewe, Sven 449

Schmalz, Matthias 532

Schmitt, Dominique 388

Schnoebelen, Philippe 265

Selman, Alan L. 146

Sivakumar, D. 228

Soliman, Sylvain 544

Srivastav, Anand 497

Sung, Wing-Kin 424

Sutre, Grégoire 520
Szeider, Stefan 340

Tantau, Till 216
Torán, Jacobo 158
Travers, Stephen 146, 253

Vadhan, Salil 52
Varacca, Daniele 532
Völzer, Hagen 532

Waldherr, Matthias 253
Werth, Sören 497

Zhang, Liyu 146

	Title Page
	Preface
	Organization
	Table of Contents
	The Multicore Revolution The Challenges for Theory
	Introduction
	Challenges
	Scheduling and Contention Management
	Concurrent Data Structures and Algorithms
	Granularity of Atomicity

	Conclusions

	Streaming Algorithms for Selection and Approximate Sorting
	Introduction
	Streaming Algorithms
	Results
	Selection
	Previous Work on Randomized Algorithms for Selection

	Multiple Selection
	Parallel Selection
	Approximate Selection
	Approximate Sorting

	Adventures in Bidirectional Programming
	Program Analysis Using Weighted Pushdown Systems
	Introduction
	Background
	Background on Interprocedural Dataflow Analysis
	Pushdown Systems
	Boolean Programs

	Weighted Pushdown Systems
	Finite-State Data Abstractions
	Infinite-State Data Abstractions
	Solving for the MOVP Value
	Local Variables and Extended Weighted Pushdown Systems

	Case Study: May-Aliasing for Single-Level Pointer Programs
	Recent Developments
	Improvements in Solver Technology
	Analysis of Concurrent Programs
	Polyhedral Analysis

	The Complexity of Zero Knowledge
	Introduction
	Definitions and Examples
	Zero Knowledge as an Interface
	Zero Knowledge as an Object of Study
	Statistical Security: SZKP
	Computational Security: CZKP, SZKA, and CZKA

	Future Directions

	The Priority k-Median Problem
	Introduction
	Preliminaries
	Two Priorities
	Consolidating Demands
	Scenarios
	Changing the Assignments
	Modified LP
	Half-Integrality of a Vertex Solution
	Rounding to an Integral Solution

	Open Problems

	“Rent-or-Buy” Scheduling and Cost Coloring Problems
	Introduction
	Approximation of Maximum k-Subgraphs
	Rent-or-Buy Coloring (and TTR)
	Exact Algorithms for Interval Graphs
	Approximation of Perfect Graphs
	Hardness and Approximation of General and Split Graphs

	Probabilistic Coloring Problem
	Threshold Coloring

	Order Scheduling Models: Hardness and Algorithms
	Introduction
	Preliminaries
	Hardness of Approximating Completion Time and Flow Time
	Completion Time
	Flow Time

	Offline Weighted Completion Time
	Online Algorithm for Minimizing Weighted Completion Time
	Lower Bound for Minimizing Sum of Flow Times
	Conclusion

	On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography
	Introduction
	Our Results
	Paper Outline

	Symbolic Cryptography
	Basic Terminology, Dolev-Yao Terms, and Deduction Rules
	Syntax of Protocols

	Simulatability and Requirements for Simulatability-Sound Dolev-Yao Models
	Review of Simulatability
	On Simulatability-Sound Dolev-Yao Models and Their Cryptographic Implementations

	Reactive Execution of Protocols
	Emulating Concrete Executions Via \mH_{Π}
	Dolev-Yao Traces of Π

	Simulatability Soundness Implies Mapping Soundness

	Key Substitution in the Symbolic Analysis of Cryptographic Protocols
	Introduction
	An Example Attack
	Formal Setting
	Basic Notions
	Unification Systems
	Intruder Deduction Systems
	Simultaneous Constraint Satisfaction Problems

	Symbolic Model for Key Substitution Attacks
	Saturation
	Construction
	Properties of a Saturated System

	Decidability of Reachability
	First Step: Guess of a Normal Form
	Second Step: Resolution of Unification Problems
	Third Step: Transformation in Solved Form

	Conclusion

	Symbolic Bisimulation for the Applied Pi Calculus
	Introduction
	The Applied Pi Calculus
	Constraint Systems
	Symbolic Applied Pi Calculus
	Symbolic Semantics
	Symbolic Equivalences

	Discussion, Related and Future Work
	Sources of Incompleteness
	Related Work
	Future Work

	Non-mitotic Sets
	Introduction
	Preliminaries
	Separation of Mitoticity Notions
	Non-mitotic Sets of Low Complexity
	Uniformly Hard Languages in NP

	Reductions to Graph Isomorphism
	Introduction
	Preliminaries
	Reducibilities
	Graph Isomorphism

	Many-One Reducibility
	Turing Reducibility
	Conclusions and Open Problems

	Strong Reductions and Isomorphism of Complete Sets
	Introduction
	Preliminaries
	Polynomial-Time Measure and Randomness

	 SNP Reductions and Isomorphisms
	Discussion

	Probabilistic and Topological Semantics for Timed Automata
	Introduction
	Timed Automata and Region Automata
	A Probabilistic Semantics for Timed Automata
	Definition of a Probability Measure over Finite Paths
	Probabilistic Semantics

	A Topological Semantics for Timed Automata
	Some Topological Notions
	The Dimension of a Symbolic Path
	Definition of a Topology over Finite Paths

	Correspondence of the Two Semantics
	Decidability Issues
	Related Work
	Conclusion

	A Theory for Game Theories
	Introduction
	The Flavor Problem
	Playing in a One-Way Category

	The Abstract Framework: Building the Double Category
	Game Settings
	The 1-Dimensional Game
	The Double Category Associated to a Game Setting

	The One-Way Category Underlying Hyland-Ong Games
	A Brief Review of HO-Arenas and HO-Plays
	The One-Way Category \cat_{HO}
	The Game Setting GHO

	An Abstract View of Strategies
	Conclusion

	An Incremental Bisimulation Algorithm
	Introduction
	Preliminaries
	Incremental Bisimulation Algorithm
	Experimental Results
	Related Work
	Conclusion

	Logspace Algorithms for Computing Shortest and Longest Paths in Series-Parallel Graphs
	Introduction
	Basic Definitions
	Definition of Series-Parallel Graphs
	Decomposition Trees
	Facts from the Literature Used in Our Proofs

	Computing Maximum-Weight Paths in Logspace
	Terminal-to-Node Paths in Directed Two-Terminal S-P-Graphs
	Terminal-to-Terminal in Mixed Two-Terminal S-P-Graphs
	Terminal-to-Node Paths in Mixed Two-Terminal S-P-Graphs
	Node-to-Node Paths in Mixed Multiple-Terminal S-P-Graphs

	Conclusion

	Communication Lower Bounds Via the Chromatic Number
	Introduction
	Communication Complexity
	A Graph-Theoretic Approach
	Lower Bounds Via $\chi(G_f)$
	Fooling Sets and the Clique Number
	The Lov\'{a}z Theta Function
	Graph Entropy

	Conclusions and Open Problems

	The Deduction Theorem for Strong Propositional Proof Systems (Extended Abstract)
	Introduction
	Preliminaries
	Extensions of Frege Systems
	Deduction Properties for Frege Systems
	Deduction Properties and Complete ${\sf NP}$-Pairs
	Conclusion

	Satisfiability of Algebraic Circuits over Sets of Natural Numbers
	Introduction
	Preliminaries
	Satisfiability Problems for Circuits over Sets of Natural Numbers
	Examples

	Bounds That Can Be Translated from $\boldsymbol{\MC({\cal O})}$ to $\boldsymbol{\SC({\cal O})}$
	Satisfiability and Diophantine Equations
	Decidable Satisfiability Problems
	Circuits with Both Arithmetic and Set Operations
	Circuits with Either Arithmetic or Set Operations

	Conclusions

	Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems
	Introduction
	Notations and Definitions
	PEP: Post Correspondence with Embedding
	Variants and Extensions
	From ${PEP^reg}$ to Lossy Channel Systems
	Reachability for Unidirectional Systems
	Unidirectional Systems
	From Unidirectional Systems to ${PEP^reg}$

	Concluding Remarks

	Synthesis of Safe Message-Passing Systems
	Message Sequence Charts
	Basic and Context Message Sequence Charts
	Semigroup of Context Message Sequence Charts
	Regular Sets of MSCs

	Deadlock-Free and Stuck-Free Message-Passing Systems
	Communicating Finite-State Machines with Local Termination
	Deadlocks and Stuck Messages
	Implementable Languages: Two Basic Properties

	Iteration of Implementable Languages
	Intuitive Description of the Consensus Protocol
	Formal Construction of \S'
	A Technical Lemma

	Elementary Decompositions of Regular Sets of MSCs

	Automata and Logics for Timed Message Sequence Charts
	Introduction
	Timed Message Sequence Charts
	Logic and Automata for Timed MSCs
	Equivalence of EC-CFMs and MSO Logic
	Deciding Emptiness of EC-CFMs

	Propositional Dynamic Logic for Message-Passing Systems
	Introduction
	Definitions
	Message Sequence Charts
	Propositional Dynamic Logic (PDL)
	Communicating Finite-State Machines

	Translation of Formulas
	The Backward-Path Automaton
	The Forward-Path Automaton
	The Overall Construction

	Model Checking
	CFMs vs. PDL Specifications
	HMSCs vs. PDL Specifications

	PDL with Intersection
	Open Questions

	Better Algorithms and Bounds for Directed Maximum Leaf Problems
	Introduction
	Preliminaries
	Locally Optimal Out-Trees
	Combinatorial Bounds
	Decomposition Algorithms
	Discussion and Open Problems

	Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs
	Introduction
	Our Main Results

	Preliminaries
	All-Pairs Stretch $5/2$ Distances
	Correctness of the Algorithm ${\mathsf{STRETCH}}_{5/2}(G)$

	All-Pairs Stretch $(2+\epsilon)$ Distances
	Correctness of the Algorithm ${\mathsf{STRETCH}}_{5/2}(G)$

	Conclusions

	Covering Graphs with Few Complete Bipartite Subgraphs
	Introduction
	Preliminaries
	Parameterized Complexity
	Graphs and Covers

	Biclique Covers
	Biclique Vertex-Covers
	NP-Hardness
	Polynomial Cases
	Bounding One Side of the Bicliques

	Final Remarks

	Safely Composing Security Protocols
	Introduction
	Models for Security Protocols
	Syntax
	Intruder Capabilities
	Protocols
	Constraint Systems
	Secrecy

	Composition Result
	Hypothesis
	Composition Theorem

	Proof of Our Combination Result
	Conclusion

	Computationally Sound Typing for Non-interference: The Case of Deterministic Encryption
	Introduction
	Contributions
	Related Work
	Paper Structure

	Preliminaries
	An Imperative Language with Random Assignment and Deterministic Encryption
	Expressions
	Commands

	Typing Expressions
	Typing Expressions

	A Type System for Commands
	The Typing System
	Soundness of the Typing System of eWhile

	Conclusion

	Bounding Messages for Free in Security Protocols
	Introduction
	Modelling Security Protocols
	The Syntax
	The Semantics
	The Secrecy Problem

	Well-Formed Protocols and Well-Typed Attacks
	Types
	Considering Only Well-Typed Runs for Well-Formed Protocols

	Application to Decidability Results
	Conclusion

	Triangulations of Line Segment Sets in the Plane
	Introduction
	Segment Triangulations and Constrained Triangulations
	Topological Properties of Segment Triangulations
	Segment Delaunay Triangulation and Segment Voronoi Diagram
	Legality in Segment Triangulations
	Conclusion

	Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts in Orthogonal Projections (Extended Abstract)
	Introduction
	Reconstructing Polygons
	Reconstructing Polyhedra
	Directions Covered by a Single Plane
	Directions Covered by Two Planes

	NP-Completeness for Arbitrary Directions

	Finding a Rectilinear Shortest Path in R^2 Using Corridor Based Staircase Structures
	Introduction
	Corridor Based Staircase Structures and Visibility Graph
	Visibility Graph with Steiner Points
	Type-I Points and Edges
	Type-II Points and Edges

	Conclusion

	Compressed Dynamic Tries with Applications to LZ-Compression in Sublinear Time and Space
	Introduction
	Previous Work
	Preliminaries
	A Data Structure for Maintaining a Set of Length-$(\log_{\sigma} n)$ Strings
	Data Structures for Maintaining an Edge-Labeled Tree
	LZ78 Encoding and LZ-Trie

	Dynamically Maintaining a Trie of Height $(\log_{\sigma} n)$
	Maintaining a Trie of Size O$(\log_{\sigma} n)$
	Maintaining a Trie of Height O$(\log_{\sigma} n)$

	Maintaining a Trie with No Height Restrictions
	LZ-Compression

	Stochastic M¨uller Games are PSPACE-Complete
	Introduction
	Definitions
	The Complexity of Stochastic M\''{u}ller Games
	Union-Closed and Upward-Closed Objectives

	Solving Parity Games in Big Steps
	Introduction
	Preliminaries
	Parity Games
	A Ranking Function Based Approach to Solving Parity Games

	Computing Small Dominions
	Solving Parity Games in Big Steps
	Conclusions

	Efficient and Expressive Tree Filters
	Introduction
	Notation
	Trees
	Filtering Specifications
	The Streaming Problem

	Filtering of Boolean Queries
	Filtering of Nodeset Queries
	Related Work

	Markov Decision Processes with Multiple Long-Run Average Objectives
	Introduction
	MDPs with Multiple Long-Run Average Objectives
	Memoryless Strategies Suffice for Pareto Optimality
	Approximating the Pareto Curve
	Irreducible MDPs
	General MDPs
	Realizability

	A Formal Investigation of {\tt Diff}3
	Introduction
	Warmup
	The {\tt Diff}3 Algorithm
	Properties of {\tt Diff}3
	Locality
	Idempotence
	Near Success on Similar Replicas
	Stability

	Future Work

	Probabilistic Analysis of the Degree Bounded Minimum Spanning Tree Problem
	Introduction
	Facts on Subadditive Euclidean Functionals
	The Boundary bMST Functional
	Proof of Theorem 1 and Concentration
	Conclusion

	Undirected Graphs of Entanglement 2
	Introduction
	Entanglement Games
	Molecules, Collapses, and the Class ζ_2
	Combinatorial Properties
	Characterization of Entanglement at Most 2
	A Linear Time Algorithm

	Acceleration in Convex Data-Flow Analysis
	Introduction
	The Complete Lattice of Closed Convex Sets
	Numbers, Lattices and Languages
	Closed Convex Sets and Polyhedra

	Convex Acceleration for Guarded Translation Systems
	Acceleration for Traces
	Acceleration for Cycles
	MFP-Solution in Dimension leq 2

	Model Checking Almost All Paths Can Be Less Expensive Than Checking All Paths
	Introduction
	Preliminaries
	Systems and Temporal Properties
	Temporal Logic
	Universal and Fair Correctness

	Comparing Universal and Fair Model Checking
	Known Results
	RLTL

	Fair Model Checking Can Be Less Expensive Than Universal Model Checking
	Muller Formulas
	Fair Model Checking of Muller Formulas
	Fair Model Checking of $L(F^\infty)$

	Canonical Subclasses of RLTL
	Conjunctive Formulas
	Disjunctive Formulas of RLTL
	Disjunctive Formulas of $L(F^\infty)$

	Conclusion

	Closures and Modules Within Linear Logic Concurrent Constraint Programming
	Introduction
	Declarations as Agents
	Linear Logic Constraint Systems
	Syntax and Operational Semantics of LCC Agents
	Logical Semantics of LCC Agents

	Modules as Agents
	Syntactical Conventions
	Code Protection

	Implementation as a Module System for CLP
	mCLP Syntactical Conventions
	Interpretation and Compilation
	Global Variables
	Code Hiding
	Closures
	Module Parameterization

	Conclusion

	Author Index

